Exotic Orchids in the Garden
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Functional Insights Into the Roles of Hormones in the Dendrobium Officinale-Tulasnella Sp
International Journal of Molecular Sciences Article Functional Insights into the Roles of Hormones in the Dendrobium officinale-Tulasnella sp. Germinated Seed Symbiotic Association Tao Wang 1,2 , Zheng Song 1, Xiaojing Wang 1, Lijun Xu 1, Qiwu Sun 1,* and Lubin Li 1,* 1 State Key Laboratory of Forest Genetics and Tree Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; [email protected] (T.W.); [email protected] (Z.S.); [email protected] (X.W.); [email protected] (L.X.) 2 Beijing Botanical Garden, Beijing 100093, China * Correspondence: [email protected] (Q.S.); [email protected] (L.L.); Tel.: +86-10-6288-9664 (Q.S.); +86-10-6288-8687 (L.L.) Received: 8 October 2018; Accepted: 16 October 2018; Published: 6 November 2018 Abstract: Dendrobium is one of the largest genera in the Orchidaceae, and D. officinale is used in traditional medicine, particularly in China. D. officinale seeds are minute and contain limited energy reserves, and colonization by a compatible fungus is essential for germination under natural conditions. When the orchid mycorrhizal fungi (OMF) initiates symbiotic interactions with germination-driven orchid seeds, phytohormones from the orchid or the fungus play key roles, but the details of the possible biochemical pathways are still poorly understood. In the present study, we established a symbiotic system between D. officinale and Tulasnella sp. for seed germination. RNA-Seq was used to construct libraries of symbiotic-germinated seeds (DoTc), asymbiotic-germinated seeds (Do), and free-living OMF (Tc) to investigate the expression profiles of biosynthesis and metabolism pathway genes for three classes of endogenous hormones: JA (jasmonic acid), ABA (abscisic acid) and SLs (strigolactones), in D. -
Bletilla Striata (Orchidaceae) Seed Coat Restricts the Invasion of Fungal Hyphae at the Initial Stage of Fungal Colonization
plants Article Bletilla striata (Orchidaceae) Seed Coat Restricts the Invasion of Fungal Hyphae at the Initial Stage of Fungal Colonization Chihiro Miura 1, Miharu Saisho 1, Takahiro Yagame 2, Masahide Yamato 3 and Hironori Kaminaka 1,* 1 Faculty of Agriculture, Tottori University, 4-101 Koyama Minami, Tottori 680-8553, Japan 2 Mizuho Kyo-do Museum, 316-5 Komagatafujiyama, Mizuho, Tokyo 190-1202, Japan 3 Faculty of Education, Chiba University, 1-33 Yayoicho, Inage-ku, Chiba 263-8522, Japan * Correspondence: [email protected]; Tel.: +81-857-31-5378 Received: 24 June 2019; Accepted: 8 August 2019; Published: 11 August 2019 Abstract: Orchids produce minute seeds that contain limited or no endosperm, and they must form an association with symbiotic fungi to obtain nutrients during germination and subsequent seedling growth under natural conditions. Orchids need to select an appropriate fungus among diverse soil fungi at the germination stage. However, there is limited understanding of the process by which orchids recruit fungal associates and initiate the symbiotic interaction. This study aimed to better understand this process by focusing on the seed coat, the first point of fungal attachment. Bletilla striata seeds, some with the seed coat removed, were prepared and sown with symbiotic fungi or with pathogenic fungi. The seed coat-stripped seeds inoculated with the symbiotic fungi showed a lower germination rate than the intact seeds, and proliferated fungal hyphae were observed inside and around the stripped seeds. Inoculation with the pathogenic fungi increased the infection rate in the seed coat-stripped seeds. The pathogenic fungal hyphae were arrested at the suspensor side of the intact seeds, whereas the seed coat-stripped seeds were subjected to severe infestation. -
Plastome Structure and Adaptive Evolution of Calanthe S.L. Species
Plastome structure and adaptive evolution of Calanthe s.l. species Yanqiong Chen, Hui Zhong, Yating Zhu, Yuanzhen Huang, Shasha Wu, Zhongjian Liu, Siren Lan and Junwen Zhai Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China Fujian Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China ABSTRACT Calanthe s.l. is the most diverse group in the tribe Collabieae (Orchidaceae), which are pantropical in distribution. Illumina sequencing followed by de novo assembly was used in this study, and the plastid genetic information of Calanthe s.l. was used to investigate the adaptive evolution of this taxon. Herein, the complete plastome of five Calanthe s.l. species (Calanthe davidii, Styloglossum lyroglossa, Preptanthe rubens, Cephalantheropsis obcordata, and Phaius tankervilliae) were determined, and the two other published plastome sequences of Calanthe s.l. were added for comparative analyses to examine the evolutionary pattern of the plastome in the alliance. The seven plastomes ranged from 150,181 bp (C. delavayi) to 159,014 bp (C. davidii) in length and were all mapped as circular structures. Except for the three ndh genes (ndhC, ndhF, and ndhK ) lost in C. delavayi, the remaining six species contain identical gene orders and numbers (115 gene). Nucleotide diversity was detected across the plastomes, and we screened 14 mutational hotspot regions, including 12 non-coding regions and two gene regions. For the adaptive evolution investigation, three species showed positive selected genes compared with others, C. -
CITES Orchid Checklist Volumes 1, 2 & 3 Combined
CITES Orchid Checklist Online Version Volumes 1, 2 & 3 Combined (three volumes merged together as pdf files) Available at http://www.rbgkew.org.uk/data/cites.html Important: Please read the Introduction before reading this Part Introduction - OrchidIntro.pdf Part I : All names in current use - OrchidPartI.pdf (this file) Part II: Accepted names in current use - OrchidPartII.pdf Part III: Country Checklist - OrchidPartIII.pdf For the genera: Aerangis, Angraecum, Ascocentrum, Bletilla, Brassavola, Calanthe, Catasetum, Cattleya, Constantia, Cymbidium, Cypripedium, Dendrobium (selected sections only), Disa, Dracula, Encyclia, Laelia, Miltonia, Miltonioides, Miltoniopsis, Paphiopedilum, Paraphalaenopsis, Phalaenopsis, Phragmipedium, Pleione, Renanthera, Renantherella, Rhynchostylis, Rossioglossum, Sophronitella, Sophronitis Vanda and Vandopsis Compiled by: Jacqueline A Roberts, Lee R Allman, Sharon Anuku, Clive R Beale, Johanna C Benseler, Joanne Burdon, Richard W Butter, Kevin R Crook, Paul Mathew, H Noel McGough, Andrew Newman & Daniela C Zappi Assisted by a selected international panel of orchid experts Royal Botanic Gardens, Kew Copyright 2002 The Trustees of The Royal Botanic Gardens Kew CITES Secretariat Printed volumes: Volume 1 first published in 1995 - Volume 1: ISBN 0 947643 87 7 Volume 2 first published in 1997 - Volume 2: ISBN 1 900347 34 2 Volume 3 first published in 2001 - Volume 3: ISBN 1 84246 033 1 General editor of series: Jacqueline A Roberts 2 Part I: ORCHIDACEAE BINOMIALS IN CURRENT USAGE Ordered alphabetically on All -
PC22 Doc. 22.1 Annex (In English Only / Únicamente En Inglés / Seulement En Anglais)
Original language: English PC22 Doc. 22.1 Annex (in English only / únicamente en inglés / seulement en anglais) Quick scan of Orchidaceae species in European commerce as components of cosmetic, food and medicinal products Prepared by Josef A. Brinckmann Sebastopol, California, 95472 USA Commissioned by Federal Food Safety and Veterinary Office FSVO CITES Management Authorithy of Switzerland and Lichtenstein 2014 PC22 Doc 22.1 – p. 1 Contents Abbreviations and Acronyms ........................................................................................................................ 7 Executive Summary ...................................................................................................................................... 8 Information about the Databases Used ...................................................................................................... 11 1. Anoectochilus formosanus .................................................................................................................. 13 1.1. Countries of origin ................................................................................................................. 13 1.2. Commercially traded forms ................................................................................................... 13 1.2.1. Anoectochilus Formosanus Cell Culture Extract (CosIng) ............................................ 13 1.2.2. Anoectochilus Formosanus Extract (CosIng) ................................................................ 13 1.3. Selected finished -
Sistemática Y Evolución De Encyclia Hook
·>- POSGRADO EN CIENCIAS ~ BIOLÓGICAS CICY ) Centro de Investigación Científica de Yucatán, A.C. Posgrado en Ciencias Biológicas SISTEMÁTICA Y EVOLUCIÓN DE ENCYCLIA HOOK. (ORCHIDACEAE: LAELIINAE), CON ÉNFASIS EN MEGAMÉXICO 111 Tesis que presenta CARLOS LUIS LEOPARDI VERDE En opción al título de DOCTOR EN CIENCIAS (Ciencias Biológicas: Opción Recursos Naturales) Mérida, Yucatán, México Abril 2014 ( 1 CENTRO DE INVESTIGACIÓN CIENTÍFICA DE YUCATÁN, A.C. POSGRADO EN CIENCIAS BIOLÓGICAS OSCJRA )0 f CENCIAS RECONOCIMIENTO S( JIOI ÚGIC A'- CICY Por medio de la presente, hago constar que el trabajo de tesis titulado "Sistemática y evo lución de Encyclia Hook. (Orchidaceae, Laeliinae), con énfasis en Megaméxico 111" fue realizado en los laboratorios de la Unidad de Recursos Naturales del Centro de Investiga ción Científica de Yucatán , A.C. bajo la dirección de los Drs. Germán Carnevali y Gustavo A. Romero, dentro de la opción Recursos Naturales, perteneciente al Programa de Pos grado en Ciencias Biológicas de este Centro. Atentamente, Coordinador de Docencia Centro de Investigación Científica de Yucatán, A.C. Mérida, Yucatán, México; a 26 de marzo de 2014 DECLARACIÓN DE PROPIEDAD Declaro que la información contenida en la sección de Materiales y Métodos Experimentales, los Resultados y Discusión de este documento, proviene de las actividades de experimen tación realizadas durante el período que se me asignó para desarrollar mi trabajo de tesis, en las Unidades y Laboratorios del Centro de Investigación Científica de Yucatán, A.C., y que a razón de lo anterior y en contraprestación de los servicios educativos o de apoyo que me fueron brindados, dicha información, en términos de la Ley Federal del Derecho de Autor y la Ley de la Propiedad Industrial, le pertenece patrimonialmente a dicho Centro de Investigación. -
Calanthe Punctata (Orchidaceae), a New Species from Southern Myanmar
Gardens’ Bulletin Singapore 65(2): 163–168. 2013 163 Calanthe punctata (Orchidaceae), a new species from southern Myanmar H. Kurzweil Herbarium, Singapore Botanic Gardens, National Parks Board, 1 Cluny Road, Singapore 259569 [email protected] ABSTRACT. A new species of Calanthe (Orchidaceae) from southern Myanmar is described and illustrated. The new species belongs to subgenus Preptanthe (Rchb.f.) Schltr. and is very distinctive with its upright and strongly red-dotted petals. Differences from C. labrosa (Rchb.f.) Hook.f. which appears to be its closest relative are discussed. Keywords. Calanthe, Orchidaceae, southern Myanmar Introduction The orchid flora of Myanmar is among the poorest known in continental Asia which is largely caused by periods of past instability and political isolation of the country (Ormerod & Sathish Kumar 2003). According to recent estimates about 800 different orchid species are known to occur in Myanmar (Ormerod unpubl.; Kurzweil unpubl.), but this number is likely to grow in the near future. Several new distribution records or descriptions of entirely new species have been published in the last few years (e.g., Ormerod 2002, 2006, 2012; Ormerod & Sathish Kumar 2003, 2008; Ormerod & Wood 2010; Nyunt 2006; Kurzweil et al. 2010; Kurzweil & Lwin 2012a, b; Tanaka et al. 2011; Watthana & Fujikawa in press), and further floristic exploration of the country will most likely result in additional discoveries. Material of an unknown Calanthe species was recently collected during an orchid survey trip in and around Taninthayi Nature Reserve in southern Myanmar, and was sent to the author of the present paper for identification. The genus Calanthe is rather well represented in Myanmar; about twenty-three species are currently known to occur in the country (Ormerod unpubl.), with all of them belonging to widespread taxa and none being endemic. -
From Northeastern Yunnan, China
Nordic Journal of Botany 29: 54Á56, 2011 doi: 10.1111/j.1756-1051.2010.00839.x, # 2011 The Authors. Nordic Journal of Botany # 2011 Nordic Society Oikos Subject Editor: Torbjo¨rn Tyler. Accepted 10 May 2010 Calanthe yaoshanensis sp. nov. (Orchidaceae) from northeastern Yunnan, China Zong-Xin Ren, Hong Wang, Xiao-Hua Jin and De-Zhu Li Z.-X. Ren, H. Wang ([email protected]) and D.-Z. Li, Key Lab of Biodiversity and Biogeography, Kunming Inst. of Botany, Chinese Academy of Sciences, Heilongtan, Kunming, CN-650204 Yunnan, China. Á X.-H. Jin, Herbarium (PE) Inst. of Botany, Chinese Academy of Sciences, CN-100093 Beijing, China. ZR also at: Graduate Univ. of the Chinese Academy of Sciences, CN-100049 Beijing, China. A new species of Orchidaceae, Calanthe yaoshanensis Z. X. Ren & H. Wang from northeastern Yunnan, China, is described and illustrated. It is morphologically similar to C. brevicornu Lindley, from which it differs by having a glabrous column and an elliptical middle lobe with three triangular lamellae. The morphological differences between C. yaoshanensis and related species are discussed. The habitat was investigated and its conservation status was assessed as ‘Critically Endangered’ (CR). The Calanthe R. Br. is a widespread genus of terrestrial acuminate, 2 cm long; rachis finely puberulent, about orchids with about 150 species, distributed in tropical, 5Á18 cm long; floral bracts lanceolate, glabrous. Flowers subtropical and temperate regions from Africa to Asia and greenish yellow, 3.5 cm across; pedicel and ovary 2 cm long, the Pacific Islands, most of them concentrated in Asia finely puberulent. -
Ornamental Plants in Different Approaches
Ornamental Plants in Different Approaches Assoc. Prof. Dr. Arzu ÇIĞ cultivation sustainibility ecology propagation ORNAMENTAL PLANTS IN DIFFERENT APPROACHES EDITOR Assoc. Prof. Dr. Arzu ÇIĞ AUTHORS Atilla DURSUN Feran AŞUR Husrev MENNAN Görkem ÖRÜK Kazım MAVİ İbrahim ÇELİK Murat Ertuğrul YAZGAN Muhemet Zeki KARİPÇİN Mustafa Ercan ÖZZAMBAK Funda ANKAYA Ramazan MAMMADOV Emrah ZEYBEKOĞLU Şevket ALP Halit KARAGÖZ Arzu ÇIĞ Jovana OSTOJIĆ Bihter Çolak ESETLILI Meltem Yağmur WALLACE Elif BOZDOGAN SERT Murat TURAN Elif AKPINAR KÜLEKÇİ Samim KAYIKÇI Firat PALA Zehra Tugba GUZEL Mirjana LJUBOJEVIĆ Fulya UZUNOĞLU Nazire MİKAİL Selin TEMİZEL Slavica VUKOVIĆ Meral DOĞAN Ali SALMAN İbrahim Halil HATİPOĞLU Dragana ŠUNJKA İsmail Hakkı ÜRÜN Fazilet PARLAKOVA KARAGÖZ Atakan PİRLİ Nihan BAŞ ZEYBEKOĞLU M. Anıl ÖRÜK Copyright © 2020 by iksad publishing house All rights reserved. No part of this publication may be reproduced, distributed or transmitted in any form or by any means, including photocopying, recording or other electronic or mechanical methods, without the prior written permission of the publisher, except in the case of brief quotations embodied in critical reviews and certain other noncommercial uses permitted by copyright law. Institution of Economic Development and Social Researches Publications® (The Licence Number of Publicator: 2014/31220) TURKEY TR: +90 342 606 06 75 USA: +1 631 685 0 853 E mail: [email protected] www.iksadyayinevi.com It is responsibility of the author to abide by the publishing ethics rules. Iksad Publications – 2020© ISBN: 978-625-7687-07-2 Cover Design: İbrahim KAYA December / 2020 Ankara / Turkey Size = 16 x 24 cm CONTENTS PREFACE Assoc. Prof. Dr. Arzu ÇIĞ……………………………………………1 CHAPTER 1 DOUBLE FLOWER TRAIT IN ORNAMENTAL PLANTS: FROM HISTORICAL PERSPECTIVE TO MOLECULAR MECHANISMS Prof. -
The Plants Are Pseudobulbous Terrestrials, with Large Plicate Year's
Taxonomic revision of the genus Acanthephippium (Orchidaceae) S.A. Thomas Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, England (Drawings by the author) Summary This is revision of the Blume. Eleven Seven a genus Acanthephippium species are recognised. names are time A. A. A. A. here for the first reduced to synonymy (A. lycaste, odoratum, papuanum, pictum, sim- plex, A. sinense, and A. thailandicum). Introduction Acanthephippium is a genus of eleven species distributedin Southeast Asia from Sri Lanka to Nepal and north to Japan, all over the Malesian Archipelago and in many islands in the Pacific. The genus was established by Blume in 1825 with one species, Acanthephippium javanicum. The generic name is derived from two Greek roots: acantha (thorn) and ephippion (sad- dle), the former referring to the long slender column, and the latter to the saddle-shaped lip. Blume (1825) first published the generic name as Acanthophippium, an orthographi- his cal error which he corrected in the preface of Flora Javae (1828). The older spelling authors. I have followed who stated: "Since was followed by several Sprague (1928) the spelling Acanthophippium contains a definite (and apparently unintentional) orthographic the of the initial letter of and the alteration error, namely missing ephippium (a saddle) to Acanthephippium involves no risk of confusion or error, the latter spelling should be adopted." The plants are pseudobulbous terrestrials, with large plicate leaves. The inflorescence is lateral from the new year's growth, and much shorter than the leaves so that the flowers are mostly displayed low downon the plant. The flowers are large and fleshy, usually 3-4 lesser fused into cm long. -
Networks in a Large-Scale Phylogenetic Analysis: Reconstructing Evolutionary History of Asparagales (Lilianae) Based on Four Plastid Genes
Networks in a Large-Scale Phylogenetic Analysis: Reconstructing Evolutionary History of Asparagales (Lilianae) Based on Four Plastid Genes Shichao Chen1., Dong-Kap Kim2., Mark W. Chase3, Joo-Hwan Kim4* 1 College of Life Science and Technology, Tongji University, Shanghai, China, 2 Division of Forest Resource Conservation, Korea National Arboretum, Pocheon, Gyeonggi- do, Korea, 3 Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, United Kingdom, 4 Department of Life Science, Gachon University, Seongnam, Gyeonggi-do, Korea Abstract Phylogenetic analysis aims to produce a bifurcating tree, which disregards conflicting signals and displays only those that are present in a large proportion of the data. However, any character (or tree) conflict in a dataset allows the exploration of support for various evolutionary hypotheses. Although data-display network approaches exist, biologists cannot easily and routinely use them to compute rooted phylogenetic networks on real datasets containing hundreds of taxa. Here, we constructed an original neighbour-net for a large dataset of Asparagales to highlight the aspects of the resulting network that will be important for interpreting phylogeny. The analyses were largely conducted with new data collected for the same loci as in previous studies, but from different species accessions and greater sampling in many cases than in published analyses. The network tree summarised the majority data pattern in the characters of plastid sequences before tree building, which largely confirmed the currently recognised phylogenetic relationships. Most conflicting signals are at the base of each group along the Asparagales backbone, which helps us to establish the expectancy and advance our understanding of some difficult taxa relationships and their phylogeny. -
99. CEPHALANTHEROPSIS Guillaumin, Bull. Mus. Natl. Hist. Nat., Sér
Flora of China 25: 288–289. 2009. 99. CEPHALANTHEROPSIS Guillaumin, Bull. Mus. Natl. Hist. Nat., sér. 2, 32: 188. 1960. 黄兰属 huang lan shu Chen Xinqi (陈心启 Chen Sing-chi); Stephan W. Gale, Phillip J. Cribb Herbs, terrestrial or rarely epiphytic. Rhizome creeping. Stem erect, cylindric, reedlike, many noded, enclosed in tubular sheaths toward base, leafy above. Leaves many, plicate, base decurrent into an amplexicaul sheath, articulate. Inflorescences usually 1–3, arising laterally from nodes in lower half of stem, erect or ascending, racemose; peduncle with several amplexicaul sterile bracts at base; rachis many flowered; floral bracts caducous, lanceolate. Flowers spreading horizontally or nodding, small to medium-sized, opening widely or not. Sepals and petals similar, free, spreading to reflexed; petals sometimes broader than sepals; lip adnate to base of column, 3-lobed above middle, spurless but base shallowly saccate or concave; lateral lobes erect, loosely embracing column; mid-lobe expanding from a short claw, usually 2-lobulate, apical margin usually strongly crisped; disk sometimes with a callus com- posed of 2 ridges. Column stout, winged, slightly dilated at base but without a column foot; anther terminal, incumbent; rostellum ovate, small; stigma subterminal, suborbicular; pollinia 8, in 2 groups of 4, equal in size, narrowly obovoid, waxy, borne on a globose viscidium. About five species: from NE India through S China to S Japan (Ryukyu Islands), mainland SE Asia, the Philippines, and Sumatra; three species in China. 1a. Plants 35–100 cm tall; flowers green or yellowish green, opening widely; lateral lobes of lip with distinct subtriangular-falcate auricles projecting forward, apices acute to subacuminate .....................................................