Functional Gene Analysis of Resistance QTL Towards Phytophthora Sojae on Soybean

Total Page:16

File Type:pdf, Size:1020Kb

Functional Gene Analysis of Resistance QTL Towards Phytophthora Sojae on Soybean Functional Gene Analysis of Resistance QTL towards Phytophthora sojae on Soybean Chromosome 19 Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Anna K. Stasko Graduate Program in Plant Pathology The Ohio State University 2018 Dissertation Committee Anne E. Dorrance, Advisor Joshua J. Blakeslee Leah K. McHale Christopher G. Taylor Feng Qu Copyrighted by Anna Kathryn Stasko 2018 Abstract Phytophthora sojae is the causal agent of Phytophthora root and stem rot of soybean. One of the most effective disease management strategies against this pathogen is the use of resistant cultivars, primarily through single gene, Rps-mediated resistance. However, numerous populations of P. sojae have adapted to most Rps genes that are deployed in modern soybean cultivars, rendering them susceptible to this pathogen. Quantitative resistance, conferred by quantitative disease resistance loci (QDRL), offers an alternative to Rps-based resistance. Previous studies mapped two QDRL to chromosome 19 in the soybean cultivar Conrad, which has a high level of quantitative resistance. A recombinant inbred line (RIL) population derived from a cross of Conrad by Sloan (a moderately susceptible cultivar) used for mapping these QDRL was advanced to the F9:11 generation. This population was used to map/re-map the QDRL towards three isolates of P. sojae, and one isolate each of Pythium irregulare and Fusarium graminearum, using the SoySNP6K BeadChip for high-density marker genotyping. A total of ten, two, and three QDRL and suggestive QDRL were found that confer resistance to P. sojae, Py. irregulare, and F. graminearum, respectively. Individual QDRL explained 2-13.6% of the phenotypic variance (PV). One QDRL for both Py. irregulare and F. graminearum co-localized on chromosome 19. This resistance was contributed by Sloan and was juxtaposed to a QDRL for P. sojae with resistance ii contributed from Conrad. Alleles for resistance to different pathogens contributed from different parents in the same region, the number of unique QDRL for each pathogen, and the lack of correlation of resistance suggest that different mechanisms are involved in resistance towards these three pathogens. Interestingly, the QDRL located on chromosome 19 contained several genes related to auxin processes, which are known to contribute to susceptibility to several pathogens in Arabidopsis and may contribute to susceptibility of soybean to P. sojae. In this study, auxin metabolites were measured in P. sojae mycelia, media from P. sojae liquid cultures, and inoculated soybean roots. Auxin precursors were detected in the mycelia of P. sojae as well as the synthetic media. More importantly, auxin levels were significantly higher in inoculated roots than the mock controls in both resistant and susceptible genotypes at 48 hours after inoculation (hai). To examine the role of auxin transport in susceptibility to P. sojae, the nucleotide sequences and expression of root-related soybean auxin efflux transporters, GmPINs, were compared between Conrad and Sloan. There were sequence differences between the two cultivars; however, experimental variability prevented accurate detection of expression differences through a quantitative PCR approach. An auxin transport inhibitor and a synthetic auxin were applied to Conrad and Sloan to assess changes in infection of these cultivars with chemically altered auxin processes. As with the gene expression analysis, experimental variation prevented us from determining the exact effect of these treatments. Finally, several different approaches were used to begin developing a system for functional gene analysis, including composite plant-based hairy roots, cotyledon- based hairy roots, and virus-induced gene silencing (VIGS). Composite plant-based hairy iii roots were difficult to inoculate with P. sojae, Py. irregulare, and F. graminearum. Cotyledon-based hairy roots allowed for more consistent inoculation with P. sojae and expedited experimental testing of RNAi constructs targeting candidate genes. One of these constructs was able to reduce the expression of its target gene in three soybean genetic backgrounds. A Bean pod mottle virus (BPMV) VIGS vector used here moved systemically into soybean roots but was not effective at silencing candidate gene targets in this tissue. Future studies should continue to refine environmental/experimental conditions to reduce variation and develop a reliable method of assessing change in quantitative disease resistance to define the roles of candidate genes. iv Dedication To Great Uncle Michael Stasko, who laid the foundation for this work, and to Our Lady of Perpetual Help, who championed it. v Acknowledgments If it takes a village to raise a child, it certainly takes a department to train a PhD. This journey would not have been possible without the help and support of many people. I would like to thank Anne Dorrance, my advisor, for all of her help, guidance, and patience during this process. I also thank my committee members for their time, advice, and lab space. To all past and present members of the Dorrance lab, especially Chrissy Balk, Damitha Wickramasinghe, Clifton Martin, Cassidy Gedling, Deloris Veney, and Jonell Wenger, thanks for all your help will all of my experiments, no matter how tedious they were. I also extend a special thank you to Leslie Taylor, Shuang Xie, Brittany Tangevald, Dee Marty, Junping Han, Yun Lin, and Ella Lin for their help and expertise. To the unsung heroes of Selby Hall, Lynn West, Ken Nanes, Lee Wilson, and Bob James, you take care of many details that make all of this work possible. Thanks for making life a little easier for the rest of us. Thanks to plant pathology graduate students and members of the SoyRes team, especially Ellie Walsh, Anna Testen, Tim Frey, and Rebecca Kimmelfield. Thanks also to the faculty at Ohio State and Concordia College, especially Mark Jensen and Laura Aldrich-Wolfe, who helped to build the foundation for this this journey. Thanks also to the Center for Applied Plant Sciences, SEEDS, the Ohio Soybean Council, and the United Soybean Board for funding this project and my fellowship. vi Finally, I would like to thank my family and friends. Maren, your friendship means so much to me. Thanks for being a bright presence in my life. To my biking partners Susan and Joanne, and the members of my extended “family” at St. Mary’s, Gina, Joe, Barb, Rich, Bernie, Tencha, MaryAnn, Marjorie, Kaalyn, and Caitlyn, thanks for helping me lead a somewhat balanced life. To Nick, Mom, and Dad, thank you for all of the phone calls, support, advice, and other countless help. Thanks be to God, who makes all things possible. Soli Deo Gloria. vii Vita February 1990 Born-San Antonio, TX May 2012 B.A. in Biology and Chemistry, Concordia College August 2012- August 2014 Graduate Research Associate, The Ohio State University May 2016 M.S. Plant Pathology, The Ohio State University August 2014-present Graduate Research Fellow, The Ohio State University Publications Stasko, A.K., Wickramasinghe, D., Nauth, B.J., Acharya, B., Ellis, M.L., Taylor, C.G., McHale, L.K., and Dorrance, A.E. 2016. High density mapping of resistance QTL towards Phytophthora sojae, Pythium irregulare, and Fusarium graminearum in the same soybean population. Crop Sci. 56:2476-2492 Liu, Z.H., Zhong, S., Stasko A.K., Edwards M.C., and Friesen, T.L. 2012. Virulence profile and genetic structure of a North Dakota population of Pyrenophora teres f. teres, the causal agent of net form net blotch of barley. Phytopathology 102:539-546. Fields of Study Major Field: Plant Pathology viii Table of Contents Abstract ............................................................................................................................... ii Dedication ........................................................................................................................... v Acknowledgments.............................................................................................................. vi Vita ................................................................................................................................... viii Table of Contents ............................................................................................................... ix List of Tables ................................................................................................................... xiii List of Figures ................................................................................................................... xv Chapter 1: Introduction ....................................................................................................... 1 Soybean and Phytophthora sojae.................................................................................... 1 Quantitative resistance .................................................................................................... 3 Plant susceptibility factors .............................................................................................. 6 Auxin’s role in plant roots .............................................................................................. 8 Auxin’s role in plant-microbe interactions ................................................................... 12 Research Objectives ...................................................................................................... 16 Hypothesis: ..............................................................................................................
Recommended publications
  • UNIVERSITY of CALIFORNIA, SAN DIEGO The
    UNIVERSITY OF CALIFORNIA, SAN DIEGO The Transporter-Opsin-G protein-coupled receptor (TOG) Superfamily A Thesis submitted in partial satisfaction of the requirements for the degree Master of Science in Biology by Daniel Choi Yee Committee in charge: Professor Milton H. Saier Jr., Chair Professor Yunde Zhao Professor Lin Chao 2014 The Thesis of Daniel Yee is approved and it is acceptable in quality and form for publication on microfilm and electronically: _____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ Chair University of California, San Diego 2014 iii DEDICATION This thesis is dedicated to my parents, my family, and my mentor, Dr. Saier. It is only with their help and perseverance that I have been able to complete it. iv TABLE OF CONTENTS Signature Page ............................................................................................................... iii Dedication ...................................................................................................................... iv Table of Contents ........................................................................................................... v List of Abbreviations ..................................................................................................... vi List of Supplemental Files ............................................................................................ vii List of
    [Show full text]
  • Analysis of Gene Expression Data for Gene Ontology
    ANALYSIS OF GENE EXPRESSION DATA FOR GENE ONTOLOGY BASED PROTEIN FUNCTION PREDICTION A Thesis Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Master of Science Robert Daniel Macholan May 2011 ANALYSIS OF GENE EXPRESSION DATA FOR GENE ONTOLOGY BASED PROTEIN FUNCTION PREDICTION Robert Daniel Macholan Thesis Approved: Accepted: _______________________________ _______________________________ Advisor Department Chair Dr. Zhong-Hui Duan Dr. Chien-Chung Chan _______________________________ _______________________________ Committee Member Dean of the College Dr. Chien-Chung Chan Dr. Chand K. Midha _______________________________ _______________________________ Committee Member Dean of the Graduate School Dr. Yingcai Xiao Dr. George R. Newkome _______________________________ Date ii ABSTRACT A tremendous increase in genomic data has encouraged biologists to turn to bioinformatics in order to assist in its interpretation and processing. One of the present challenges that need to be overcome in order to understand this data more completely is the development of a reliable method to accurately predict the function of a protein from its genomic information. This study focuses on developing an effective algorithm for protein function prediction. The algorithm is based on proteins that have similar expression patterns. The similarity of the expression data is determined using a novel measure, the slope matrix. The slope matrix introduces a normalized method for the comparison of expression levels throughout a proteome. The algorithm is tested using real microarray gene expression data. Their functions are characterized using gene ontology annotations. The results of the case study indicate the protein function prediction algorithm developed is comparable to the prediction algorithms that are based on the annotations of homologous proteins.
    [Show full text]
  • A Yeast Phenomic Model for the Gene Interaction Network Modulating
    Louie et al. Genome Medicine 2012, 4:103 http://genomemedicine.com/content/4/12/103 RESEARCH Open Access A yeast phenomic model for the gene interaction network modulating CFTR-ΔF508 protein biogenesis Raymond J Louie3†, Jingyu Guo1,2†, John W Rodgers1, Rick White4, Najaf A Shah1, Silvere Pagant3, Peter Kim3, Michael Livstone5, Kara Dolinski5, Brett A McKinney6, Jeong Hong2, Eric J Sorscher2, Jennifer Bryan4, Elizabeth A Miller3* and John L Hartman IV1,2* Abstract Background: The overall influence of gene interaction in human disease is unknown. In cystic fibrosis (CF) a single allele of the cystic fibrosis transmembrane conductance regulator (CFTR-ΔF508) accounts for most of the disease. In cell models, CFTR-ΔF508 exhibits defective protein biogenesis and degradation rather than proper trafficking to the plasma membrane where CFTR normally functions. Numerous genes function in the biogenesis of CFTR and influence the fate of CFTR-ΔF508. However it is not known whether genetic variation in such genes contributes to disease severity in patients. Nor is there an easy way to study how numerous gene interactions involving CFTR-ΔF would manifest phenotypically. Methods: To gain insight into the function and evolutionary conservation of a gene interaction network that regulates biogenesis of a misfolded ABC transporter, we employed yeast genetics to develop a ‘phenomic’ model, in which the CFTR-ΔF508-equivalent residue of a yeast homolog is mutated (Yor1-ΔF670), and where the genome is scanned quantitatively for interaction. We first confirmed that Yor1-ΔF undergoes protein misfolding and has reduced half-life, analogous to CFTR-ΔF. Gene interaction was then assessed quantitatively by growth curves for approximately 5,000 double mutants, based on alteration in the dose response to growth inhibition by oligomycin, a toxin extruded from the cell at the plasma membrane by Yor1.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • The Enigmatic Charcot-Leyden Crystal Protein
    C al & ellu ic la n r li Im C m f u Journal of o n l o a l n o r Clarke et al., J Clin Cell Immunol 2015, 6:2 g u y o J DOI: 10.4172/2155-9899.1000323 ISSN: 2155-9899 Clinical & Cellular Immunology Review Article Open Access The Enigmatic Charcot-Leyden Crystal Protein (Galectin-10): Speculative Role(s) in the Eosinophil Biology and Function Christine A Clarke1,3, Clarence M Lee2 and Paulette M Furbert-Harris1,3,4* 1Department of Microbiology, Howard University College of Medicine, Washington, D.C., USA 2Department of Biology, Howard University College of Arts and Sciences, Washington, D.C., USA 3Howard University Cancer Center, Howard University College of Medicine, Washington, D.C., USA 4National Human Genome Center, Howard University College of Medicine, Washington, D.C., USA *Corresponding author: Furbert-Harris PM, Department of Microbiology, Howard University Cancer Center, 2041 Georgia Avenue NW, Room #530, 20060, Washington, D.C., USA, Tel: 202-806-7722, Fax: 202-667-1686; Email: [email protected] Received date: Febuary 22, 2015, Accepted date: April 25, 2015, Published date: April 29, 2015 Copyright: © 2015 Clarke CA, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Eosinophilic inflammation in peripheral tissues is typically marked by the deposition of a prominent eosinophil protein, Galectin-10, better known as Charcot-Leyden crystal protein (CLC). Unlike the eosinophil’s four distinct toxic cationic proteins and enzymes [major basic protein (MBP), eosinophil-derived neurotoxin (EDN), eosinophil cationic protein (ECP), and eosinophil peroxidase (EPO)], there is a paucity of information on the precise role of the crystal protein in the biology of the eosinophil.
    [Show full text]
  • Noelia Díaz Blanco
    Effects of environmental factors on the gonadal transcriptome of European sea bass (Dicentrarchus labrax), juvenile growth and sex ratios Noelia Díaz Blanco Ph.D. thesis 2014 Submitted in partial fulfillment of the requirements for the Ph.D. degree from the Universitat Pompeu Fabra (UPF). This work has been carried out at the Group of Biology of Reproduction (GBR), at the Department of Renewable Marine Resources of the Institute of Marine Sciences (ICM-CSIC). Thesis supervisor: Dr. Francesc Piferrer Professor d’Investigació Institut de Ciències del Mar (ICM-CSIC) i ii A mis padres A Xavi iii iv Acknowledgements This thesis has been made possible by the support of many people who in one way or another, many times unknowingly, gave me the strength to overcome this "long and winding road". First of all, I would like to thank my supervisor, Dr. Francesc Piferrer, for his patience, guidance and wise advice throughout all this Ph.D. experience. But above all, for the trust he placed on me almost seven years ago when he offered me the opportunity to be part of his team. Thanks also for teaching me how to question always everything, for sharing with me your enthusiasm for science and for giving me the opportunity of learning from you by participating in many projects, collaborations and scientific meetings. I am also thankful to my colleagues (former and present Group of Biology of Reproduction members) for your support and encouragement throughout this journey. To the “exGBRs”, thanks for helping me with my first steps into this world. Working as an undergrad with you Dr.
    [Show full text]
  • Statistical and Bioinformatic Analysis of Hemimethylation Patterns in Non-Small Cell Lung Cancer
    Statistical and Bioinformatic Analysis of Hemimethylation Patterns in Non-Small Cell Lung Cancer Shuying Sun ( [email protected] ) Texas State University San Marcos https://orcid.org/0000-0003-3974-6996 Austin Zane Texas A&M University College Station Carolyn Fulton Schreiner University Jasmine Philipoom Case Western Reserve University Research article Keywords: Methylation, Hemimethylation, Lung Cancer, Bioinformatics, Epigenetics Posted Date: October 12th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-17794/v2 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published on March 12th, 2021. See the published version at https://doi.org/10.1186/s12885-021-07990-7. Page 1/29 Abstract Background: DNA methylation is an epigenetic event involving the addition of a methyl-group to a cytosine-guanine base pair (i.e., CpG site). It is associated with different cancers. Our research focuses on studying non- small cell lung cancer hemimethylation, which refers to methylation occurring on only one of the two DNA strands. Many studies often assume that methylation occurs on both DNA strands at a CpG site. However, recent publications show the existence of hemimethylation and its signicant impact. Therefore, it is important to identify cancer hemimethylation patterns. Methods: In this paper, we use the Wilcoxon signed rank test to identify hemimethylated CpG sites based on publicly available non-small cell lung cancer methylation sequencing data. We then identify two types of hemimethylated CpG clusters, regular and polarity clusters, and genes with large numbers of hemimethylated sites.
    [Show full text]
  • Genome-Wide Transcriptional Sequencing Identifies Novel Mutations in Metabolic Genes in Human Hepatocellular Carcinoma DAOUD M
    CANCER GENOMICS & PROTEOMICS 11 : 1-12 (2014) Genome-wide Transcriptional Sequencing Identifies Novel Mutations in Metabolic Genes in Human Hepatocellular Carcinoma DAOUD M. MEERZAMAN 1,2 , CHUNHUA YAN 1, QING-RONG CHEN 1, MICHAEL N. EDMONSON 1, CARL F. SCHAEFER 1, ROBERT J. CLIFFORD 2, BARBARA K. DUNN 3, LI DONG 2, RICHARD P. FINNEY 1, CONSTANCE M. CULTRARO 2, YING HU1, ZHIHUI YANG 2, CU V. NGUYEN 1, JENNY M. KELLEY 2, SHUANG CAI 2, HONGEN ZHANG 2, JINGHUI ZHANG 1,4 , REBECCA WILSON 2, LAUREN MESSMER 2, YOUNG-HWA CHUNG 5, JEONG A. KIM 5, NEUNG HWA PARK 6, MYUNG-SOO LYU 6, IL HAN SONG 7, GEORGE KOMATSOULIS 1 and KENNETH H. BUETOW 1,2 1Center for Bioinformatics and Information Technology, National Cancer Institute, Rockville, MD, U.S.A.; 2Laboratory of Population Genetics, National Cancer Institute, National Cancer Institute, Bethesda, MD, U.S.A.; 3Basic Prevention Science Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, U.S.A; 4Department of Biotechnology/Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN, U.S.A.; 5Department of Internal Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea; 6Department of Internal Medicine, University of Ulsan College of Medicine, Ulsan University Hospital, Ulsan, Korea; 7Department of Internal Medicine, College of Medicine, Dankook University, Cheon-An, Korea Abstract . We report on next-generation transcriptome Worldwide, liver cancer is the fifth most common cancer and sequencing results of three human hepatocellular carcinoma the third most common cause of cancer-related mortality (1). tumor/tumor-adjacent pairs.
    [Show full text]
  • Whole Exome Sequencing in Families at High Risk for Hodgkin Lymphoma: Identification of a Predisposing Mutation in the KDR Gene
    Hodgkin Lymphoma SUPPLEMENTARY APPENDIX Whole exome sequencing in families at high risk for Hodgkin lymphoma: identification of a predisposing mutation in the KDR gene Melissa Rotunno, 1 Mary L. McMaster, 1 Joseph Boland, 2 Sara Bass, 2 Xijun Zhang, 2 Laurie Burdett, 2 Belynda Hicks, 2 Sarangan Ravichandran, 3 Brian T. Luke, 3 Meredith Yeager, 2 Laura Fontaine, 4 Paula L. Hyland, 1 Alisa M. Goldstein, 1 NCI DCEG Cancer Sequencing Working Group, NCI DCEG Cancer Genomics Research Laboratory, Stephen J. Chanock, 5 Neil E. Caporaso, 1 Margaret A. Tucker, 6 and Lynn R. Goldin 1 1Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 2Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 3Ad - vanced Biomedical Computing Center, Leidos Biomedical Research Inc.; Frederick National Laboratory for Cancer Research, Frederick, MD; 4Westat, Inc., Rockville MD; 5Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; and 6Human Genetics Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA ©2016 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2015.135475 Received: August 19, 2015. Accepted: January 7, 2016. Pre-published: June 13, 2016. Correspondence: [email protected] Supplemental Author Information: NCI DCEG Cancer Sequencing Working Group: Mark H. Greene, Allan Hildesheim, Nan Hu, Maria Theresa Landi, Jennifer Loud, Phuong Mai, Lisa Mirabello, Lindsay Morton, Dilys Parry, Anand Pathak, Douglas R. Stewart, Philip R. Taylor, Geoffrey S. Tobias, Xiaohong R. Yang, Guoqin Yu NCI DCEG Cancer Genomics Research Laboratory: Salma Chowdhury, Michael Cullen, Casey Dagnall, Herbert Higson, Amy A.
    [Show full text]
  • Human Lectins, Their Carbohydrate Affinities and Where to Find Them
    biomolecules Review Human Lectins, Their Carbohydrate Affinities and Where to Review HumanFind Them Lectins, Their Carbohydrate Affinities and Where to FindCláudia ThemD. Raposo 1,*, André B. Canelas 2 and M. Teresa Barros 1 1, 2 1 Cláudia D. Raposo * , Andr1 é LAQVB. Canelas‐Requimte,and Department M. Teresa of Chemistry, Barros NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829‐516 Caparica, Portugal; [email protected] 12 GlanbiaLAQV-Requimte,‐AgriChemWhey, Department Lisheen of Chemistry, Mine, Killoran, NOVA Moyne, School E41 of ScienceR622 Co. and Tipperary, Technology, Ireland; canelas‐ [email protected] NOVA de Lisboa, 2829-516 Caparica, Portugal; [email protected] 2* Correspondence:Glanbia-AgriChemWhey, [email protected]; Lisheen Mine, Tel.: Killoran, +351‐212948550 Moyne, E41 R622 Tipperary, Ireland; [email protected] * Correspondence: [email protected]; Tel.: +351-212948550 Abstract: Lectins are a class of proteins responsible for several biological roles such as cell‐cell in‐ Abstract:teractions,Lectins signaling are pathways, a class of and proteins several responsible innate immune for several responses biological against roles pathogens. such as Since cell-cell lec‐ interactions,tins are able signalingto bind to pathways, carbohydrates, and several they can innate be a immuneviable target responses for targeted against drug pathogens. delivery Since sys‐ lectinstems. In are fact, able several to bind lectins to carbohydrates, were approved they by canFood be and a viable Drug targetAdministration for targeted for drugthat purpose. delivery systems.Information In fact, about several specific lectins carbohydrate were approved recognition by Food by andlectin Drug receptors Administration was gathered for that herein, purpose. plus Informationthe specific organs about specific where those carbohydrate lectins can recognition be found by within lectin the receptors human was body.
    [Show full text]
  • Characterizing Iqgap1-C Domain Binding to Phosphoinositides
    CHARACTERIZING IQGAP1-C DOMAIN BINDING TO PHOSPHOINOSITIDES A Major Qualifying Project Report Submitted to the Faculty of WORCESTER POLYTECHNIC INSTITUTE In partial fulfillment of the requirements for the Degree of Bachelor of Science in Biochemistry Written by: Approved by: __________________ . Christopher Dallarosa Dr. Arne Gericke Date: April 2018 Table of Contents Acknowledgments........................................................................................................................... 3 Abstract ........................................................................................................................................... 4 Introduction ..................................................................................................................................... 5 Background ..................................................................................................................................... 6 History ......................................................................................................................................... 6 Scaffolding Proteins .................................................................................................................... 6 IQGAP Protein Family ................................................................................................................ 8 IQGAPs in Yeast Cells ............................................................................................................ 8 Mammalian IQGAPs .............................................................................................................
    [Show full text]
  • Role of IQGAP1 in Carcinogenesis
    cancers Review Role of IQGAP1 in Carcinogenesis Tao Wei and Paul F. Lambert * McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; [email protected] * Correspondence: [email protected] Simple Summary: IQ motif-containing GTPase-activating protein 1 (IQGAP1) is a signal scaffolding protein that regulates a range of cellular activities by facilitating signal transduction in cells. IQGAP1 is involved in many cancer-related activities, such as proliferation, apoptosis, migration, invasion and metastases. In this article, we review the different pathways regulated by IQGAP1 during cancer development, and the role of IQGAP1 in different types of cancer, including cancers of the head and neck, breast, pancreas, liver, colorectal, stomach, and ovary. We also discuss IQGAP10s regulation of the immune system, which is of importance to cancer progression. This review highlights the significant roles of IQGAP1 in cancer and provides a rationale for pursuing IQGAP1 as a drug target for developing novel cancer therapies. Abstract: Scaffolding proteins can play important roles in cell signaling transduction. IQ motif- containing GTPase-activating protein 1 (IQGAP1) influences many cellular activities by scaffolding multiple key signaling pathways, including ones involved in carcinogenesis. Two decades of studies provide evidence that IQGAP1 plays an essential role in promoting cancer development. IQGAP1 is overexpressed in many types of cancer, and its overexpression in cancer is associated with lower survival of the cancer patient. Here, we provide a comprehensive review of the literature regarding the oncogenic roles of IQGAP1. We start by describing the major cancer-related signaling pathways Citation: Wei, T.; Lambert, P.F.
    [Show full text]