Sediment Transport and Channel Morphology of Small, Forested Streams

Total Page:16

File Type:pdf, Size:1020Kb

Sediment Transport and Channel Morphology of Small, Forested Streams JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION AUGUST AMERICAN WATER RESOURCES ASSOCIATION SEDIMENT TRANSPORT AND CHANNEL MORPHOLOGY OF SMALL, FORESTED STREAMS Marwan A. Hassan, Michael Church, Thomas E. Lisle, Francesco Brardinoni, Lee Benda, and Gordon E. Grant2 ABSTRACT: This paper reviews sediment transport and channel INTRODUCTION morphology in small, forested streams in the Pacific Northwest region of North America to assess current knowledge of channel stability and morphology relevant to riparian management prac- Forests significantly influence channel morphology tices around small streams. Small channels are defined as ones in and processes in streams. Particular effects are creat- which morphology and hydraulics may be significantly influenced ed by within channel accumulation of large woody by individual clasts or wood materials in the channel. Such chan- nels are headwater channels in close proximity to sediment sources, debris (LWD) and by channel margin trees. Wood is so they reflect a mix of hillslope and channel processes. Sediment critically important in regulating sediment transport inputs are derived directly from adjacent hillslopes and from the and diversifying channel form, thereby also having channel banks. Morphologically significant sediments move mainly major effects on aquatic and riparian ecologym(e.g., as bed load, mainly at low intensity, and there is no standard Bisson et al., 1981; Sullivan, 1986; Bilby and Bisson, method for measurement. The larger elastic and woody elements in the channel form persistent structures that trap significant vol- 1998). This paper presents a review of small forested umes of sediment, reducing sediment transport in the short term stream dynamics, drawing primarily from research and substantially increasing channel stability. The presence of such conducted in the Pacific Northwest region of North structures makes modeling of sediment flux in these channels - a America. potential substitute for measurement - difficult. Channel morphol- Wood has its greatest effect in channels with ogy is discussed, with some emphasis on wood related features. The problem of classifying small channels is reviewed, and it is recog- dimensions similar to those of the larger wood pieces, nized that useful classifications are purpose oriented. Reach scale hence smaller streams rather than large rivers are and channel unit scale morphologies are categorized. A "distur- most especially affected. Church (1992) characterized bance cascade" is introduced to focus attention on sediment trans- "small channels" as ones in which individual bed par- fers through the slope channel system and to identify management ticles greatly influence channel morphology. On steep- practices that affect sediment dynamics and consequent channel morphology. Gaps in knowledge, errors, and uncertainties have er gradients, step pool is a dominant bed form. been identified for future research. Absolute width would normally be less than 3 to 5 m. (mYTERMS: streams; sediment transport; fluvial processes; geo- He characterized "intermediate channels" as ones morphology.) with width much greater than characteristic grain size that might still be influenced by blockage across Hassan, Manvan A., Michael Church, Thomas E. Lisle, Francesco Brardinoni, Lee Benda, and Gordon E. Grant, 2005. Sediment Transport and Channel Mor- Or of the cross-section, most often by phology of Small, Forested Streams. Journal of the American Water Resources woody debris- In forests, this might include channels Association (JAWRA) 41(4):853-876. up to 20 or 30 m in width. Particle accumulations greatly influence channel morphology, pool riffle being a typical bed form feature. According to the British Columbia channel classification (British Columbia lPaper No. 04072 of the Journal of the American Water Resources Association (JAWRA) (Copyright 0 2005). Discussions are open until February 1,2006. ZRespectively, Assistant Professor (Hassan) and Professor (Church), Department of Geography, University of British Columbia, Vancouver, B.C., Canada V6T 122; Research Hydrologist, USDA Forest Service, Southwest Research Station, Redwood Sciences Laboratory, Arcata, Cali- fornia 95521; Graduate Student, Department of Geography, University of British Columbia, Vancouver, B.C., Canada V6T 122; Research Sci- entist, Earth System Institute, 310 North Mt. Shasta Blvd., Suite 6, Mt. Shasta, California 96067-2230; and USDA Forest Service, Pacific NW Research Station, 3200 SW Jefferson Way, Corvallis, Oregon 97331 (E-Mail/Hassan: [email protected]). JOURNALOF THE AMERICANWATER RESOURCES ASSOCIATION 853 JAWRA HASSAN,CHURCH, LISLE, BRARDINONI, BENDA, AND GRANT Ministry of Forests, 1996a,b), small and intermediate the limited available information on small forested channels have a range of particle size/width ratio streams, certain information accumulated from larger between 0.002 and 1.0, while relative roughness (par- mountain rivers will be included in this paper, and its ticle sizeldepth) ranges from 0.1 to 1.6. Such channels applicability to small streams will be assessed. are strongly influenced by the entry of wood into First, the fundamental phenomenon of sediment them. In contrast, large channels, with major bar transport is considered under the headings sources, development, meander-bend pools, and crossover rif- mobilization, phases of transport, measurement, vari- fles, are essentially hydraulically controlled, although ability of transport, and modeling. Then channel mor- significant wood accumulations might still occur on phology - the product of sediment transport and bar surfaces. deposition - is introduced under the headings reach Whereas external sediment inputs such as mass morphology, channel units, and channel classification. wasting and bank collapse, along with wood accumu- Finally, slope channel interactions and disturbance lation, tend to dominate channel morphology - hence are considered, with some emphasis on timber har- ecology - in small forest streams, larger channels are vesting and roads. primarily affected by downstream fluvial sediment transport and bank erosion. "Small streams," as dis- cussed in this paper, would be classified as small or intermediate in the channel typology of Church SEDIMENT TRANSPORT (1992). His definitions are relative because sediment texture and forest morphology influence the size Much research has been conducted into sediment range of such channels in a particular environment. transport processes and sediment transport rate pre- Insofar as they speak to process, they seem more diction in rivers, mostly in relatively large rivers. appropriate than arbitrary classifications by absolute Techniques conventionally used to calculate sediment size. transport in large rivers are not appropriate for head- The focus on small streams stems from recognition water streams where episodic sediment supply from that these represent a distinct class of streams with adjacent slopes, rather than the hydraulic conditions, distinctive morphologies, processes, and dynamics. dominates the sediment transport regime. LWD often There are, of course, small, low gradient channels pre- constitutes a significant portion of material transport- sent in a range of environments, from mountain ed by forested streams (Bilby, 1981) and is a major meadows to lowland tributaries and secondary chan- impediment to the downstream progress of clastic nels. Although important geomorphic and ecologic material (e.g., Megahan, 1982; Rice and Church, 1996; environments in their own right, these channels are Hogan et al., 1998). not considered here. The focus of this paper is the The particulate sediment load of a stream is con- steeper portions of the channel network where episod- ventionally divided into suspended load - particles ic sediment and wood inputs from adjacent slopes moving in the water column with their submerged exert significant control on channel dynamics and weight supported by upwardly directed turbulent cur- morphology. In these channels significant amounts of rents - and bed load - particles moving in contact LWD tend to control the amount of sediment stored with the bed. This division reflects the mechanics of within the channel and impact their stability (e.g., movement and the conventional methods for mea- Swanson et al., 1982c; Bilby and Ward, 1989). surement. A somewhat different division provides The concentration of wood in the channel decreases insight into channel formation and stability. Wash with increasing stream order and channel width, material is relatively fine material that moves direct- implying little impact of wood on channel morphology ly through a reach without being deposited in the of high order streams (higher than fifth order) (e.g., main channel, whereas bed material is the coarser Swanson et al., 1982c; Bilby and Ward, 1989). On the material that is apt to be deposited and form the other hand, wood typically spans the smallest channel bed and banks. Wash material moves in sus- streams and has little hydraulic effect there. Conse- pension and is an important determinant of water quently, attention will be focused on channels that are quality; bed material may move either way. The move- typically of third through fifth orders (as determined ment of bed material along small channels will be the in the field), which are likely to contain significant focus of this part of the review since that is what amounts of wood. determines channel morphology (see Gomi et al., The primary objective is to critically
Recommended publications
  • Geomorphic Classification of Rivers
    9.36 Geomorphic Classification of Rivers JM Buffington, U.S. Forest Service, Boise, ID, USA DR Montgomery, University of Washington, Seattle, WA, USA Published by Elsevier Inc. 9.36.1 Introduction 730 9.36.2 Purpose of Classification 730 9.36.3 Types of Channel Classification 731 9.36.3.1 Stream Order 731 9.36.3.2 Process Domains 732 9.36.3.3 Channel Pattern 732 9.36.3.4 Channel–Floodplain Interactions 735 9.36.3.5 Bed Material and Mobility 737 9.36.3.6 Channel Units 739 9.36.3.7 Hierarchical Classifications 739 9.36.3.8 Statistical Classifications 745 9.36.4 Use and Compatibility of Channel Classifications 745 9.36.5 The Rise and Fall of Classifications: Why Are Some Channel Classifications More Used Than Others? 747 9.36.6 Future Needs and Directions 753 9.36.6.1 Standardization and Sample Size 753 9.36.6.2 Remote Sensing 754 9.36.7 Conclusion 755 Acknowledgements 756 References 756 Appendix 762 9.36.1 Introduction 9.36.2 Purpose of Classification Over the last several decades, environmental legislation and a A basic tenet in geomorphology is that ‘form implies process.’As growing awareness of historical human disturbance to rivers such, numerous geomorphic classifications have been de- worldwide (Schumm, 1977; Collins et al., 2003; Surian and veloped for landscapes (Davis, 1899), hillslopes (Varnes, 1958), Rinaldi, 2003; Nilsson et al., 2005; Chin, 2006; Walter and and rivers (Section 9.36.3). The form–process paradigm is a Merritts, 2008) have fostered unprecedented collaboration potentially powerful tool for conducting quantitative geo- among scientists, land managers, and stakeholders to better morphic investigations.
    [Show full text]
  • Scour and Fill in Ephemeral Streams
    SCOUR AND FILL IN EPHEMERAL STREAMS by Michael G. Foley , , " W. M. Keck Laboratory of Hydraulics and Water Resources Division of Engineering and Applied Science CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 91125 Report No. KH-R-33 November 1975 SCOUR AND FILL IN EPHEMERAL STREAMS by Michael G. Foley Project Supervisors: Robert P. Sharp Professor of Geology and Vito A. Vanoni Professor of Hydraulics Technical Report to: U. S. Army Research Office, Research Triangle Park, N. C. (under Grant No. DAHC04-74-G-0189) and National Science Foundation (under Grant No. GK3l802) Contribution No. 2695 of the Division of Geological and Planetary Sciences, California Institute of Technology W. M. Keck Laboratory of Hydraulics and Water Resources Division of Engineering and Applied Science California Institute of Technology Pasadena, California 91125 Report No. KH-R-33 November 1975 ACKNOWLEDGMENTS The writer would like to express his deep appreciation to his advisor, Dr. Robert P. Sharp, for suggesting this project and providing patient guidance, encouragement, support, and kind criticism during its execution. Similar appreciation is due Dr. Vito A. Vanoni for his guidance and suggestions, and for generously sharing his great experience with sediment transport problems and laboratory experiments. Drs. Norman H. Brooks and C. Hewitt Dix read the first draft of this report, and their helpful comments are appreciated. Mr. Elton F. Daly was instrumental in the design of the laboratory apparatus and the success of the laboratory experiments. Valuable assistance in the field was given by Mrs. Katherine E. Foley and Mr. Charles D. Wasserburg. Laboratory experiments were conducted with the assistance of Ms.
    [Show full text]
  • Variability of Bed Mobility in Natural Gravel-Bed Channels
    WATER RESOURCES RESEARCH, VOL. 36, NO. 12, PAGES 3743–3755, DECEMBER 2000 Variability of bed mobility in natural, gravel-bed channels and adjustments to sediment load at local and reach scales Thomas E. Lisle,1 Jonathan M. Nelson,2 John Pitlick,3 Mary Ann Madej,4 and Brent L. Barkett3 Abstract. Local variations in boundary shear stress acting on bed-surface particles control patterns of bed load transport and channel evolution during varying stream discharges. At the reach scale a channel adjusts to imposed water and sediment supply through mutual interactions among channel form, local grain size, and local flow dynamics that govern bed mobility. In order to explore these adjustments, we used a numerical flow ␶ model to examine relations between model-predicted local boundary shear stress ( j) and measured surface particle size (D50) at bank-full discharge in six gravel-bed, alternate-bar ␶ channels with widely differing annual sediment yields. Values of j and D50 were poorly correlated such that small areas conveyed large proportions of the total bed load, especially in sediment-poor channels with low mobility. Sediment-rich channels had greater areas of full mobility; sediment-poor channels had greater areas of partial mobility; and both types had significant areas that were essentially immobile. Two reach- mean mobility parameters (Shields stress and Q*) correlated reasonably well with sediment supply. Values which can be practicably obtained from carefully measured mean hydraulic variables and particle size would provide first-order assessments of bed mobility that would broadly distinguish the channels in this study according to their sediment yield and bed mobility.
    [Show full text]
  • 3.5.3 the Use of Erosion Pins in Geomorphology
    © Author(s) 2016. CC Attribution 4.0 License. ISSN 2047 - 0371 3.5.3 The use of erosion pins in geomorphology John Boardman1,2 and David Favis-Mortlock1 1Environmental Change Institute, Oxford University Centre for the Environment, Oxford, UK ([email protected]) 2Department of Environmental and Geographical Science, University of Cape Town, South Africa ABSTRACT: Erosion pins have been widely used in geomorphology since the 1950s to estimate rates of change (erosion and – less commonly – accumulation) in land surfaces. They may be used for short- and long-term surveys and are quick and easy to install and measure. Erosion pins are particularly suited to bare, undisturbed environments such as badlands and sand dunes. Our recommendations for their use follow those of Haigh (1977) and Lawler (1993) but we also discuss the need for researchers to be aware of issues which arise from of measurement error, particularly for short-term studies and analytical methods which rely on few pin measurements. There is also a not inconsiderable challenge involved in extrapolating results derived from erosion pin measurements to larger areas. KEYWORDS: badlands, erosion pins, erosion rates, measurement errors erosion pins is not necessary: useful data can Introduction be collected with occasional visits. The basic idea behind the use of erosion pins However, this simplicity is deceptive. to quantify land-surface change is very Considerations of pin siting, measurement straightforward. A rod is firmly fixed into the error, and interpretation of results rapidly ground (or other substrate), and a note made introduce additional complexity. Thus, any of the length of rod which remains exposed.
    [Show full text]
  • Morphological Bedload Transport in Gravel-Bed Braided Rivers
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 6-16-2017 12:00 AM Morphological Bedload Transport in Gravel-Bed Braided Rivers Sarah E. K. Peirce The University of Western Ontario Supervisor Dr. Peter Ashmore The University of Western Ontario Graduate Program in Geography A thesis submitted in partial fulfillment of the equirr ements for the degree in Doctor of Philosophy © Sarah E. K. Peirce 2017 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Physical and Environmental Geography Commons Recommended Citation Peirce, Sarah E. K., "Morphological Bedload Transport in Gravel-Bed Braided Rivers" (2017). Electronic Thesis and Dissertation Repository. 4595. https://ir.lib.uwo.ca/etd/4595 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Abstract Gravel-bed braided rivers, defined by their multi-thread planform and dynamic morphology, are commonly found in proglacial mountainous areas. With little cohesive sediment and a lack of stabilizing vegetation, the dynamic morphology of these rivers is the result of bedload transport processes. Yet, our understanding of the fundamental relationships between channel form and bedload processes in these rivers remains incomplete. For example, the area of the bed actively transporting bedload, known as the active width, is strongly linked to bedload transport rates but these relationships have not been investigated systematically in braided rivers. This research builds on previous research to investigate the relationships between morphology, bedload transport rates, and bed-material mobility using physical models of braided rivers over a range of constant channel-forming discharges and event hydrographs.
    [Show full text]
  • Part 629 – Glossary of Landform and Geologic Terms
    Title 430 – National Soil Survey Handbook Part 629 – Glossary of Landform and Geologic Terms Subpart A – General Information 629.0 Definition and Purpose This glossary provides the NCSS soil survey program, soil scientists, and natural resource specialists with landform, geologic, and related terms and their definitions to— (1) Improve soil landscape description with a standard, single source landform and geologic glossary. (2) Enhance geomorphic content and clarity of soil map unit descriptions by use of accurate, defined terms. (3) Establish consistent geomorphic term usage in soil science and the National Cooperative Soil Survey (NCSS). (4) Provide standard geomorphic definitions for databases and soil survey technical publications. (5) Train soil scientists and related professionals in soils as landscape and geomorphic entities. 629.1 Responsibilities This glossary serves as the official NCSS reference for landform, geologic, and related terms. The staff of the National Soil Survey Center, located in Lincoln, NE, is responsible for maintaining and updating this glossary. Soil Science Division staff and NCSS participants are encouraged to propose additions and changes to the glossary for use in pedon descriptions, soil map unit descriptions, and soil survey publications. The Glossary of Geology (GG, 2005) serves as a major source for many glossary terms. The American Geologic Institute (AGI) granted the USDA Natural Resources Conservation Service (formerly the Soil Conservation Service) permission (in letters dated September 11, 1985, and September 22, 1993) to use existing definitions. Sources of, and modifications to, original definitions are explained immediately below. 629.2 Definitions A. Reference Codes Sources from which definitions were taken, whole or in part, are identified by a code (e.g., GG) following each definition.
    [Show full text]
  • American Fisheries Society Bethesda, Maryland Suggested Citation Formats
    Aquatic Habitat Assessment Edited by Mark B. Bain and Nathalie J. Stevenson Support for this publication was provided by Sport Fish Restoration Act Funds administered by the U.S. Fish and Wildlife Service Division of Federal Aid Aquatic Habitat Assessment Common Methods Edited by Mark B. Bain and Nathalie J. Stevenson American Fisheries Society Bethesda, Maryland Suggested Citation Formats Entire Book Bain, M. B., and N. J. Stevenson, editors. 1999. Aquatic habitat assessment: common methods. American Fisheries Society, Bethesda, Maryland. Chapter within the Book Meixler, M. S. 1999. Regional setting. Pages 11–24 in M. B. Bain and N. J. Stevenson, editors. Aquatic habitat assessment: common methods. American Fisheries Society, Bethesda, Maryland. Cover illustration, original drawings, and modifications to figures by Teresa Sawester. © 1999 by the American Fisheries Society All rights reserved. Photocopying for internal or personal use, or for the internal or personal use of specific clients, is permitted by AFS provided that the appropriate fee is paid directly to Copyright Clearance Center (CCC), 222 Rosewood Drive, Danvers, Massachusetts 01923, USA; phone 508-750-8400. Request authorization to make multiple copies for classroom use from CCC. These permissions do not extend to electronic distribution or long- term storage of articles or to copying for resale, promotion, advertising, general distribution, or creation of new collective works. For such uses, permission or license must be obtained from AFS. Library of Congress Catalog Number: 99-068788 ISBN: 1-888569-18-2 Printed in the United States of America American Fisheries Society 5410 Grosvenor Lane, Suite 110 Bethesda, Maryland 20814-2199, USA Contents Contributors vii Symbols and Abbreviations viii 05.
    [Show full text]
  • Glacial Geomorphology☆ John Menzies, Brock University, St
    Glacial Geomorphology☆ John Menzies, Brock University, St. Catharines, ON, Canada © 2018 Elsevier Inc. All rights reserved. This is an update of H. French and J. Harbor, 8.1 The Development and History of Glacial and Periglacial Geomorphology, In Treatise on Geomorphology, edited by John F. Shroder, Academic Press, San Diego, 2013. Introduction 1 Glacial Landscapes 3 Advances and Paradigm Shifts 3 Glacial Erosion—Processes 7 Glacial Transport—Processes 10 Glacial Deposition—Processes 10 “Linkages” Within Glacial Geomorphology 10 Future Prospects 11 References 11 Further Reading 16 Introduction The scientific study of glacial processes and landforms formed in front of, beneath and along the margins of valley glaciers, ice sheets and other ice masses on the Earth’s surface, both on land and in ocean basins, constitutes glacial geomorphology. The processes include understanding how ice masses move, erode, transport and deposit sediment. The landforms, developed and shaped by glaciation, supply topographic, morphologic and sedimentologic knowledge regarding these glacial processes. Likewise, glacial geomorphology studies all aspects of the mapped and interpreted effects of glaciation both modern and past on the Earth’s landscapes. The influence of glaciations is only too visible in those landscapes of the world only recently glaciated in the recent past and during the Quaternary. The impact on people living and working in those once glaciated environments is enormous in terms, for example, of groundwater resources, building materials and agriculture. The cities of Glasgow and Boston, their distinctive street patterns and numerable small hills (drumlins) attest to the effect of Quaternary glaciations on urban development and planning. It is problematic to precisely determine when the concept of glaciation first developed.
    [Show full text]
  • The Spatial Distribution of Bed Sediment on Fluvial System: a Mini Review of the Aceh Meandering River
    Aceh Int. J. Sci. Technol., 5(2): 82-87 August 2016 doi: 10.13170/aijst.5.2.4932 Aceh International Journal of Science and Technology ISSN: 2088-9860 Journal homepage: http://jurnal.unsyiah.ac.id/aijst The Spatial Distribution of Bed Sediment on Fluvial System: A Mini Review of the Aceh Meandering River Muhammad Irham Faculty of Marine and Fisheries Science, University of Syiah Kuala, Banda Aceh 23111, Indonesia. Corresponding author, email: [email protected] Received : 2 August 2016 Accepted : 28 August 2016 Online : 31 August2016 Abstract - Dynamic interactions of hydrological and geomorphological processes in the fluvial system result in accumulated deposit on the bed because the capacity to carry sediment has been exceeded. The bed load of the Aceh fluvial system is primarily generated by mechanical weathering resulting in boulders, pebbles, and sand, which roll or bounce along the river bed forming temporary deposits as bars on the insides of meander bends, as a result of a loss of transport energy in the system. This dynamic controls the style and range of deposits in the Aceh River. This study focuses on the spatial distribution of bed-load transport of the Aceh River. Understanding the spatial distribution of deposits facilitates the reconstruction of the changes in controlling factors during accumulation of deposits. One of the methods can be done by sieve analysis of sediment, where the method illuminates the distribution of sediment changes associate with channel morphology under different flow regimes. Hence, the purpose of this mini review is to investigate how the sediment along the river meander spatially dispersed.
    [Show full text]
  • Grain Sorting in the Morphological Active Layer of a Braided River Physical Model
    Earth Surf. Dynam., 3, 577–585, 2015 www.earth-surf-dynam.net/3/577/2015/ doi:10.5194/esurf-3-577-2015 © Author(s) 2015. CC Attribution 3.0 License. Grain sorting in the morphological active layer of a braided river physical model P. Leduc, P. Ashmore, and J. T. Gardner University of Western Ontario, Department of Geography, London, Ontario, Canada Correspondence to: P. Leduc ([email protected]) Received: 8 June 2015 – Published in Earth Surf. Dynam. Discuss.: 10 July 2015 Revised: 22 October 2015 – Accepted: 23 November 2015 – Published: 15 December 2015 Abstract. A physical scale model of a gravel-bed braided river was used to measure vertical grain size sorting in the morphological active layer aggregated over the width of the river. This vertical sorting is important for ana- lyzing braided river sedimentology, for numerical modeling of braided river morphodynamics, and for measuring and predicting bedload transport rate. We define the morphological active layer as the bed material between the maximum and minimum bed elevations at a point over extended time periods sufficient for braiding processes to rework the river bed. The vertical extent of the active layer was measured using 40 hourly high-resolution DEMs (digital elevation models) of the model river bed. An image texture algorithm was used to map bed material grain size of each DEM. Analysis of the 40 DEMs and texture maps provides data on the geometry of the morpho- logical active layer and variation in grain size in three dimensions. By normalizing active layer thickness and dividing into 10 sublayers, we show that all grain sizes occur with almost equal frequency in all sublayers.
    [Show full text]
  • Forensic Geoscience: Applications of Geology, Geomorphology and Geophysics to Criminal Investigations
    Forensic Geoscience: applications of geology, geomorphology and geophysics to criminal investigations Ruffell, A., & McKinley, J. (2005). Forensic Geoscience: applications of geology, geomorphology and geophysics to criminal investigations. Earth-Science Reviews, 69(3-4)(3-4), 235-247. https://doi.org/10.1016/j.earscirev.2004.08.002 Published in: Earth-Science Reviews Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact [email protected]. Download date:26. Sep. 2021 Earth-Science Reviews 69 (2005) 235–247 www.elsevier.com/locate/earscirev Forensic geoscience: applications of geology, geomorphology and geophysics to criminal investigations Alastair Ruffell*, Jennifer McKinley School of Geography, Queen’s University, Belfast, BT7 1NN, N. Ireland Received 12 January 2004; accepted 24 August 2004 Abstract One hundred years ago Georg Popp became the first scientist to present in court a case where the geological makeup of soils was used to secure a criminal conviction.
    [Show full text]
  • 2 Observation in Geomorphology
    2 Observation in Geomorphology Bruce L. Rhoads and Colin E. Thorn Department of Geography, University of Illinois at Urbana-Champaign ABSTRACT Observation traditionally has occupied a central position in geomorphologic research. The prevailing, tacit attitude of geomorphologists toward observation appears to be consistent with radical empiricism. This attitude stems from a strong historical emphasis on the value of fieldwork in geomorphology, which has cultivated an aesthetic for letting the data speak for themselves, and from cursory and exclusive exposure of many geomorphologists to empiricist philosophical doctrines, especially logical positivism. It is, by and large, also an unexamined point of view. This chapter provides a review of contemporary philosophical perspectives on scientific observation. This discussion is then used as a filter or lens through which to view the epistemic character and role of observation in geomorphology. Analysis reveals that whereas G.K. Gilbert's theory-laden approach to observation preserved scientific objectivity, the extreme theory-ladenness of W.M. Davis's observational procedures often resulted in considerable subjectivity. Contemporary approaches to observation in geomorphology are shown to conform broadly with the model provided by Gilbert. The hallmark of objectivity in geomorphology is the assurance of data reliability through the introduction of fixed rule-based procedures for obtaining information. INTRODUCTION Geomorphologists traditionally have assigned great virtue to observation. The venerated status of observation can be traced to the origin of geomorphology as a field science in the late 1800s. Exploration of sparsely vegetated landscapes in the American West by New- berry, Powell, Hayden, Gilbert, and others inspired perceptive insights about landscape dynamics that provided a foundation for the discipline (Baker and Twidale 1991).
    [Show full text]