Proving Theorems with Computers

Total Page:16

File Type:pdf, Size:1020Kb

Proving Theorems with Computers Proving theorems with computers Kevin Buzzard ∗ May 1, 2020 Superhuman mathematics One might hence ask the following question: if one human had an understanding of all of modern How is breakthrough mathematics achieved? Here is pure mathematics simultaneously, how much further one example, from algebraic number theory. would they immediately be able to see? How many In his 1987 paper \Deforming Galois representa- insights are there which are needed to unblock one tions", Barry Mazur observes that the geometric con- field, but which have already been made in another? cept of a smoothly-varying complex family of rep- This question can of course be dismissed as a resentations of a group has an arithmetic analogue. thought experiment. Perhaps it is the kind of thing He sets up deformation theory in the purely alge- which philosophers might muse over, but it is the year braic setting of mod p and p-adic Galois representa- 2020 and pure mathematics is much too big for one tions, and makes some interesting observations about human to comprehend. the relationship between deformation rings and Ga- However, it is the year 2020 and hence we have lois cohomology. By 1990, Mazur and Tilouine have computer proof systems which are now in theory ca- raised a profound question about whether a certain pable of understanding all of modern pure mathe- universal deformation ring coming out of this the- matics. So why is our community not teaching it to ory is isomorphic to one of Hida's Hecke algebras. them? This is entirely within our grasp, and we have In 1993 Wiles uses new techniques in commutative absolutely no idea what will happen when we do. algebra to reduce a variant of this question to a nu- merical criterion, and a year later, aided by Taylor, he has pushed the strategy through. The semistable 1 Teaching mathematics to hu- Shimura{Taniyama conjecture (at that time often called the semistable Shimura{Taniyama{Weil con- mans jecture) follows, and hence, by earlier work of Ribet, Fermat's Last Theorem. Let us look at the way pure mathematics is learnt by This is but one of very many examples where humans, from undergraduate to PhD level. cross-fertilization has occurred in mathematics. The breadth of Mazur's mathematical knowledge (he was 1.1 The basics initially a topologist) played a key role here. In a 2014 article [Maz14] for the Math Intelligencer, Mazur Three key concepts in pure mathematics are the def- writes: \Reasoning by analogy is the keystone: it inition, the theorem statement, and the proof. We is present in much (perhaps all) daily mathematical will talk more about this trichotomy later on, but for thought, and is also often the inspiration behind some now let us focus on the concept of proof. A course of the major long-range projects in mathematics". introducing the formal notion of proof might cover concepts such as sets, functions and binary relations, ∗Kevin Buzzard is a professor of mathematics at Imperial College London. His email address is and basic theorems about these objects will be care- [email protected]. fully proved. For example, there might be a proof 1 that distinct equivalence classes for an equivalence 1.2 Developing intuition relation are disjoint. There are many ways that one can attempt to teach this to undergraduates. Re- After a while it becomes inconvenient to do mathe- cently I have become fond of a method where I bring matics in a purely axiomatic fashion. For example, a set of around 100 plastic shapes coloured red, yel- proving that if we remove a finite set of points from 2 low, green and blue into class. Two shapes are de- R then the resulting topological space is still path fined to be equivalent if they have the same colour, connected could of course in theory be done from and it is not hard to convince the students that this the axioms, but in practice, rather than attempting is an equivalence relation, and that the red shapes to write down the function defining a path between form an equivalence class, the blue shapes form an- two arbitrary points in the space, one would just other, and so on. The fact that distinct equivalence draw a picture. The same is also true when prov- classes are disjoint is now obvious. However this is an ing basic results about contour integrals in complex example, not a proof. The formal proof, which I then analysis { there are several \proofs by picture" in a go on to show the students, is a series of elementary typical development of the theory. The concept of steps, each of which follows from the rules of logic or a simple closed curve in the plane having an inside the axioms of an equivalence relation. and an outside will often be taken as read, although very few students will have seen a proof of the Jor- dan curve theorem at this point in their mathemat- ical education. Over time, students learning math- In proofs such as these, we are operating very close ematics begin to understand our unwritten rules of to the \machine" which drives formal mathematics { \what is allowed in practice". One is reminded of the machine which tells us that if P is true, and if P the apocryphal story of a student asking their pro- implies Q, then Q is true, and other such logical rules. fessor whether the fact just presented to the class as This axiom-based attitude continues to play an im- \obvious" was indeed obvious, and the professor go- portant role in subsequent classes such as first courses ing into deep thought to emerge 20 minutes later with in group theory, linear algebra, and real analysis. The the reply \yes". By this point in the development of a real numbers might be presented as a complete totally student's education, lecturers are expecting the stu- ordered archimedean field, that is, a structure satis- dents to \learn to fly”. Arguments in lectures may fying a list of axioms. Using only these axioms we can take place high above the axioms, with technical de- build a basic theory of real analysis from first princi- tails being dismissed as obvious or easy to verify, and ples. The theories of sequences, limits, infinite sums, left to the reader (perhaps with some hints). This is the beginning of what Terry Tao [Tao09] has called continuous functions R ! R, differentiation, integra- tion and so on can all be carefully built from the ax- the post-rigorous stage of mathematics. To borrow ioms for complete totally ordered archimedean fields. a phrase from computer science, students begin to Similarly, a lecturer presents the axioms of a group in learn the intuitive \front end" of mathematics. a first course on group theory, and from these axioms we can build the theory of subgroups, normal sub- 1.3 PhD Research groups, group homomorphisms, kernels, images and quotient groups, and prove the first isomorphism the- Those students who convince us that they can steer orem for groups. At this stage in the development of their mathematical arguments correctly are rewarded mathematics, every proof can be chased right down by being given PhD places. The prize for this \level- to the axioms of the system we are considering, and ling up" is that they are allowed access to the mathe- students are expected to learn from such courses that matical literature, and from now on they can assume mathematics can be done in this way. Much (but, as any result they like, as long as it is published in a we are about to see, not all) of undergraduate pure reasonably prestigious journal and their advisor be- mathematics is of this form. lieves it. A typical PhD thesis in pure mathemat- 2 ics will contain new proofs of results in a given the- typesetting system. Thirty years ago, only a small ory. In my personal case, this theory was the theory number of (typically young) mathematicians knew of p-adic Galois representations attached to modular how to write LATEX files, but now most of us do; this forms. By the time they graduate, a PhD student will program is now the standard typesetting system for typically know many theorem statements concerning mathematicians. If one runs the LATEX program on the objects they chose to study, and may well have a LATEX file, one of two things can happen. The file contributed to this list of theorem statements them- might contain errors, for example perhaps we acci- selves. Again to borrow a phrase from computer sci- dentally used a command in normal text mode which ence, the student knows the interface to each object is only valid in maths mode. In this case the LATEX in their area of expertise. The student is allowed to editor we are using will typically flag these errors and assume any results in the interface, and might well ask that we fix them. But when all the errors are know how to prove some of them { but possibly not gone, the LATEX program will compile the LATEX file, all of them. For example, when I was a PhD student, and the output will be a (hopefully) beautifully type- I had not read the details of the proof of the theo- set document. This document is typically a pdf file rem of Deligne which attached a p-adic Galois repre- nowadays, which can be read on a screen, printed out, sentation to a modular form, a key result from the or of course sent to another computer on the internet.
Recommended publications
  • Marco D'addezio
    Marco D’Addezio Max Planck Institute for Mathematics Vivatsgasse 7 Office 221 53111 Bonn, Germany email: [email protected] url: https://guests.mpim-bonn.mpg.de/daddezio Born: January 07, 1992—Rome, Italy Nationality: Italian Current position 2019-2021 Postdoctoral Fellow, Max Planck Institute for Mathematics, Bonn, Germany; Mentor: Prof. Peter Scholze. Previous position 2019 Postdoctoral Fellow, Free University Berlin, Germany; Mentor: Dr. Simon Pepin Lehalleur; Project title: Overconvergent F -isocrystals and rational points. Areas of specialization Algebraic Geometry, Number Theory. Education 2016-2019 Ph.D. in Mathematics, Free University Berlin, Germany; Supervisors: Prof. Hélène Esnault and Prof. Vasudevan Srinivas; Thesis title: Monodromy groups in positive characteristic. 2015-2016 Master 2 - Analyse, Arithmétique et Géométrie, University Paris Sud, France. 2014-2015 Master 1 - Mathematiques Fondamentales et Appliquées, University Paris Sud, France. 2011-2014 Bachelor in Mathematics, University of Pisa, Italy. Grants & awards 2020 Ernst Reuter Prize for the PhD thesis. 2019-2021 Max Planck Institute for Mathematics Postdoctoral Fellowship. 1 2019 German Research Foundation Postdoctoral Fellowship. 2016-2019 Einstein Foundation Fellowship. 2014-2016 Paris Saclay Scholarship. 2011-2014 Istituto Nazionale di Alta Matematica Scholarship. Articles & talks Accepted articles 2021 M. D’Addezio, H. Esnault, On the universal extensions in Tannakian categories, arXiv: 2009.14170, to appear in Int. Math. Res. Not. 2021 M. D’Addezio, On the semi-simplicity conjecture for Qab, arXiv:1805.11071, to appear in Math. Res. Lett. 2020 M. D’Addezio, The monodromy groups of lisse sheaves and overconvergent F -isocrystals, Sel. Math. (New Ser.) 26 (2020). Preprints 2021 M. D’Addezio, Slopes of F-isocrystals over abelian varieties, https://arxiv.org/abs/2101.
    [Show full text]
  • An Important Visitor in Vancouver and Ottawa
    PERSPECTIVES An important visitor in Vancouver and Ottawa Federal research minister Anja Karliczek visits German-Canadian cooperation projects of the Max Planck Society Interested in quantum technology: Federal Research Minister, Anja Karliczek, learned about the Max Planck Center in Vancouver from Max Planck Director Bernhard Keimer (left) and his Canadian colleague Andrea Damascelli. Committee on Education, Research, and Technology Assessment. In Van- couver, the delegation gained insights into research projects at the Max Planck- UBC-U Tokyo Center for Quantum Materials. The Center is home to a close collaboration between several Max Planck Institutes, the University of British Columbia in Vancouver and the University of Tokyo. Two of its Co- Directors, Bernhard Keimer of the Max Planck Institute for Solid State Research and his Canadian colleague Andrea Damascelli, presented the minister with an overview of initial successes that have emerged from collaboration in the area of high-temperature superconduc- tors. On the visit to the Max Planck Uni- versity of Ottawa Centre for Extreme As part of a trip to Canada, the German make key contributions to the explo- and Quantum Photonics, researchers Federal Minister for Education and Re- ration of quantum technologies and explained to the delegation how they search, Anja Karliczek, also paid a visit the international exchange of scien- are developing high-intensity laser to the Max Planck Centers in Vancouver tists,” said the minister, who was accom- sources with a view to optimizing man- and Ottawa. “The Max Planck Centers panied by members of the Bundestag ufacturing processes in the future. Fields Medal for Peter Scholze The new Director at the Max Planck Institute for Mathematics is awarded the highest distinction in his field The Fields Medal is considered the Nobel Prize of mathematics, Exceptional talent: Peter Scholze, and this year the International Mathematical Union chose to a professor at the University of Bonn and Director at the Max Planck award it to Peter Scholze.
    [Show full text]
  • Peter Scholze Awarded the Fields Medal
    Peter Scholze awarded the Fields medal Ulrich Görtz Bonn, October 1, 2018 . Most important research prize in mathematics John Charles Fields Since 1936, 59 medals awarded. Age limit: 40 years . Most important research prize in mathematics . Most important research prize in mathematics . Most important research prize in mathematics . Goal of this talk Some impression of the area, provide context for non-experts. Urbano Monte’s map of the earth, 1587 David Rumsey Map Collection CC-BY-NC-SA 3.0 . Goal of this talk Some impression of the area, provide context for non-experts. Urbano Monte’s map of the earth, 1587 David Rumsey Map Collection CC-BY-NC-SA 3.0 . Goal of this talk Some impression of the area, provide context for non-experts. Urbano Monte’s map of the earth, 1587 David Rumsey Map Collection CC-BY-NC-SA 3.0 . Goal of this talk mod p fields, Archimedean e. g. Fp((t)) fields, e. g. R, C p-adic fields, e. g. Qp Algebraic number fields, e. g. Q . Do solutions exist? Are there only finitely many solutions? Can we count them? Can we write them down explicitly? If there are infinitely many solutions, does the set of solutions have a (geometric) structure? Solving equations Important problem in mathematics: Understand set of solutions of an equation. Solving equations Important problem in mathematics: Understand set of solutions of an equation. Do solutions exist? Are there only finitely many solutions? Can we count them? Can we write them down explicitly? If there are infinitely many solutions, does the set of solutions have a (geometric) structure? .
    [Show full text]
  • Linking Together Members of the Mathematical Carlos ­Rocha, University of Lisbon; Jean Taylor, Cour- Community from the US and Abroad
    NEWSLETTER OF THE EUROPEAN MATHEMATICAL SOCIETY Features Epimorphism Theorem Prime Numbers Interview J.-P. Bourguignon Societies European Physical Society Research Centres ESI Vienna December 2013 Issue 90 ISSN 1027-488X S E European M M Mathematical E S Society Cover photo: Jean-François Dars Mathematics and Computer Science from EDP Sciences www.esaim-cocv.org www.mmnp-journal.org www.rairo-ro.org www.esaim-m2an.org www.esaim-ps.org www.rairo-ita.org Contents Editorial Team European Editor-in-Chief Ulf Persson Matematiska Vetenskaper Lucia Di Vizio Chalmers tekniska högskola Université de Versailles- S-412 96 Göteborg, Sweden St Quentin e-mail: [email protected] Mathematical Laboratoire de Mathématiques 45 avenue des États-Unis Zdzisław Pogoda 78035 Versailles cedex, France Institute of Mathematicsr e-mail: [email protected] Jagiellonian University Society ul. prof. Stanisława Copy Editor Łojasiewicza 30-348 Kraków, Poland Chris Nunn e-mail: [email protected] Newsletter No. 90, December 2013 119 St Michaels Road, Aldershot, GU12 4JW, UK Themistocles M. Rassias Editorial: Meetings of Presidents – S. Huggett ............................ 3 e-mail: [email protected] (Problem Corner) Department of Mathematics A New Cover for the Newsletter – The Editorial Board ................. 5 Editors National Technical University Jean-Pierre Bourguignon: New President of the ERC .................. 8 of Athens, Zografou Campus Mariolina Bartolini Bussi GR-15780 Athens, Greece Peter Scholze to Receive 2013 Sastra Ramanujan Prize – K. Alladi 9 (Math. Education) e-mail: [email protected] DESU – Universitá di Modena e European Level Organisations for Women Mathematicians – Reggio Emilia Volker R. Remmert C. Series ............................................................................... 11 Via Allegri, 9 (History of Mathematics) Forty Years of the Epimorphism Theorem – I-42121 Reggio Emilia, Italy IZWT, Wuppertal University [email protected] D-42119 Wuppertal, Germany P.
    [Show full text]
  • Arxiv:1711.06456V4 [Math.AG] 1 Dec 2018
    PURITY FOR THE BRAUER GROUP KĘSTUTIS ČESNAVIČIUS Abstract. A purity conjecture due to Grothendieck and Auslander–Goldman predicts that the Brauer group of a regular scheme does not change after removing a closed subscheme of codimension ě 2. The combination of several works of Gabber settles the conjecture except for some cases that concern p-torsion Brauer classes in mixed characteristic p0,pq. We establish the remaining cases by using the tilting equivalence for perfectoid rings. To reduce to perfectoids, we control the change of the Brauer group of the punctured spectrum of a local ring when passing to a finite flat cover. 1. The purity conjecture of Grothendieck and Auslander–Goldman .............. 1 Acknowledgements ................................... ................................ 3 2. Passage to a finite flat cover ................................................... .... 3 3. Passage to the completion ................................................... ....... 6 4. The p-primary Brauer group in the perfectoid case .............................. 7 5. Passage to perfect or perfectoid towers ........................................... 11 6. Global conclusions ................................................... ............... 13 Appendix A. Fields of dimension ď 1 ................................................ 15 References ................................................... ........................... 16 1. The purity conjecture of Grothendieck and Auslander–Goldman Grothendieck predicted in [Gro68b, §6] that the cohomological Brauer group of a regular scheme X is insensitive to removing a closed subscheme Z Ă X of codimension ě 2. This purity conjecture is known in many cases (as we discuss in detail below), for instance, for cohomology classes of order 2 invertible on X, and its codimension requirement is necessary: the Brauer group of AC does not agree with that of the complement of the coordinate axes (see [DF84, Rem. 3]). In this paper, we finish the remaining cases, that is, we complete the proof of the following theorem.
    [Show full text]
  • An Integral Model of the Perfectoid Modular Curve
    An integral model of the perfectoid modular curve Juan Esteban Rodr´ıguez Camargo Abstract We construct an integral model of the perfectoid modular curve. Studying this object, we prove some vanishing results for the coherent cohomology at perfectoid level. We use a local duality theorem at finite level to compute duals for the coherent cohomology of the integral perfectoid curve. Specializing to the structural sheaf, we can describe the dual of the completed cohomology as the inverse limit of the integral cusp forms of weight 2 and trace maps. Introduction Throughout this document we fix a prime number p, Cp the p-adic completion of an algebraic closure of Qp, and {ζm}m∈N ⊂ Cp a compatible system of primitive roots of unity. Given a non-archimedean field K we let OK denote its valuation ring. We ˘ let Fp be the residue field of OCp and Zp = W (Fp) ⊂ Cp the ring of Witt vectors. cyc ˘cyc Let Zp and Zp denote the p-adic completions of the p-adic cyclotomic extensions ˘cyc of Zp and Zp in Cp respectively. Let M ≥ 1 be an integer and Γ(M) ⊂ GL2(Z) the principal congruence subgroup of n level M. We fix N ≥ 3 an integer prime to p. For n ≥ 0 we denote by Y (Np )/ Spec Zp the integral modular curve of level Γ(Npn) and X(Npn) its compactification, cf. [KM85]. We denote by X(Npn) the completion of X(Npn) along its special fiber, n and by X (Np ) its analytic generic fiber seen as an adic space over Spa(Qp, Zp), cf.
    [Show full text]
  • Number-Theory Prodigy Among Winners of Coveted Maths Prize Fields Medals Awarded to Researchers in Number Theory, Geometry and Differential Equations
    NEWS IN FOCUS nature means these states are resistant to topological states. But in 2017, Andrei Bernevig, Bernevig and his colleagues also used their change, and thus stable to temperature fluctua- a physicist at Princeton University in New Jersey, method to create a new topological catalogue. tions and physical distortion — features that and Ashvin Vishwanath, at Harvard University His team used the Inorganic Crystal Structure could make them useful in devices. in Cambridge, Massachusetts, separately pio- Database, filtering its 184,270 materials to find Physicists have been investigating one class, neered approaches6,7 that speed up the process. 5,797 “high-quality” topological materials. The known as topological insulators, since the prop- The techniques use algorithms to sort materi- researchers plan to add the ability to check a erty was first seen experimentally in 2D in a thin als automatically into material’s topology, and certain related fea- sheet of mercury telluride4 in 2007 and in 3D in “It’s up to databases on the basis tures, to the popular Bilbao Crystallographic bismuth antimony a year later5. Topological insu- experimentalists of their chemistry and Server. A third group — including Vishwa- lators consist mostly of insulating material, yet to uncover properties that result nath — also found hundreds of topological their surfaces are great conductors. And because new exciting from symmetries in materials. currents on the surface can be controlled using physical their structure. The Experimentalists have their work cut out. magnetic fields, physicists think the materials phenomena.” symmetries can be Researchers will be able to comb the databases could find uses in energy-efficient ‘spintronic’ used to predict how to find new topological materials to explore.
    [Show full text]
  • PETER SCHOLZE to RECEIVE 2013 SASTRA RAMANUJAN PRIZE the 2013 SASTRA Ramanujan Prize Will Be Awarded to Professor Peter Scholze
    PETER SCHOLZE TO RECEIVE 2013 SASTRA RAMANUJAN PRIZE The 2013 SASTRA Ramanujan Prize will be awarded to Professor Peter Scholze of the University of Bonn, Germany. The SASTRA Ramanujan Prize was established in 2005 and is awarded annually for outstanding contributions by young mathematicians to areas influenced by the genius Srinivasa Ramanujan. The age limit for the prize has been set at 32 because Ramanujan achieved so much in his brief life of 32 years. The prize will be awarded in late December at the International Conference on Number Theory and Galois Representations at SASTRA University in Kumbakonam (Ramanujan's hometown) where the prize has been given annually. Professor Scholze has made revolutionary contributions to several areas at the interface of arithmetic algebraic geometry and the theory of automorphic forms. Already in his master's thesis at the University of Bonn, Scholze gave a new proof of the Local Langlands Conjecture for general linear groups. There were two previous approaches to this problem, one by Langlands{Kottwitz, and another by Harris and Taylor. Scholze's new approach was striking for its efficiency and simplicity. Scholze's proof is based on a novel approach to calculate the zeta function of certain Shimura varieties. This work completed in 2010, appeared in two papers in Inventiones Mathematicae in 2013. Scholze has generalized his methods partly in collaboration with Sug Woo Shin to determine the `-adic Galois representations defined by a class of Shimura varieties. These results are contained in two papers published in 2013 in the Journal of the American Mathematical Society. While this work for his master's was groundbreaking, his PhD thesis written under the direction of Professor Michael Rapoport at the University of Bonn was a more mar- velous breakthrough and a step up in terms of originality and insight.
    [Show full text]
  • Public Recognition and Media Coverage of Mathematical Achievements
    Journal of Humanistic Mathematics Volume 9 | Issue 2 July 2019 Public Recognition and Media Coverage of Mathematical Achievements Juan Matías Sepulcre University of Alicante Follow this and additional works at: https://scholarship.claremont.edu/jhm Part of the Arts and Humanities Commons, and the Mathematics Commons Recommended Citation Sepulcre, J. "Public Recognition and Media Coverage of Mathematical Achievements," Journal of Humanistic Mathematics, Volume 9 Issue 2 (July 2019), pages 93-129. DOI: 10.5642/ jhummath.201902.08 . Available at: https://scholarship.claremont.edu/jhm/vol9/iss2/8 ©2019 by the authors. This work is licensed under a Creative Commons License. JHM is an open access bi-annual journal sponsored by the Claremont Center for the Mathematical Sciences and published by the Claremont Colleges Library | ISSN 2159-8118 | http://scholarship.claremont.edu/jhm/ The editorial staff of JHM works hard to make sure the scholarship disseminated in JHM is accurate and upholds professional ethical guidelines. However the views and opinions expressed in each published manuscript belong exclusively to the individual contributor(s). The publisher and the editors do not endorse or accept responsibility for them. See https://scholarship.claremont.edu/jhm/policies.html for more information. Public Recognition and Media Coverage of Mathematical Achievements Juan Matías Sepulcre Department of Mathematics, University of Alicante, Alicante, SPAIN [email protected] Synopsis This report aims to convince readers that there are clear indications that society is increasingly taking a greater interest in science and particularly in mathemat- ics, and thus society in general has come to recognise, through different awards, privileges, and distinctions, the work of many mathematicians.
    [Show full text]
  • Elliptic Curves, Random Matrices and Orbital Integrals
    ELLIPTIC CURVES, RANDOM MATRICES AND ORBITAL INTEGRALS JEFFREY D. ACHTER AND JULIA GORDON ABSTRACT. An isogeny class of elliptic curves over a finite field is determined by a quadratic Weil polynomial. Gekeler has given a product formula, in terms of congruence considerations involving that polynomial, for the size of such an isogeny class (over a finite prime field). In this paper, we give a new, transparent proof of this formula; it turns out that this product actually computes an adelic orbital integral which visibly counts the desired cardinality. This answers a question posed by N. Katz in [13, Remark 8.7] and extends Gekeler’s work to ordinary elliptic curves over arbitrary finite fields. 1. INTRODUCTION The isogeny class of an elliptic curve over a finite field Fp of p elements is determined by its trace of Frobenius;p calculating the size of such an isogeny class is a classical problem. Fix a number a with jaj ≤ 2 p, and let I(a, p) be the set of all elliptic curves over Fp with trace of Frobenius a. Further suppose that p - a, so that the isogeny class is ordinary. Gekeler proposes ([9]; see also [13]) a random matrix model to compute the size of I(a, p). For each rational prime ` 6= p, let # fg 2 GL (Z/`n) : tr(g) ≡ a mod `n, det(g) ≡ p mod `ng ( ) = 2 (1.1) n` a, p lim n n . n!¥ # SL2(Z/` )/` For ` = p, let # fg 2 M (Z/pn) : tr(g) ≡ a mod pn, det(g) ≡ p mod png ( ) = 2 (1.2) np a, p lim n n .
    [Show full text]
  • Lectures on Analytic Geometry Peter Scholze (All Results Joint with Dustin
    Lectures on Analytic Geometry Peter Scholze (all results joint with Dustin Clausen) Contents Analytic Geometry 5 Preface 5 1. Lecture I: Introduction 6 2. Lecture II: Solid modules 11 3. Lecture III: Condensed R-vector spaces 16 4. Lecture IV: M-complete condensed R-vector spaces 20 Appendix to Lecture IV: Quasiseparated condensed sets 26 + 5. Lecture V: Entropy and a real BdR 28 6. Lecture VI: Statement of main result 33 Appendix to Lecture VI: Recollections on analytic rings 39 7. Lecture VII: Z((T ))>r is a principal ideal domain 42 8. Lecture VIII: Reduction to \Banach spaces" 47 Appendix to Lecture VIII: Completions of normed abelian groups 54 Appendix to Lecture VIII: Derived inverse limits 56 9. Lecture IX: End of proof 57 Appendix to Lecture IX: Some normed homological algebra 65 10. Lecture X: Some computations with liquid modules 69 11. Lecture XI: Towards localization 73 12. Lecture XII: Localizations 79 Appendix to Lecture XII: Topological invariance of analytic ring structures 86 Appendix to Lecture XII: Frobenius 89 Appendix to Lecture XII: Normalizations of analytic animated rings 93 13. Lecture XIII: Analytic spaces 95 14. Lecture XIV: Varia 103 Bibliography 109 3 Analytic Geometry Preface These are lectures notes for a course on analytic geometry taught in the winter term 2019/20 at the University of Bonn. The material presented is part of joint work with Dustin Clausen. The goal of this course is to use the formalism of analytic rings as defined in the course on condensed mathematics to define a category of analytic spaces that contains (for example) adic spaces and complex-analytic spaces, and to adapt the basics of algebraic geometry to this context; in particular, the theory of quasicoherent sheaves.
    [Show full text]
  • The Perfectoid Concept: Test Case for an Absent Theory
    The Perfectoid Concept: Test Case for an Absent Theory MICHAEL HARRIS Department of Mathematics Columbia University Perfectoid prologue It's not often that contemporary mathematics provides such a clear-cut example of concept formation as the one I am about to present: Peter Scholze's introduction of the new notion of perfectoid space. The 23-year old Scholze first unveiled the concept in the spring of 2011 in a conference talk at the Institute for Advanced Study in Princeton. I know because I was there. This was soon followed by an extended visit to the Institut des Hautes Études Scientifiques (IHES) at Bûres- sur-Yvette, outside Paris — I was there too. Scholze's six-lecture series culminated with a spectacular application of the new method, already announced in Princeton, to an outstanding problem left over from the days when the IHES was the destination of pilgrims come to hear Alexander Grothendieck, and later Pierre Deligne, report on the creation of the new geometries of their day. Scholze's exceptionally clear lecture notes were read in mathematics departments around the world within days of his lecture — not passed hand-to-hand as in Grothendieck's day — and the videos of his talks were immediately made available on the IHES website. Meanwhile, more killer apps followed in rapid succession in a series of papers written by Scholze, sometimes in collaboration with other mathematicians under 30 (or just slightly older), often alone. By the time he reached the age of 24, high-level conference invitations to talk about the uses of perfectoid spaces (I was at a number of those too) had enshrined Scholze as one of the youngest elder statesmen ever of arithmetic geometry, the branch of mathematics where number theory meets algebraic geometry.) Two years later, a week-long meeting in 2014 on Perfectoid Spaces and Their Applications at the Mathematical Sciences Research Institute in Berkeley broke all attendance records for "Hot Topics" conferences.
    [Show full text]