Mitchel Resnick
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
How Modern Learning Resources Fail Conversational Programmers April Y
Mismatch of Expectations: How Modern Learning Resources Fail Conversational Programmers April Y. Wang1, Ryan Mitts1, Philip J. Guo2, and Parmit K. Chilana1 1Computing Science 2Design Lab Simon Fraser University UC San Diego Burnaby, BC Canada La Jolla, CA USA {ayw7, rmitts, pchilana}@sfu.ca [email protected] ABSTRACT Conversational programmers represent a class of learners variety of learners, such as computer science (CS) students who are not required to write any code, yet try to learn pro- [17,28,53], end-user programmers [14,15,30,32] and profes- gramming to improve their participation in technical con- sional programmers [1,3,13]. A large focus of these projects versations. We carried out interviews with 23 conversation- has been on improving learners’ understanding of program- al programmers to better understand the challenges they ming syntax and logic and facilitating interaction with fea- face in technical conversations, what resources they choose ture-rich programming environments as these are known to to learn programming, how they perceive the learning pro- present key challenges for new learners. cess, and to what extent learning programming actually Unfortunately, most of what we know about the programming helps them. Among our key findings, we found that conver- learning process and the challenges that learners face is based sational programmers often did not know where to even on studies of students in the classroom [53] or professionals in begin the learning process and ended up using formal and industry [1]. Only recently have we started seeing studies into informal learning resources that focus largely on program- informal learning processes among non-traditional popula- ming syntax and logic. -
Compiler Error Messages Considered Unhelpful: the Landscape of Text-Based Programming Error Message Research
Working Group Report ITiCSE-WGR ’19, July 15–17, 2019, Aberdeen, Scotland Uk Compiler Error Messages Considered Unhelpful: The Landscape of Text-Based Programming Error Message Research Brett A. Becker∗ Paul Denny∗ Raymond Pettit∗ University College Dublin University of Auckland University of Virginia Dublin, Ireland Auckland, New Zealand Charlottesville, Virginia, USA [email protected] [email protected] [email protected] Durell Bouchard Dennis J. Bouvier Brian Harrington Roanoke College Southern Illinois University Edwardsville University of Toronto Scarborough Roanoke, Virgina, USA Edwardsville, Illinois, USA Scarborough, Ontario, Canada [email protected] [email protected] [email protected] Amir Kamil Amey Karkare Chris McDonald University of Michigan Indian Institute of Technology Kanpur University of Western Australia Ann Arbor, Michigan, USA Kanpur, India Perth, Australia [email protected] [email protected] [email protected] Peter-Michael Osera Janice L. Pearce James Prather Grinnell College Berea College Abilene Christian University Grinnell, Iowa, USA Berea, Kentucky, USA Abilene, Texas, USA [email protected] [email protected] [email protected] ABSTRACT of evidence supporting each one (historical, anecdotal, and empiri- Diagnostic messages generated by compilers and interpreters such cal). This work can serve as a starting point for those who wish to as syntax error messages have been researched for over half of a conduct research on compiler error messages, runtime errors, and century. Unfortunately, these messages which include error, warn- warnings. We also make the bibtex file of our 300+ reference corpus ing, and run-time messages, present substantial difficulty and could publicly available. -
Agent-Based Modeling with Netlogo
Agent-Based Modeling with NetLogo Uri Wilensky Center for Connected Learning and Computer-Based Modeling Northwestern Institute on Complex Systems Departments of Computer Science & Learning Sciences Northwestern University Agent-Based Modeling in NetLogo SFI MOOC, Summer 2016 1 History: Roman to Hindu-Arabic Europe – at the turn of the first millenium • Before widespread adoption of Hindu-Arabic, very few could do multiplication/division • Scientists recognized superiority immediately • But widespread adoption took a very long time • Was in surreptitious use, but not official 2 Restructurations Structurations -- the encoding of the knowledge in a domain as a function of the representational infrastructure used to express the knowledge Restructurations -- A change from one structuration of a domain to another resulting from a change in representational infrastructure --- Wilensky & Papert 2006;2010 What is important and hard for people today? Similar to numeracy importance for science but difficulties in understanding, today we need to make sense of complex systems yet we find it difficult. What are Complex Systems? • Systems with a large number of interacting parts, evolving over time • Decentralized decisions vs. centralized control • Emergent global patterns from local interactions and decisions • Examples: ecosystems, economies, immune systems, molecular systems, minds, stock market, democratic government... Emergent Phenomena • Structure (Rules) at Micro- level leads to pattern at Macro- level • Order without Design • No leader or orchestrator -
The Comparability Between Modular and Non-Modular
THE COMPARABILITY BETWEEN MODULAR AND NON-MODULAR EXAMINATIONS AT GCE ADVANCED LEVEL Elizabeth A Gray PhD INSTITUTE OF EDUCATION UNIVERSITY OF LONDON 1 ABSTRACT The prime concern of this thesis is the comparability of two types of assessment now prevalent in Advanced level GeE examinations. The more conventional linear scheme assesses all candidates terminally, and the only way to improve the grade awarded is to re-take the whole examination. In contrast, the relatively new modular schemes of assessment include testing opportunities throughout the course of study. This not only has formative effects but allows quantifiable improvements in syllabus results through the medium of the resit option. There are obvious differences between the two schemes, but this does not necessarily imply that they are not comparable in their grading standards. It is this standard which the thesis attempts to address by considering the different variabilities of each of the schemes, and how these might impinge upon the outcomes of the grading process as evidenced in the final grade distributions. A key issue is that of legitimate and illegitimate variabilities - the former perhaps allowing an improvement in performance while maintaining grading standards; the latter possibly affecting the grading standard because its effect was not fully taken into account in the awarding process. By looking at a linear and modular syllabus in mathematics, the differences between the two are investigated, and although not fully generalisable, it is clear that many of the worries which were advanced when modular schemes were first introduced are groundless. Most candidates are seen to use the testing flexibility to their advantage, but there is little evidence of over-testing. -
Microworlds: Building Powerful Ideas in the Secondary School
US-China Education Review A 9 (2012) 796-803 Earlier title: US-China Education Review, ISSN 1548-6613 D DAVID PUBLISHING Microworlds: Building Powerful Ideas in the Secondary School Craig William Jenkins University of Wales, Wales, UK In the 1960s, the MIT (Massachusetts Institute of Technology) developed a programming language called LOGO. Underpinning this invention was a profound new philosophy of how learners learn. This paper reviews research in the area and asks how one notion in particular, that of a microworld, may be used by secondary school educators to build powerful ideas in STEM (science, technology, engineering, and mathematics) subjects. Keywords: microworlds, programming, STEM (science, technology, engineering, and mathematics), constructionism, education Theories of Knowing This paper examines the microworld as a tool for acquiring powerful ideas in secondary education and explores their potential role in making relevant conceptual learning accessible through practical, constructionist approaches. In line with this aim, the paper is split into three main sections: The first section looks at the underlying educational theory behind microworlds in order to set up the rest of the paper; The second section critically examines the notion of a microworld in order to draw out the characteristics of a microworlds approach to learning; Finally, the paper ends with a real-world example of a microworld that is designed to build key, powerful ideas within a STEM (science, technology, engineering, and mathematics) domain of knowledge. To begin to understand the educational theory behind microworlds, a good starting point is to consider the ways in which learners interact with educational technology. In 1980, Robert Taylor (1980) provided a useful framework for understanding such interactions. -
The Education Column
The Education Column by Juraj Hromkovicˇ Department of Computer Science ETH Zürich Universitätstrasse 6, 8092 Zürich, Switzerland [email protected] Learn to Program?Program to Learn! Matthias Hauswirth Università della Svizzera italiana [email protected] Abstract Learning to program may make students more employable, and it may make them better thinkers. However, the most important reason for learning to program may well be that it enables an entirely new way of learning.1 1 Why Everyone Should Learn to Program We are in a gold rush in computer science education. Countless school districts, states, countries, non-profits, and startups rush to offer computer science, or cod- ing, for all. The goal—or gold?—too often is seen in empowering students to get great future-proof jobs. This first goal—programming to earn—is fine, but it is much too limited. A broader goal looks at computer science education as general education that helps students to become critical thinkers. Like the headmaster of my school, who recommended I study Latin because it would make me a better thinker. It probably did. And so did studying computer science. This second goal—programming to think—is great. However, I claim that there is a third, even greater, goal for teaching computer science to each and every person on the planet. Read on! 2 Computer Language as a Medium In “Computer Science: Reflections on the Field, Reflections from the Field” [6], Gerald Jay Sussman (MIT) writes an essay called “The Legacy of Computer Sci- ence.” There he cites from his own landmark programming textbook “Structure and Interpretation of Computer Programs” (SCIP) [1]: 1 This article is based on a blog post previously published at https://medium.com/ @mathau/learning-to-program-programming-to-learn-c2c3d71d4d1d The computer revolution is a revolution in the way we think and in the way we express what we think. -
The Computer Clubhouse: Helping Youth Develop Fluency with New Media
The Computer Clubhouse: Helping Youth Develop Fluency with New Media Mitchel Resnick The Media Laboratory Massachusetts Institute of Technology Cambridge, MA 02140 [email protected] http://www.media.rnit.edu/~mres/ Natalie Rusk Science Museum of Minnesota St. Paul, MN55101 [email protected] Abstract: The gap between the technological haves and have-nots is widening, leading to dangerous economic and cultural riftsin our society. But access to technology alone is not enough to bridge this gap. This paper describes a new model of a learning community, called the Computer Clubhouse, that breaks away from the traditional computer lab. At the Clubhouse, inner-city youth become designers and creators-not just consumers-of computer-based products. The paper describes four core principles of the Clubhouse educational approach-and discusses how the Clubhouse helps prepare today's youth for life and work in tomorrow's world. Introduction Ever since the personal computer was invented in the late 1970s, there have been concerns about inequities in access to this new technology [Piller, 1992]. Over the years, the gap between the technological haves and have nots has widened, leading to dangerous economic and cultural rifts in our society. In an effort to narrow these rifts, some groups have worked to acquire computers for inner-city schools. Other groups have opened community-access centers, recognizing that schools are not the only (or necessarily the best) place for learning to occur. At these community-access centers, members of inner-city communities (youth and adults alike) can use computers at little or no charge. -
A Simplified Introduction to Virus Propagation Using Maple's Turtle Graphics Package
E. Roanes-Lozano, C. Solano-Macías & E. Roanes-Macías.: A simplified introduction to virus propagation using Maple's Turtle Graphics package A simplified introduction to virus propagation using Maple's Turtle Graphics package Eugenio Roanes-Lozano Instituto de Matemática Interdisciplinar & Departamento de Didáctica de las Ciencias Experimentales, Sociales y Matemáticas Facultad de Educación, Universidad Complutense de Madrid, Spain Carmen Solano-Macías Departamento de Información y Comunicación Facultad de CC. de la Documentación y Comunicación, Universidad de Extremadura, Spain Eugenio Roanes-Macías Departamento de Álgebra, Universidad Complutense de Madrid, Spain [email protected] ; [email protected] ; [email protected] Partially funded by the research project PGC2018-096509-B-100 (Government of Spain) 1 E. Roanes-Lozano, C. Solano-Macías & E. Roanes-Macías.: A simplified introduction to virus propagation using Maple's Turtle Graphics package 1. INTRODUCTION: TURTLE GEOMETRY AND LOGO • Logo language: developed at the end of the ‘60s • Characterized by the use of Turtle Geometry (a.k.a. as Turtle Graphics). • Oriented to introduce kids to programming (Papert, 1980). • Basic movements of the turtle (graphic cursor): FD, BK RT, LT. • It is not based on a Cartesian Coordinate system. 2 E. Roanes-Lozano, C. Solano-Macías & E. Roanes-Macías.: A simplified introduction to virus propagation using Maple's Turtle Graphics package • Initially robots were used to plot the trail of the turtle. http://cyberneticzoo.com/cyberneticanimals/1969-the-logo-turtle-seymour-papert-marvin-minsky-et-al-american/ 3 E. Roanes-Lozano, C. Solano-Macías & E. Roanes-Macías.: A simplified introduction to virus propagation using Maple's Turtle Graphics package • IBM Logo / LCSI Logo (’80) 4 E. -
Co-Teaching Computer Science Across Borders
Session 3 L@S ’20, August 12–14, 2020, Virtual Event, USA Co-Teaching Computer Science Across Borders: Human-Centric Learning at Scale Chris Piech Lisa Yan Lisa Einstein Stanford University Stanford University Stanford University Stanford, CA, USA Stanford, CA, USA Stanford, CA, USA [email protected] [email protected] [email protected] Ana Saavedra Baris Bozkurt Eliska Sestakova Stanford University Izmir Demokrasi Universitesi Czech Technical University Stanford, CA, USA Izmir, Turkey Prague, Czech Republic [email protected] [email protected] eliska.sestakova@fit.cvut.cz Ondrej Guth Nick McKeown Czech Technical University Stanford University Prague, Czech Republic Stanford, CA, USA ondrej.guth@fit.cvut.cz [email protected] ABSTRACT CCS Concepts Programming is fast becoming a required skill set for stu- •Social and professional topics ! Computing education; dents in every country. We present CS Bridge, a model for CS1; cross-border co-teaching of CS1, along with a correspond- ing open-source course-in-a-box curriculum made for easy INTRODUCTION localization. In the CS Bridge model, instructors and student- Computer science education has made substantial progress teachers from different countries come together to teach a towards the goal of CS for All in the United States, online, short, stand-alone CS1 course to hundreds of local high school and in some regions of the world. However, there is mounting students. The corresponding open-source curriculum has been evidence of a growing global digital divide, where access to specifically designed to be easily adapted to a wide variety of CS education is heavily dependant on which region you were local teaching practices, languages, and cultures. -
Down with School! up with Logoland!
NEW SCIENTIST REVIEW Down with School! Up with Logoland! The Children's Machine: Rethinking in the classroom, with mixed results. large and small, designed to implement his School in the Age of the Computer I was one of them. About ten years ago, ideas, and has received a wealth of feed by Seymour Papert, Basic Books, New York, I was part of a team that developed and back, much of it deeply discouraging. But HarperCollins in Britain, pp 241, £22·50 taught an introductory course in computer one can learn even more from "mistakes" science aimed at universirv students who than from a string of successes-that is a Daniel Dennett hated and feared computers but whose central tenet of Papert's vision of learning, parents, in many cases, had said "You must and he practices what he preaches. So this IN 1956, the mathematician John McCarthy learn about computers before you gradu sequel engagingly recounts what he has coined the term "artificial intelligence" ate." These students were seasoned veter learned, and especially the mistakes he for a new discipline that was emerging ans of what Paperr calls School-experts at made along the way. His own thinking from some of the more has undergone a transforma imaginative and playful tion; he is still an infectiously explorations of that new optimistic visionary, but a mind-tool, the computer. A wiser one. few years later he devel Logo has nowjoined forces oped a radically new sort of with Lego, the plastic build programming language, ing blocks, and a new wave Lisp, which became the of delectable settings for lingua franca of AI. -
Accessible Tools and Curricula for K-12 Computer Science Education
Accessible Tools and Curricula for K-12 Computer Science Education White paper from the Accessible Computer Science Education Fall Workshop (Draft for Review) November 17-19, 2020 Earl Huff, Clemson University Varsha Koushik, University of Colorado Richard E. Ladner, University of Washington Stephanie Ludi, University of North Texas Lauren Milne, Macalester College Aboubakar Mountapmbeme, University of North Texas Margaret Perkoff, University of Colorado Andreas Stefik, University of Nevada, Las Vegas Introduction Ladner Computer science is rapidly becoming an integral part of the K-12 school curriculum in the United States (US) and other countries. This white paper will focus on the US because we understand K-12 education better than in other countries. Since 1984, computer science has been part of the curriculum in schools that offered AP Computer Science A (CSA). This introduction to programming was originally taught using Pascal, then moved to C++ in 1999, and then Java in 2003. Since 2007, there has been a concerted effort by the National Science Foundation to bring computer science education to a much broader audience and to all levels in K-12. This includes all students regardless of gender, ethnicity, race, or disability. The effort began with Exploring Computer Science (ECS) which was a gentler introduction to computer science at the high school level. Shortly thereafter, the idea of an AP Computer Science Principles (CSP) course arose that was to be a gentler introduction to computer science than AP CSA with a college level equivalent, introductory computer science for non-majors. In 2016, AP CSP became a reality with 43,780 students taking the exam in spring 2017 and two years later that number rose to 94,361. -
Papert's Microworld and Geogebra: a Proposal to Improve Teaching Of
Creative Education, 2019, 10, 1525-1538 http://www.scirp.org/journal/ce ISSN Online: 2151-4771 ISSN Print: 2151-4755 Papert’s Microworld and Geogebra: A Proposal to Improve Teaching of Functions Carlos Vitor De Alencar Carvalho1,4, Lícia Giesta Ferreira De Medeiros2, Antonio Paulo Muccillo De Medeiros3, Ricardo Marinho Santos4 1State University Center of Western, Rio de Janeiro, RJ, Brazil 2CEFET/RJ, Valença, RJ, Brazil 3Rio de Janeiro Federal Institute (IFRJ), Pinheiral, RJ, Brazil 4Vassouras University, Vassouras, RJ, Brazil How to cite this paper: De Alencar Car- Abstract valho, C. V., De Medeiros, L. G. F., De Me- deiros, A. P. M., & Santos, R. M. (2019). This paper discusses how to improve teaching of Mathematics in Brazilian Papert’s Microworld and Geogebra: A Pro- schools, based on Seymour Papert’s Constructionism associated with Infor- posal to Improve Teaching of Functions. mation Technology tools. Specifically, this work introduces the construction- Creative Education, 10, 1525-1538. https://doi.org/10.4236/ce.2019.107111 ist microworld, a digital environment where students are able to build their knowledge interactively, in this case, using dynamic mathematics software Received: June 6, 2019 GeoGebra. Accepted: July 14, 2019 Published: July 17, 2019 Keywords Copyright © 2019 by author(s) and Microworld, GeoGebra, Seymour Papert, Information Technologies in Scientific Research Publishing Inc. Education This work is licensed under the Creative Commons Attribution International License (CC BY 4.0). http://creativecommons.org/licenses/by/4.0/ Open Access 1. Introduction This research’s main goal is to present a proposal to help Brazilian teachers im- prove their educational practices.