Toward New Design Principles for Superior Gene Silencing Rangaramanujam M

Total Page:16

File Type:pdf, Size:1020Kb

Toward New Design Principles for Superior Gene Silencing Rangaramanujam M COMMENTARY COMMENTARY Toward new design principles for superior gene silencing Rangaramanujam M. Kannana,b,1 Delivery Is the Key Challenge in siRNA rapidly degraded by nucleases in bodily fluids, experi- Therapies ence rapid clearance by the kidney and liver, and have RNA interference (RNAi) or “gene silencing” is a fas- the potential to trigger unfavorable innate immune re- cinating mechanism in which a cell utilizes a gene’s sponses (6, 7). Many promising siRNA delivery strate- own RNA sequence to shut down expression of that gies are being explored in preclinical stages and gene. This process can be employed to investigate beyond, including the use of lipid nanoparticles and the role of genes in disease and to design therapeutic N-acetylgalactosamine (GalNAc)-based conjugates, approaches involving gene silencing (1, 2). During the with some success. There is a critical need for ap- process of RNAi, “dicer” enzymes cut the RNA into proaches that offer improved efficacy and safety, and small fragments, called small-interfering RNA (siRNA) deliver siRNAs to organs other than the liver (6, 7). or microRNA (miRNA), which bind to a special class of proteins called Argonaute proteins, particularly Codeilvery of siRNA with Ago2 Produces Argonaute 2 (Ago2), enabling the inhibition of target Superior Efficacy messenger RNA translation. RNAi is often used by cells The PNAS paper by Li et al. (8) provides important as a defense mechanism against the infiltration of foreign insights toward addressing the challenges in siRNA nucleic acids from viruses and bacteria, but can be therapies, especially relating to improving their cel- engineered in vitro to selectively silence genes. While lular delivery and functional efficacy, by offering novel genome editing technologies, such as CRISPR, “per- design principles at the nanoscale level. Building on the manently” modify a gene, “temporary” silencing of recent studies on the important role of the combined genes at the mRNA level by siRNAs is desirable in local presence of siRNA and Ago2 protein (Ago2- many diseases and would have fewer associated off- bound siRNA), Li et al. developed an approach to target effects. Since the discovery of RNAi more than package both the duplex siRNA and Ago2 protein 20 years ago, the approach has attracted tremendous onto “structurally defined” polyamines for codelivery attention, due to the sheer versatility it provides in the to the cytoplasm (9). Ago2 was found to be more manipulation of specific undruggable genes, with critical compared with the other three Argonaute significant implications in many indications, including proteins in mammalian cells. Once in the cells, pas- viral diseases and cancer (1–5). Unlike small-molecule senger strands of the siRNA get cleaved and detach inhibitors or antibodies, siRNAs can act at the specific from the Ago2 during RNA-induced gene silencing gene level (3). The delivery of siRNA may be more complex formation and mRNA translation, while the desirable as it can be delivered to the cytosol and antisense siRNA strand-loaded Ago2 can continue does not require transport into the nucleus or in- to recognize and cleave target mRNA over a sus- teraction with chromosomal DNA, unlike miRNA (2). tained period of time. Several promising proof-of- A large library of siRNAs for many genes has been concept efficacy results are offered showing that: identified, and can be scaled up at relatively low costs. (i) double-stranded siRNA (ds siRNA)/Ago2 is better Many siRNA products are undergoing clinical trans- than single-stranded siRNA alone, and (ii)codelivery lation, with significant commercial investments, with the of a preassembled siRNA/Ago2 is superior to in- rate-limiting step for successful translation being the creasing the inherent Ago2 levels in the cells and design of appropriate and effective delivery vehicles (6, delivering just the ds siRNA. The improved efficacy 7). However, as in the case of other DNA and RNA drug associated with the preassembled siRNA/Ago2 may candidates, siRNAs are facing major challenges of offer novel approaches to improve efficacy of RNAi “delivery.” These “charged” macromolecules are technology. aCenter for Nanomedicine, Wilmer Eye Institute, The Johns Hopkins School of Medicine, Baltimore, MD 21287; and bDepartment of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218 Author contributions: R.M.K. wrote the paper. The author declares no conflict of interest. Published under the PNAS license. See companion article on page E2696 in issue 12 of volume 115. 1Email: [email protected]. Published online March 16, 2018. 3200–3201 | PNAS | March 27, 2018 | vol. 115 | no. 13 www.pnas.org/cgi/doi/10.1073/pnas.1801554115 Downloaded by guest on October 1, 2021 This raises the question of how to design delivery vehicles that and in a mouse model. When administered intratumorally, the codeliver both components, which is also addressed by Li et al. “optimized” polyamine/anti-STAT3 siRNA/Ago2 complex led to (8). To study the design parameters of the synthetic polyamine reduced tumor burden and improved survival compared with delivery vehicle that govern the coassembly and the resulting polymer/anti-STAT3 siRNA complexes and additional controls, gene-silencing efficiency of siRNA/Ago2, Li et al. synthesized a suggesting that the codelivery of structurally optimized siRNA/ series of synthetic polypeptides derived from N-carboxyanhydride Ago2 has significant potential as a therapy. polymerization of an L-benzyl aspartate backbone, with varying aminoethylene side chain substitutions and additional methylene Considerations for Clinical Translation groups between the amines. This polymer backbone has been This PNAS paper from the Hammond group is a promising effort shown to be relatively safe in vitro and in vivo, indicating that ap- in the challenging field of siRNA therapeutics (8). It offers ap- propriate manipulation of the side chains may enable superior proaches to enhance the potential of RNAi in preclinical models delivery without negatively affecting toxicity (10). For a fixed N/P and beyond, attempting to define important nanoscale aspects in ratio of 20:1 (ratio of the number of protonatable amine groups in the assembly, cellular cytosolic delivery, and disassembly of two the polyamine side chain to that in the siRNA), Li et al. (8) show that critical molecules (siRNA and Ago2) that must work together in- the gene-silencing efficacy was higher: (i) when the extent of amine timately. Gene-silencing technologies could be a key component protonation at the cytoplasmic pH (∼7.4) was higher, and the of precision medicine when harnessed appropriately. Over the number of amine groups in the side chain was higher, due to the last 15 years substantial efforts have been made to bring siRNA increased colocalization between siRNA and Ago2 inside cells; and technologies to the clinic. These were met with many challenges (ii) when there is more spacing between the protonatable amine associated with fast clearance, liver accumulation, toxicities as- side groups. These studies suggest that amine group distribution sociated with on-target, off-target, innate immune activation, and on the polymer side chain, their spacing, and the relative stoichi- delivery vehicles, and a lack of robust efficacy with siRNA alone (4, ometries between the polymer/siRNA/Ago2 can be tunable nano- 5). However, Alnylam/Sanofi recently reported the first Phase III scale parameters that can be toolsets in the context of systems success for RNAi therapy with their drug Patisiren (APOLLO trial) biology, eventually enabling us to tune different genes simulta- for the treatment of a rare nerve disorder called familial amyloid neously. This is enabled by the fact that codelivered Ago2 plays polyneuropathy (11). Several trials, with many targeting liver such a crucial role in gene silencing. Two sets of complexes could genes, are currently underway (5). It is clear that significant in- contain different amounts of siRNA/Ago2 levels modulating the creases in robustness and efficacy at the cellular/tissue level are genes differently. Even though these effects are attributed to critical. Li et al. (8) demonstrate that they could address this to changing electrostatic interactions between the polymer, siRNA, some extent when the complexes are administered locally. These and Ago2, more detailed studies on the mechanism of these must be translated to delivery systems that can overcome the nanoscale effects, and the subsequent impact on the in vivo sta- challenges that accompany systemic administration, especially bility would be helpful. Li et al. also provide elegant experimental relating to reaching target tissues. Improved siRNA packaging tools to investigate this within cells. and cellular delivery, through well-defined design principles, can Having established the proof-of-concept GFP silencing using open new avenues for RNAi therapies, enabling personalized, anti-GFP siRNA, Li et al. (8) evaluate the therapeutic efficacy using precision medicines, which appear more attainable due in part to a STAT3 oncogene as the target for silencing in melanoma cells the advances published here. 1 Ozcan G, Ozpolat B, Coleman RL, Sood AK, Lopez-Berestein G (2015) Preclinical and clinical development of siRNA-based therapeutics. Adv Drug Deliv Rev 87:108–119. 2 Wang J, Lu Z, Wientjes MG, Au JL (2010) Delivery of siRNA therapeutics: barriers and carriers. AAPS J 12:492–503. 3 Zhang P, et al. (January 31, 2018) Recent advances in siRNA delivery for cancer therapy using smart nanocarriers. Drug Discov Today, 10.1016/j.drudis.2018.01.042. 4 Chakraborty C, Sharma AR, Sharma G, Doss CGP, Lee SS (2017) Therapeutic miRNA and siRNA: Moving from bench to clinic as next generation medicine. Mol Ther Nucleic Acids 8:132–143. 5 Anthiya S, et al. (February 9, 2018) MicroRNA-based drugs for brain tumors. Trends Cancer, 10.1016/j.trecan.2017.12.008. 6 Chery J (2016) RNA therapeutics: RNAi and antisense mechanisms and clinical applications. Postdoc J 4:35–50. 7 Wittrup A, Lieberman J (2015) Knocking down disease: A progress report on siRNA therapeutics.
Recommended publications
  • Chapter 14: Functional Genomics Learning Objectives
    Chapter 14: Functional Genomics Learning objectives Upon reading this chapter, you should be able to: ■ define functional genomics; ■ describe the key features of eight model organisms; ■ explain techniques of forward and reverse genetics; ■ discuss the relation between the central dogma and functional genomics; and ■ describe proteomics-based approaches to functional genomics. Outline : Functional genomics Introduction Relation between genotype and phenotype Eight model organisms E. coli; yeast; Arabidopsis; C. elegans; Drosophila; zebrafish; mouse; human Functional genomics using reverse and forward genetics Reverse genetics: mouse knockouts; yeast; gene trapping; insertional mutatgenesis; gene silencing Forward genetics: chemical mutagenesis Functional genomics and the central dogma Approaches to function; Functional genomics and DNA; …and RNA; …and protein Proteomic approaches to functional genomics CASP; protein-protein interactions; protein networks Perspective Albert Blakeslee (1874–1954) studied the effect of altered chromosome numbers on the phenotype of the jimson-weed Datura stramonium, a flowering plant. Introduction: Functional genomics Functional genomics is the genome-wide study of the function of DNA (including both genes and non-genic regions), as well as RNA and proteins encoded by DNA. The term “functional genomics” may apply to • the genome, transcriptome, or proteome • the use of high-throughput screens • the perturbation of gene function • the complex relationship of genotype and phenotype Functional genomics approaches to high throughput analyses Relationship between genotype and phenotype The genotype of an individual consists of the DNA that comprises the organism. The phenotype is the outward manifestation in terms of properties such as size, shape, movement, and physiology. We can consider the phenotype of a cell (e.g., a precursor cell may develop into a brain cell or liver cell) or the phenotype of an organism (e.g., a person may have a disease phenotype such as sickle‐cell anemia).
    [Show full text]
  • Andrey L. Karamyshev
    CURRICULUM VITAE Andrey L. Karamyshev Assistant Professor Department of Cell Biology and Biochemistry! Texas Tech University Health Sciences Center! 3601 4th Street, Mail Stop 6540! Lubbock, TX 79430 Phone: (806) 743-4102 Fax: (806) 743-2990 e-mail: [email protected] EDUCATION: Postdoctoral Studies: Department of Tumor Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan (Advisor: Dr. Yoshikazu Nakamura). Department of Medical Biochemistry and Genetics, College of Medicine, Texas A&M University, College Station, TX (Advisor: Dr. Arthur E. Johnson). Ph.D. in Biochemistry, Russian Academy of Sciences, Pushchino, Moscow Region, Russia. M.S., Biology, Kuban State University, Krasnodar, Russia. FIELDS OF SPECIALIZATION: Biochemistry, Molecular and Cellular Biology. RESEARCH INTERESTS Molecular mechanisms of human diseases. Post-transcriptional regulation of gene expression. Gene silencing and translational repression. mRNA and protein quality control. RNA stability and degradation. siRNAs/miRNAs. Prolactin, CFTR, secretory and membrane proteins. Protein translation, folding and transport. Protein-protein interactions. SCIENTIFIC PUBLICATIONS (see list below) 31 publications (total), including 25 full-length peer-reviewed papers in scientific journals, 5 articles in the Encyclopedia of Molecular Biology (Publisher: John Wiley & Sons, Inc., N.Y.), and chapter in a book. PRESENTATIONS (90 total, see lists below) Results were presented at various international and national meetings, conferences and symposia (58 presentations), as well as during invited or selected talks (32 talks) at different universities and meetings around the world. Andrey L. Karamyshev, Ph.D. RESEARCH EXPERIENCE AND POSITIONS 2016-present Assistant Professor (Tenure track), Department of Cell Biology and Biochemistry!, Texas Tech University Health Sciences Center!, Lubbock, TX. 2009-2016 Assistant Professor (Research track), Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, TX.
    [Show full text]
  • Switch from Translation Initiation to Elongation Needs Not4 and Not5 Collaboration
    bioRxiv preprint doi: https://doi.org/10.1101/850859; this version posted November 22, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Switch from translation initiation to elongation needs Not4 and Not5 collaboration George E Allen1°, Olesya O Panasenko1°, Zoltan Villanyi1,&, Marina Zagatti1, Benjamin Weiss1, 2 2 1* 5 Christine Polte , Zoya Ignatova , Martine A Collart 1Department of Microbiology and Molecular Medicine, Institute of Genetics and Genomics Geneva, Faculty of Medicine, University of Geneva, Switzerland 2Biochemistry and Molecular Biology, University of Hamburg, Germany °Equally contributing first authors 10 *Correspondence to: [email protected] &Current Address: Dept of Biochemistry and Molecular Biology, University of Szeged Abstract: Not4 and Not5 are crucial components of the Ccr4-Not complex with pivotal functions in mRNA metabolism. Both associate with ribosomes but mechanistic insights on their 15 function remain elusive. Here we determine that Not5 and Not4 synchronously impact translation initiation and Not5 alone alters translation elongation. Deletion of Not5 causes elongation defects in a codon-dependent fashion, increasing and decreasing the ribosome dwelling occupancy at minor and major codons, respectively. This larger difference in codons’ translation velocities alters translation globally and enables kinetically unfavorable processes 20 such as nascent chain deubiquitination to take place. In turn, this leads to abortive translation and favors protein aggregation. These findings highlight the global impact of Not4 and Not5 in controlling the speed of mRNA translation and transition from initiation to elongation. Summary: Not4 and Not5 regulate translation synchronously but distinguishably, facilitating 25 smooth transition from initiation to elongation Results and discussion The Ccr4-Not complex is a global regulator of mRNA metabolism in eukaryotic cells (for review see (1)).
    [Show full text]
  • Gene Silencing: Double-Stranded RNA Mediated Mrna Degradation and Gene Inactivation
    Cell Research (2001); 11(3):181-186 http://www.cell-research.com REVIEW Gene silencing: Double-stranded RNA mediated mRNA degradation and gene inactivation 1, 2 1 TANG WEI *, XIAO YAN LUO , VANESSA SANMUELS 1 North Carolina State University, Forest Biotechnology Group, Raleigh, NC 27695, USA 2 University of North Carolina, Department of Cell and Developmental Biology, Chapel Hill, NC 27599, USA ABSTRACT The recent development of gene transfer approaches in plants and animals has revealed that transgene can undergo silencing after integration in the genome. Host genes can also be silenced as a consequence of the presence of a homologous transgene. More and more investigations have demonstrated that double- stranded RNA can silence genes by triggering degradation of homologous RNA in the cytoplasm and by directing methylation of homologous nuclear DNA sequences. Analyses of Arabidopsis mutants and plant viral suppressors of silencing are unraveling RNA-silencing mechanisms and are assessing the role of me- thylation in transcriptional and posttranscriptional gene silencing. This review will focus on double-stranded RNA mediated mRNA degradation and gene inactivation in plants. Key words: Gene silencing, double-stranded RNA, methylation, homologous RNA, transgene. INTRODUCTION portant in consideration of its practical application The genome structure of plants can be altered by over the the past ten years[1-5]. Transgenes can genetic transformation. During the process of gene become silent after a long phase of expression, and transfer, Agrobacterium tumefaciens integrate part can sometimes silence the expression of homologous of their genome into the genome of susceptible elements located at ectopic positions in the genome.
    [Show full text]
  • RNA Silencing-Based Improvement of Antiviral Plant Immunity
    viruses Review Catch Me If You Can! RNA Silencing-Based Improvement of Antiviral Plant Immunity Fatima Yousif Gaffar and Aline Koch * Centre for BioSystems, Institute of Phytopathology, Land Use and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26, D-35392 Giessen, Germany * Correspondence: [email protected] Received: 4 April 2019; Accepted: 17 July 2019; Published: 23 July 2019 Abstract: Viruses are obligate parasites which cause a range of severe plant diseases that affect farm productivity around the world, resulting in immense annual losses of yield. Therefore, control of viral pathogens continues to be an agronomic and scientific challenge requiring innovative and ground-breaking strategies to meet the demands of a growing world population. Over the last decade, RNA silencing has been employed to develop plants with an improved resistance to biotic stresses based on their function to provide protection from invasion by foreign nucleic acids, such as viruses. This natural phenomenon can be exploited to control agronomically relevant plant diseases. Recent evidence argues that this biotechnological method, called host-induced gene silencing, is effective against sucking insects, nematodes, and pathogenic fungi, as well as bacteria and viruses on their plant hosts. Here, we review recent studies which reveal the enormous potential that RNA-silencing strategies hold for providing an environmentally friendly mechanism to protect crop plants from viral diseases. Keywords: RNA silencing; Host-induced gene silencing; Spray-induced gene silencing; virus control; RNA silencing-based crop protection; GMO crops 1. Introduction Antiviral Plant Defence Responses Plant viruses are submicroscopic spherical, rod-shaped or filamentous particles which contain different kinds of genomes.
    [Show full text]
  • Glossary of Terms
    GLOSSARY OF TERMS Table of Contents A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z A Amino acids: any of a class of 20 molecules that are combined to form proteins in living things. The sequence of amino acids in a protein and hence protein function are determined by the genetic code. From http://www.geneticalliance.org.uk/glossary.htm#C • The building blocks of proteins, there are 20 different amino acids. From https://www.yourgenome.org/glossary/amino-acid Antisense: Antisense nucleotides are strings of RNA or DNA that are complementary to "sense" strands of nucleotides. They bind to and inactivate these sense strands. They have been used in research, and may become useful for therapy of certain diseases (See Gene silencing). From http://www.encyclopedia.com/topic/Antisense_DNA.aspx. Antisense and RNA interference are referred as gene knockdown technologies: the transcription of the gene is unaffected; however, gene expression, i.e. protein synthesis (translation), is lost because messenger RNA molecules become unstable or inaccessible. Furthermore, RNA interference is based on naturally occurring phenomenon known as Post-Transcriptional Gene Silencing. From http://www.ncbi.nlm.nih.gov/probe/docs/applsilencing/ B Biobank: A biobank is a large, organised collection of samples, usually human, used for research. Biobanks catalogue and store samples using genetic, clinical, and other characteristics such as age, gender, blood type, and ethnicity. Some samples are also categorised according to environmental factors, such as whether the donor had been exposed to some substance that can affect health.
    [Show full text]
  • Structure of the Mammalian Oligosaccharyl-Transferase Complex
    ARTICLE Received 26 Sep 2013 | Accepted 6 Dec 2013 | Published 10 Jan 2014 DOI: 10.1038/ncomms4072 Structure of the mammalian oligosaccharyl- transferase complex in the native ER protein translocon Stefan Pfeffer1,*, Johanna Dudek2,*, Marko Gogala3, Stefan Schorr2, Johannes Linxweiler2, Sven Lang2, Thomas Becker3, Roland Beckmann3, Richard Zimmermann2 & Friedrich Fo¨rster1 In mammalian cells, proteins are typically translocated across the endoplasmic reticulum (ER) membrane in a co-translational mode by the ER protein translocon, comprising the protein- conducting channel Sec61 and additional complexes involved in nascent chain processing and translocation. As an integral component of the translocon, the oligosaccharyl-transferase complex (OST) catalyses co-translational N-glycosylation, one of the most common protein modifications in eukaryotic cells. Here we use cryoelectron tomography, cryoelectron microscopy single-particle analysis and small interfering RNA-mediated gene silencing to determine the overall structure, oligomeric state and position of OST in the native ER protein translocon of mammalian cells in unprecedented detail. The observed positioning of OST in close proximity to Sec61 provides a basis for understanding how protein translocation into the ER and glycosylation of nascent proteins are structurally coupled. The overall spatial orga- nization of the native translocon, as determined here, serves as a reliable framework for further hypothesis-driven studies. 1 Department of Molecular Structural Biology, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany. 2 Department of Medical Biochemistry and Molecular Biology, Saarland University, D-66421 Homburg, Germany. 3 Gene Center and Center for integrated Protein Science Munich, Department of Biochemistry, University of Munich, D-81377 Munich, Germany.
    [Show full text]
  • Non-Coding Rnas As Regulators in Epigenetics (Review)
    ONCOLOGY REPORTS 37: 3-9, 2017 Non-coding RNAs as regulators in epigenetics (Review) JIAN-WEI WEI*, KAI HUANG*, CHAO YANG* and CHUN-SHENG KANG Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in the Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin 300052, P.R. China Received June 12, 2016; Accepted November 2, 2016 DOI: 10.3892/or.2016.5236 Abstract. Epigenetics is a discipline that studies heritable Contents changes in gene expression that do not involve altering the DNA sequence. Over the past decade, researchers have 1. Introduction shown that epigenetic regulation plays a momentous role 2. siRNA in cell growth, differentiation, autoimmune diseases, and 3. miRNA cancer. The main epigenetic mechanisms include the well- 4. piRNA understood phenomenon of DNA methylation, histone 5. lncRNA modifications, and regulation by non-coding RNAs, a mode 6. Conclusion and prospective of regulation that has only been identified relatively recently and is an area of intensive ongoing investigation. It is gener- ally known that the majority of human transcripts are not 1. Introduction translated but a large number of them nonetheless serve vital functions. Non-coding RNAs are a cluster of RNAs Epigenetics is the study of inherited changes in pheno- that do not encode functional proteins and were originally type (appearance) or gene expression that are caused by considered to merely regulate gene expression at the post- mechanisms other than changes in the underlying DNA transcriptional level.
    [Show full text]
  • GENETICS and DYNAMICS of Pirna INDUCED SILENCING
    Bruno Filipe Madeira de Albuquerque GENETICS AND DYNAMICS OF piRNA INDUCED SILENCING Tese de Candidatura ao grau de Doutor em Biologia Básica e Aplicada submetida ao Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto. Orientador – René François Ketting Categoria – Professor Catedrático Afiliação – Universidade Johannes Gutenberg Co-orientador – Maria Alexandra Marques Moreira Mourão do Carmo Categoria – Investigadora Principal Afiliação – Universidade do Porto 1 2 Para a avó Laura 3 4 Contents Resumo 7 Summary 9 Chapter 1 General Introduction 11 PID-1 is a novel factor that operates during 21U-RNA Chapter 2 39 biogenesis in Caenorhabditis elegans. Chapter 2.2 PID-1 interacts with IFE-3 and TOFU factors 67 Maternal piRNAs are essential for germline Chapter 3 development following de-novo establishment of endo- 75 siRNAs in Caenorhabditis elegans. pid-2 is a novel factor involved in piRNA induced Chapter 4 105 silencing that acts downstream mutator activity List of publised 127 articles 5 6 Resumo O objectivo mais básico de qualquer organismo é a transmissão do seu material genético a futuras gerações. Como tal, um dos desafios impostos às células germinais é a manutenção da sua integridade genómica face a parasitas moleculares como transposões e retrovírus, que, se não forem controlados podem causar infertilidade. Para tal, os organismos desenvolveram diversas estratégias para silenciar material genético exógeno, como é o caso do uso de proteínas Argonautas da classe das PIWI (“P-element Induced Wimpy testis”) e os pequenos RNAs a que estas se associam (piRNAs). Este mecanismo é designado por via dos piRNAs ou via dos PIWI.
    [Show full text]
  • Gene Silencing and DNA Methylation Processes Jerzy Paszkowski* and Steven a Whitham†
    123 Gene silencing and DNA methylation processes Jerzy Paszkowski* and Steven A Whitham† Epigenetic gene silencing results from the inhibition of associated with the hypermethylation of transcribed or transcription or from posttranscriptional RNA degradation. coding sequences [2]. Hypermethylation can spread within DNA methylation is one of the most central and frequently promoter regions or within transcribed regions, but spreads discussed elements of gene silencing in both plants and to a lesser extent from promoter to adjacent transcribed mammals. Because DNA methylation has not been detected in regions and from transcribed to adjacent promoter regions. yeast, Drosophila or Caenorhabditis elegans, the standard DNA–DNA interactions of multicopy sequences have genetic workhorses, plants are important models for revealing been associated with methylation and gene silencing for the role of DNA methylation in the epigenetic regulation of some time. Recently, the use of constructs that produce genes in vivo. double-stranded RNA (dsRNA) transcripts that are homol- ogous to either promoter or coding regions has shown that Addresses RNA is an efficient trigger for methylation in association *Friedrich Miescher Institute, P.O. Box 2543, CH-4092 Basel, with gene silencing. Moreover, RNA-based viral and viroid Switzerland; e-mail: [email protected] systems confirm that RNA alone is sufficient to direct † Department of Plant Pathology, Iowa State University, Ames, Iowa methylation to homologous DNA sequences. 50011, USA; e-mail: [email protected] Current Opinion in Plant Biology 2001, 4:123–129 The correlation of methylation with both TGS and PTGS 1369-5266/01/$ — see front matter suggests that it may have direct roles in establishing or © 2001 Elsevier Science Ltd.
    [Show full text]
  • Genetic Transformation and Sirna-Mediated Gene Silencing for Aphid Resistance in Tomato
    agronomy Article Genetic Transformation and siRNA-Mediated Gene Silencing for Aphid Resistance in Tomato Mohammad Faisal 1,* , Eslam M. Abdel-Salam 1 , Abdulrahman A. Alatar 1, Quaiser Saquib 2, Hend A. Alwathnani 1 and Tomas Canto 3 1 Department of Botany & Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Kingdom of Saudi Arabia; [email protected] (E.M.A.-S.); [email protected] (A.A.A.); [email protected] (H.A.A.) 2 Zoology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Kingdom of Saudi Arabia; [email protected] 3 Centro de Investigaciones Biológicas (CIB, CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain; [email protected] * Correspondence: [email protected]; Tel.: +966-11-4675877 Received: 3 November 2019; Accepted: 12 December 2019; Published: 17 December 2019 Abstract: We explored the ability of RNA interference (RNAi) to silence the Acetylcholinesterase 1 (Ace 1) gene in aphid Myzus persicae and developed transgenic tomato plants resistant to aphid infestation. Three plasmid constructs, T-449: a single Ace 1 fragment (forward orientation), T-452: two Ace 1 fragments (reverse and forward orientations), and T455: a single inverted Ace 1 fragment, were developed and transformed into two tomato cultivars, Jamila and Tomaland. PCR, northern blotting, and small interfering RNAs (siRNA) analysis were performed to validate the success of Agrobacterium-mediated transformation. The efficiency of transformation was highest for the T-452 construct. In vivo effects of the transformed constructs were confirmed in feeding experiments, and there was significant downregulation of the Ace 1 gene.
    [Show full text]
  • DNA Nanostructures Coordinate Gene Silencing in Mature Plants
    DNA nanostructures coordinate gene silencing in mature plants Huan Zhanga,1, Gozde S. Demirera,1, Honglu Zhangb,1, Tianzheng Yea, Natalie S. Goha, Abhishek J. Adithama, Francis J. Cunninghama, Chunhai Fanc,d, and Markita P. Landrya,e,f,g,2 aDepartment of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720; bDepartment of Molecular and Cell Biology, University of California, Berkeley, CA 94720; cDivision of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Chinese Academy of Sciences Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; dSchool of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; eInnovative Genomics Institute, Berkeley, CA 94720; fCalifornia Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720; and gChan-Zuckerberg Biohub, San Francisco, CA 94158 Edited by Catherine J. Murphy, University of Illinois at Urbana–Champaign, Urbana, IL, and approved February 27, 2019 (received for review October 27, 2018) Delivery of biomolecules to plants relies on Agrobacterium infec- of template and staple DNA strands (11). To date, a plethora of tion or biolistic particle delivery, the former of which is amenable different DNA nanostructures of variable sizes and shapes have only to DNA delivery. The difficulty in delivering functional bio- been synthesized (12–14) and have shown functionality in bio- molecules such as RNA to plant cells is due to the plant cell wall, technology for drug, DNA, RNA, and protein delivery applications which is absent in mammalian cells and poses the dominant phys- in animal systems (15–19).
    [Show full text]