The Messenger

Total Page:16

File Type:pdf, Size:1020Kb

The Messenger ESPRESSO The Messenger HARPS observation of the Venus transit Spectroscopy of the Magellanic Stream Science with ALMA Band 11 No. 153 – September 2013 –September 153 No. Telescopes and Instrumentation The ESO Product Data Management System — A New Home for ESO’s Technical Documents Maximilian Kraus1 and all the paper documents were Large Hadron Collider (LHC), and it is Roberto Tamai 1 scanned by a specialised contractor and accessible worldwide to CERN partners. Paul Jolley 1 thereafter only stored electronically. The CERN documentation experts Guy Hess 1 shared their experience in the design of Staff at the La Silla Paranal Observatory the EDMS configuration and also gener­ had, in principle, access to this archive ously offered ESO access to their system. 1 ESO through the intranet. However, on account The ESO administrators were trained of a shortage of network bandwidth and and worked for several weeks with CERN speed, the search and download perfor­ colleagues and in that way gained valu­ Originally the technical archives at ESO mance was not considered good enough. able information. grew organically and lacked a single At the observatories technicians did not coherent storage and access system. A always have the documents available One major lesson learned from this search for a powerful product data when they were needed, and problems exchange was that commercial systems management (PDM) system to unify remained in maintaining the documenta­ designed for industry fit poorly into an the document archives of observatory, tion set in the event of changes or open and creative research environment. telescope and instrument technical upgrades. This is also why CERN had heavily material was initiated. After a careful modified a commercial system and pro­ assessment of the possible systems, it Over the years, and especially with grammed a completely new user inter­ was decided to implement the Kronodoc the advent of the European Extremely face. CERN operates two completely system and its recent introduction Large Telescope (E­ELT) project, the different archives: one for the creation of as the ESO PDM system is described. need for a centralised archive for techni­ drawings and another for the project cal documentation became more and teams, as they had learned that there are more evident. In addition, modern fea­ different working cultures and processes Technical archives at ESO tures like remote access, configuration in the two areas, and integrating them control of documents and release work­ would be difficult and cause many prob­ Over the years several tools have been flows were necessary to support such lems. introduced and used for the archiving a large and complex project efficiently. and sharing of the ESO documents that It was therefore decided to search for As a result of these exchanges, ESO staff, contractors and consortium part­ a replacement for the archiving systems. investigated the suitability of the CERN ners produce and store for technical EDMS system as a tool to operate the products and projects related to tele­ ESO Technical Archive. While these scopes and instrumentation. This hybrid Search for a new archiving system investigations were proceeding, we learnt approach has worked well for most of about another commercial documenta­ the project teams, but the overall avail­ Initially the search for an archiving sys- tion management system from a small ability and control of the documents was tem concentrated on a drawing manage­ Finnish company, called Kronodoc. This not optimal. There has also been a cen­ ment system, because it was perceived company was created by engineers who tral archive, called the Technical Archive, that drawing sets, with their parts lists used to work at CERN and helped to which developed from the documentation and structures, are very complex to implement the CERN EDMS system system set up for the Very Large Tele­ handle, and “normal” documents (for within the framework of a Finnish in­kind scope (VLT) project and was located at example, specifications) should be more contribution to CERN. Further information ESO Headquarters in Garching. The VLT straightforward to store and access. on this spin­off company has been archive was originally planned for printed Several commercial systems were exam­ published2. The Kronodoc system was documents and drawings on paper, ined, but, after a detailed investigation, investigated, and we immediately under­ and was controlled using document lists. in each case a number of missing fea­ stood the similarities between it and the On Paranal a separate archive with a tures or functions were identified and the CERN EDMS. copy of the documents from Garching candidate systems were considered was set up. unsuitable for the ESO research environ­ During the investigation of the CERN ment. system as a possible solution for ESO, In 2003 this paper-based Technical we learnt about its many interesting Archive (see Figure 1) was migrated to Contact with colleagues at the European features, but also recognised that EDMS an electronic archive. New documents Organization for Nuclear Research is fully configured for use at CERN. It were only accepted as electronic files, (CERN) was established and visits were could only be adapted to ESO’s needs in and were accessible to ESO internal arranged to learn first-hand from their a very limited way, and there would still users on the intranet. The printed docu­ experience. Many years ago CERN intro­ need to be some compensation for ments produced earlier and stored were duced their Equipment Data Manage­ CERN’s substantial efforts. The Kronodoc scanned on demand and also made ment Service (EDMS1) system. After years system took care of this limitation: it available on the intranet. In 2009, because of development and adaptation, EDMS offered many of the interesting features of of the urgent need for office space, the has become a powerful tool and is in use the CERN system, but with the flexibility Technical Archive rooms were needed for many projects at CERN, such as the to configure it for ESO’s needs. So it was 2 The Messenger 153 – September 2013 tion at any time. Changes to processes are managed and any change initiated by a designer is scrutinised, and once accepted, the purchase department or workshop will be using the updated doc­ uments. Only then can the finished prod­ uct be traced and the up­to­date docu­ mentation be avail able when the product is used. At ESO the product creation process is usually not as complex as in the manu­ facturing industries; however there is the same need for complete and updated documentation when our products enter into their productive life. So we tried to achieve a similar goal: a database which can identify all our products from when they start their life as Phase A projects, through the start of operations at the observatory, tracking any modifications until they are retired from use. The system must provide all users with all documents relevant to our products at any moment Figure 1. Two views of the paper­based ESO Techni­ of their life. cal Archive: storage of folders in sliding cabinets (left); registered documents in suspension files (right). The majority of ESO’s products are designed and produced by industry or decided to enter into a definition and test­ For the handling of the technical and consortia, and after testing, delivered to ing phase, and a contract was concluded project documentation, the Kronodoc ESO. So there is no need for the ESO with the Dutch company BlueCielo, who system was found to be compliant. It had PDM system to cover the complex design had recently acquired the Finnish com­ all the needed functionality: its flexible and manufacturing environments. How­ pany Kronodoc3. nature allowed it to be adapted to the ever, it is essential that we absorb all needs of ESO, it was accessible from information created in industrial PDM sys­ everywhere via a secure internet connec­ tems and can access the documents Evaluation process tion and its user interface was compatible delivered when products pass through with all computer platforms. their acceptance phase, making this data All the evaluations of possible ESO available to ESO project teams and archiving systems were coordinated by As a consequence two projects were observatory staff for operation and main­ the ESO Mechanical Department in started, first setting up the CAD and draw­ tenance. The ESO PDM system is con­ the Technology Division, but other areas ing management system for the Mechani­ figured primarily for that purpose. In addi­ within ESO, such as the Instrumenta- cal Department in May 2011, and then tion the PDM provides collaboration tion Division or the E­ELT Department, defining and configuring the PDM system areas for project teams, where they can which also deal with projects, were in December 2011. create and share working documents, involved so that they could also bring in and exchange documents with contrac­ their respective requirements. tors and other partners in a controlled PDM way. During the system definition and evalua­ tion phase, CERN’s approach of sepa­ Why do we call our technical documenta­ After the contract with BlueCielo for the rating the technical drawing and CAD tion system PDM? PDM is an acronym for implementation of an ESO PDM system (Computer Aided Design) data manage­ Product Data Management. In the pro­ began, an intensive discussion and fact­ ment system from the general technical duction industry, PDM systems are com­ finding process started. Over the years, documentation system was confirmed. plex databases that can track and control in different areas of ESO, slightly different It was decided to go for the drawing and the development of complex machines, working cultures had developed, with CAD data management system from plants or systems, in very great detail.
Recommended publications
  • Sky Highlights for 2021
    JANUARY 2021 OBSERVING Celestial Calendar by Bob King Sky Highlights for 2021 Courtesy of Sky & Telescope Sky Highlights for 2021 A full year of observing enjoyment awaits. F or our January Celestial Calendar installment, we’ve decided to pres- The limb of the eclipsed ent a “sneak-peek” selection of some of the most interesting celestial Moon pokes out from highlights for 2021. (Each event will be described in greater detail in upcoming issues.) the umbra in this photo The coming year has its share of excitement, with several fi ne eclipses, captured during the the return of a few modestly bright periodic comets, and the usual April 15, 2014, total assortment of meteor showers and eye-catching conjunctions. lunar eclipse. This view January 3: The Quadrantid meteor shower peaks around 6:30 a.m. PST is similar to how the (14:30 UT). The timing of the peak means the display favors skywatchers Moon will appear at on the West Coast and in Alaska. Unfortunately, light from the waning gibbous Moon in Leo will blot out many of the fainter meteors. maximum eclipse during March 4: Vesta, the brightest and second-most massive asteroid, reaches November’s partial lunar opposition 1¼° northeast of 3.3-magnitude Theta Leonis, in the tail of eclipse. Leo. At magnitude 6.0, Vesta is bright enough to be glimpsed by keen- eyed observers without optical aid from a dark sky. Binoculars will make the asteroid an easy catch. KING BOB Page 1 March 5: Mercury and Jupiter are though many other locations will be just 21′ apart, low in the east-southeast able to see at least part of the event.
    [Show full text]
  • 1903Apj 18. .3415 the SPECTRUM of O CETL' by Joel Stebbins. On
    .3415 18. 1903ApJ THE SPECTRUM OF o CETL' By Joel Stebbins. On account of the great instrumental power required for the observation of the spectra of faint objects, changes in the spectra of long-period variable stars have not been well studied. In fact, there is no star which undergoes a large variation in bright- ness whose spectrum has been systematically followed from maxi- mum to minimum, or vice versa. It is proposed to give here the results of a study of the spectrum of o Ceti> or Mira, made, at the suggestion of Director Campbell, with the thirty-six-inch refractor of the Lick Observatory, from June 1902 to January 1903. During this period the star faded in brightness from 3.8 to 9.0 magnitude. The first photograph of the spectrum was obtained about three weeks after the predicted time of maximum, and a series of plates was secured covering the interval to mini- mum. No negatives were obtained after the star had again begun to increase in brightness. The most important articles concerning the spectrum of Mira are those of Vogel,2 Sidgreaves,3 and Campbell.4 Neither Vogel nor Sidgreaves followed the star long enough to find much change in its spectrum, and Campbell’s work was mainly in con- nection with observations of the star for radial velocity, with the Mills spectrograph. INSTRUMENTS AND METHODS. The spectrograph used in my observations was the one employed rby Messrs. Campbell and Wright in their work on 1 “ Dissertation in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in the University of California,” Lick Observatory Bulletin No.
    [Show full text]
  • September 2020 BRAS Newsletter
    A Neowise Comet 2020, photo by Ralf Rohner of Skypointer Photography Monthly Meeting September 14th at 7:00 PM, via Jitsi (Monthly meetings are on 2nd Mondays at Highland Road Park Observatory, temporarily during quarantine at meet.jit.si/BRASMeets). GUEST SPEAKER: NASA Michoud Assembly Facility Director, Robert Champion What's In This Issue? President’s Message Secretary's Summary Business Meeting Minutes Outreach Report Asteroid and Comet News Light Pollution Committee Report Globe at Night Member’s Corner –My Quest For A Dark Place, by Chris Carlton Astro-Photos by BRAS Members Messages from the HRPO REMOTE DISCUSSION Solar Viewing Plus Night Mercurian Elongation Spooky Sensation Great Martian Opposition Observing Notes: Aquila – The Eagle Like this newsletter? See PAST ISSUES online back to 2009 Visit us on Facebook – Baton Rouge Astronomical Society Baton Rouge Astronomical Society Newsletter, Night Visions Page 2 of 27 September 2020 President’s Message Welcome to September. You may have noticed that this newsletter is showing up a little bit later than usual, and it’s for good reason: release of the newsletter will now happen after the monthly business meeting so that we can have a chance to keep everybody up to date on the latest information. Sometimes, this will mean the newsletter shows up a couple of days late. But, the upshot is that you’ll now be able to see what we discussed at the recent business meeting and have time to digest it before our general meeting in case you want to give some feedback. Now that we’re on the new format, business meetings (and the oft neglected Light Pollution Committee Meeting), are going to start being open to all members of the club again by simply joining up in the respective chat rooms the Wednesday before the first Monday of the month—which I encourage people to do, especially if you have some ideas you want to see the club put into action.
    [Show full text]
  • EXTENSIONS of REMARKS April 11, 1973
    11958 EXTENSIONS OF REMARKS April 11, 1973 Yea-and-nay votes may occur on that ADJOURNMENT UNTIL 9:30 A.M. IN THE ARMY bill. It is possible, if consent is given, Mr. ROBERT C. BYRD. Mr. P resident, T he following-named officers to be placed that the measure would be temporarily on the retired list in grade indicated under if there be no further business to come the provisions of title 10, United States Code, laid aside from time to time and other before the Senate, I move, in accordance items on the Calendar could be taken section 3962: with the previous order, that the Senate To be lieutenant general up tomorrow and Friday—but only if stand in adjournment until 9:30 a.m. L t. Gen. Julian Johnson Ewell, xxx-xx-xxxx , unanimous consent is gotten. tomorrow. With respect to the bill to amend the A rm y of the U nited S tates (m ajor general, N ational Foundation on the A rts and T he m otion was agreed to; and at U.S. Army) . 5:53 p.m. the Senate adjourned until to- L t. Gen. William R aymond P eers, xxx-xx-x... Humanities A ct, I do not believe that xxx-x... A rmy of the United States (major gen- that bill will be taken up tomorrow. The morrow, Thursday, April 12, 1973, at 9:30 a.m. eral, U.S. Army) . distinguished author of the bill (M r. L t. G en. W illard P earson, xxx-xx-xxxx , PELL) has requested that the bill be taken A rm y of the U nited S tates (m ajor general, U.S.
    [Show full text]
  • Milan Dimitrijevic Avgust.Qxd
    1. M. Platiša, M. Popović, M. Dimitrijević, N. Konjević: 1975, Z. Fur Natur- forsch. 30a, 212 [A 1].* 1. Griem, H. R.: 1975, Stark Broadening, Adv. Atom. Molec. Phys. 11, 331. 2. Platiša, M., Popović, M. V., Konjević, N.: 1975, Stark broadening of O II and O III lines, Astron. Astrophys. 45, 325. 3. Konjević, N., Wiese, W. L.: 1976, Experimental Stark widths and shifts for non-hydrogenic spectral lines of ionized atoms, J. Phys. Chem. Ref. Data 5, 259. 4. Hey, J. D.: 1977, On the Stark broadening of isolated lines of F (II) and Cl (III) by plasmas, JQSRT 18, 649. 5. Hey, J. D.: 1977, Estimates of Stark broadening of some Ar III and Ar IV lines, JQSRT 17, 729. 6. Hey, J. D.: Breger, P.: 1980, Stark broadening of isolated lines emitted by singly - ionized tin, JQSRT 23, 311. 7. Hey, J. D.: Breger, P.: 1981, Stark broadening of isolated ion lines by plas- mas: Application of theory, in Spectral Line Shapes I, ed. B. Wende, W. de Gruyter, 201. 8. Сыркин, М. И.: 1981, Расчеты электронного уширения спектральных линий в теории оптических свойств плазмы, Опт. Спектроск. 51, 778. 9. Wiese, W. L., Konjević, N.: 1982, Regularities and similarities in plasma broadened spectral line widths (Stark widths), JQSRT 28, 185. 10. Konjević, N., Pittman, T. P.: 1986, Stark broadening of spectral lines of ho- mologous, doubly ionized inert gases, JQSRT 35, 473. 11. Konjević, N., Pittman, T. P.: 1987, Stark broadening of spectral lines of ho- mologous, doubly - ionized inert gases, JQSRT 37, 311. 12. Бабин, С.
    [Show full text]
  • Tau Ceti Radius: 700,000 Km (109X Earth’S Radius)
    Tau Ceti Radius: 700,000 km (109x Earth’s radius) Average surface temperature: 9,000,000° F Basic characteristics: A star somewhat similar to the Sun, Tau Ceti is about the same size and brightness as the Sun. Main elements: Hydrogen & Helium Boll Radius: 2,400 km (0.38x Earth’s radius) Distance from Tau Ceti (main star): 58,000,000 km (about 0.39x that of Earth) Average surface temperature: 527.1° F Basic characteristics: Rocky with an iron core. No atmosphere, Heavy cratering on the surface. Has no moons. Boll dominates its orbit. Main elements: Iron, Magnesium, Nickel, Oxygen, Silicon Bender Radius: 6,000 km (0.95x Earth’s radius) Distance from Tau Ceti (main star): 108,000,000 km (about 0.73x that of Earth) Average surface temperature: 862.3° F Basic characteristics: Rocky with an iron core. Has an extremely thick atmosphere made mostly of carbon dioxide and methane. This heavy atmosphere traps heat and makes it much hotter than it would be otherwise, There is cratering on the surface. Has no moons. Bender dominates its orbit. Main elements: Iron, Silicon, Magnesium, Oxygen, Silicon, Carbon Belior Radius: 1,700 km (0.27x Earth’s radius) Distance from Tau Ceti (main star): 108,000,000 km (about 0.73x that of Earth) Average surface temperature: 862.3° F Basic characteristics: Belior orbits the planet Bender. It is rocky with an iron core. Has no atmosphere. There is heavy cratering on the surface. Main elements: Iron, Silicon, Magnesium, Oxygen, Silicon, Carbon Pern Radius: 6,300 km (0.98x Earth’s radius) Distance from Tau Ceti (main star): 154,000,000 km (about 1.1x that of Earth) Average surface temperature: 58.2° F Basic characteristics: Rocky with an iron core.
    [Show full text]
  • 194 9 Ce Le B Rating 65 Ye Ars O F Br Inging As Tr on Omy T O No Rth Te X As 2
    1949 Celebrating 65 Years of Bringing Astronomy to North Texas 2014 Contact information: Inside this issue: Info Officer (General Info) – [email protected] Website Administrator – [email protected] Page Postal Address: November Club Calendar 3 Fort Worth Astronomical Society Celestial Events 4 c/o Matt McCullar 5801 Trail Lake Drive Sky Chart 5 Fort Worth, TX 76133 Moon Phase Calendar 6 Web Site: http://www.fortworthastro.org Facebook: http://tinyurl.com/3eutb22 Lunar Occultations/Conjs 7 Twitter: http://twitter.com/ftwastro Yahoo! eGroup (members only): http://tinyurl.com/7qu5vkn Mercury/Venus Chart 8 Officers (2014-2015): Mars/Minor Planets Charts 9 President – Bruce Cowles, [email protected] Jupiter Charts 10 Vice President – Russ Boatwright, [email protected] Sec/Tres – Michelle Theisen, [email protected] Planet Vis & ISS Passes 11 Board Members: CSAC Event Update 12 2014-2016 Mike Langohr Young Astronomer News 12 Tree Oppermann ‘66 Leonids Remembered 13 2013-2015 Bill Nichols Cloudy Night Library 15 Jim Craft Cover Photo: Monthly AL Observing Club 17 Composite image taken by FWAS mem- bers: Left to right, from top to bottom— Constellation of the Month 18 Laura Cowles, Mike Ahner, Brian Wortham, Constellation Mythology 19 Shawn Kirchdorfer, Mark Wainright, Phil Stage, Patrick McMahon, Dennis Webb, Ben Prior Club Meeting Minutes 20 Hudgens, Shawn Kirchdorfer, John McCrea, and Chris Mlodnicki General Club Information 21 That’s A Fact 21 Observing Site Reminders: Be careful with fire, mind all local burn bans! Full Moon Name 21 Dark Site Usage Requirements (ALL MEMBERS): FWAS Foto Files 22 Maintain Dark-Sky Etiquette (http://tinyurl.com/75hjajy) Turn out your headlights at the gate! Sign the logbook (in camo-painted storage shed.
    [Show full text]
  • The HARPS Search for Earth-Like Planets in the Habitable Zone I
    A&A 534, A58 (2011) Astronomy DOI: 10.1051/0004-6361/201117055 & c ESO 2011 Astrophysics The HARPS search for Earth-like planets in the habitable zone I. Very low-mass planets around HD 20794, HD 85512, and HD 192310, F. Pepe1,C.Lovis1, D. Ségransan1,W.Benz2, F. Bouchy3,4, X. Dumusque1, M. Mayor1,D.Queloz1, N. C. Santos5,6,andS.Udry1 1 Observatoire de Genève, Université de Genève, 51 ch. des Maillettes, 1290 Versoix, Switzerland e-mail: [email protected] 2 Physikalisches Institut Universität Bern, Sidlerstrasse 5, 3012 Bern, Switzerland 3 Institut d’Astrophysique de Paris, UMR7095 CNRS, Université Pierre & Marie Curie, 98bis Bd Arago, 75014 Paris, France 4 Observatoire de Haute-Provence/CNRS, 04870 St. Michel l’Observatoire, France 5 Centro de Astrofísica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal 6 Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Portugal Received 8 April 2011 / Accepted 15 August 2011 ABSTRACT Context. In 2009 we started an intense radial-velocity monitoring of a few nearby, slowly-rotating and quiet solar-type stars within the dedicated HARPS-Upgrade GTO program. Aims. The goal of this campaign is to gather very-precise radial-velocity data with high cadence and continuity to detect tiny signatures of very-low-mass stars that are potentially present in the habitable zone of their parent stars. Methods. Ten stars were selected among the most stable stars of the original HARPS high-precision program that are uniformly spread in hour angle, such that three to four of them are observable at any time of the year.
    [Show full text]
  • The Observer, November
    The OBSERVER The Newsletter of the Twin City Amateur Astronomers, Inc. November 2001 Volume 26, Number 11 Adventures in Meteor Hunting — Duane Yockey In This Issue: REETINGS to my brother and and binoculars just in case the meteors sister sky watchers, didn't live up to their billing. Saturday G was clear here in central Illinois, and • Meteor Hunting Adventures ...1 when I got back from a Duane shows that he has the The long awaited day play at Illinois State right stuff as he tears after the of the Leonid meteor University around Leonids and finds them! shower arrived Satur- 10:30 p.m. the sky was day. I was really still showing lots of • TCAA Calendar ........................1 looking forward to stars. I called Laura Use our calendar to mark going out to the (my oldest daughter), your calendar. observatory with who said the skies were other Twin City clear down in southern • TCAA Annual Holiday Bash....3 Amateur Indiana and I could Party like it’s, um, 2001, at Astronomers and see- drive down there, if the Vic & Cindy’s! ............................ ing the "show" from clouds rolled in (ha, 2:00 a.m. to 6:00 a.m. ha). I assured her that • Club Notes................................4 early Sunday morn- the sky would cooper- Wow, it’s been a busy month! ing. So I packed my ate, and it was looking car early with a lawn good then, and I wished • Software Review: DSE ...........5 chair and threw in my her good luck (if she And just think, if you never telescope, star charts turn to page 5, you’ll never know continued on next page what DSE stands for..
    [Show full text]
  • GTO Keypad Manual, V5.001
    ASTRO-PHYSICS GTO KEYPAD Version v5.xxx Please read the manual even if you are familiar with previous keypad versions Flash RAM Updates Keypad Java updates can be accomplished through the Internet. Check our web site www.astro-physics.com/software-updates/ November 11, 2020 ASTRO-PHYSICS KEYPAD MANUAL FOR MACH2GTO Version 5.xxx November 11, 2020 ABOUT THIS MANUAL 4 REQUIREMENTS 5 What Mount Control Box Do I Need? 5 Can I Upgrade My Present Keypad? 5 GTO KEYPAD 6 Layout and Buttons of the Keypad 6 Vacuum Fluorescent Display 6 N-S-E-W Directional Buttons 6 STOP Button 6 <PREV and NEXT> Buttons 7 Number Buttons 7 GOTO Button 7 ± Button 7 MENU / ESC Button 7 RECAL and NEXT> Buttons Pressed Simultaneously 7 ENT Button 7 Retractable Hanger 7 Keypad Protector 8 Keypad Care and Warranty 8 Warranty 8 Keypad Battery for 512K Memory Boards 8 Cleaning Red Keypad Display 8 Temperature Ratings 8 Environmental Recommendation 8 GETTING STARTED – DO THIS AT HOME, IF POSSIBLE 9 Set Up your Mount and Cable Connections 9 Gather Basic Information 9 Enter Your Location, Time and Date 9 Set Up Your Mount in the Field 10 Polar Alignment 10 Mach2GTO Daytime Alignment Routine 10 KEYPAD START UP SEQUENCE FOR NEW SETUPS OR SETUP IN NEW LOCATION 11 Assemble Your Mount 11 Startup Sequence 11 Location 11 Select Existing Location 11 Set Up New Location 11 Date and Time 12 Additional Information 12 KEYPAD START UP SEQUENCE FOR MOUNTS USED AT THE SAME LOCATION WITHOUT A COMPUTER 13 KEYPAD START UP SEQUENCE FOR COMPUTER CONTROLLED MOUNTS 14 1 OBJECTS MENU – HAVE SOME FUN!
    [Show full text]
  • A Terrestrial Planet Candidate in a Temperate Orbit Around Proxima Centauri
    A terrestrial planet candidate in a temperate orbit around Proxima Centauri Guillem Anglada-Escude´1∗, Pedro J. Amado2, John Barnes3, Zaira M. Berdinas˜ 2, R. Paul Butler4, Gavin A. L. Coleman1, Ignacio de la Cueva5, Stefan Dreizler6, Michael Endl7, Benjamin Giesers6, Sandra V. Jeffers6, James S. Jenkins8, Hugh R. A. Jones9, Marcin Kiraga10, Martin Kurster¨ 11, Mar´ıa J. Lopez-Gonz´ alez´ 2, Christopher J. Marvin6, Nicolas´ Morales2, Julien Morin12, Richard P. Nelson1, Jose´ L. Ortiz2, Aviv Ofir13, Sijme-Jan Paardekooper1, Ansgar Reiners6, Eloy Rodr´ıguez2, Cristina Rodr´ıguez-Lopez´ 2, Luis F. Sarmiento6, John P. Strachan1, Yiannis Tsapras14, Mikko Tuomi9, Mathias Zechmeister6. July 13, 2016 1School of Physics and Astronomy, Queen Mary University of London, 327 Mile End Road, London E1 4NS, UK 2Instituto de Astrofsica de Andaluca - CSIC, Glorieta de la Astronoma S/N, E-18008 Granada, Spain 3Department of Physical Sciences, Open University, Walton Hall, Milton Keynes MK7 6AA, UK 4Carnegie Institution of Washington, Department of Terrestrial Magnetism 5241 Broad Branch Rd. NW, Washington, DC 20015, USA 5Astroimagen, Ibiza, Spain 6Institut fur¨ Astrophysik, Georg-August-Universitat¨ Gottingen¨ Friedrich-Hund-Platz 1, 37077 Gottingen,¨ Germany 7The University of Texas at Austin and Department of Astronomy and McDonald Observatory 2515 Speedway, C1400, Austin, TX 78712, USA 8Departamento de Astronoma, Universidad de Chile Camino El Observatorio 1515, Las Condes, Santiago, Chile 9Centre for Astrophysics Research, Science & Technology Research Institute, University of Hert- fordshire, Hatfield AL10 9AB, UK 10Warsaw University Observatory, Aleje Ujazdowskie 4, Warszawa, Poland 11Max-Planck-Institut fur¨ Astronomie Konigstuhl¨ 17, 69117 Heidelberg, Germany 12Laboratoire Univers et Particules de Montpellier, Universit de Montpellier, Pl.
    [Show full text]
  • Starshade Rendezvous Probe
    Starshade Rendezvous Probe Starshade Rendezvous Probe Study Report Imaging and Spectra of Exoplanets Orbiting our Nearest Sunlike Star Neighbors with a Starshade in the 2020s February 2019 TEAM MEMBERS Principal Investigators Sara Seager, Massachusetts Institute of Technology N. Jeremy Kasdin, Princeton University Co-Investigators Jeff Booth, NASA Jet Propulsion Laboratory Matt Greenhouse, NASA Goddard Space Flight Center Doug Lisman, NASA Jet Propulsion Laboratory Bruce Macintosh, Stanford University Stuart Shaklan, NASA Jet Propulsion Laboratory Melissa Vess, NASA Goddard Space Flight Center Steve Warwick, Northrop Grumman Corporation David Webb, NASA Jet Propulsion Laboratory Study Team Andrew Romero-Wolf, NASA Jet Propulsion Laboratory John Ziemer, NASA Jet Propulsion Laboratory Andrew Gray, NASA Jet Propulsion Laboratory Michael Hughes, NASA Jet Propulsion Laboratory Greg Agnes, NASA Jet Propulsion Laboratory Jon Arenberg, Northrop Grumman Corporation Samuel (Case) Bradford, NASA Jet Propulsion Laboratory Michael Fong, NASA Jet Propulsion Laboratory Jennifer Gregory, NASA Jet Propulsion Laboratory Steve Matousek, NASA Jet Propulsion Laboratory Jonathan Murphy, NASA Jet Propulsion Laboratory Jason Rhodes, NASA Jet Propulsion Laboratory Dan Scharf, NASA Jet Propulsion Laboratory Phil Willems, NASA Jet Propulsion Laboratory Science Team Simone D'Amico, Stanford University John Debes, Space Telescope Science Institute Shawn Domagal-Goldman, NASA Goddard Space Flight Center Sergi Hildebrandt, NASA Jet Propulsion Laboratory Renyu Hu, NASA
    [Show full text]