Florida Torreya Pub11-16

Total Page:16

File Type:pdf, Size:1020Kb

Florida Torreya Pub11-16 Endangered Species: FLORIDA TORREYA FLORIDA NUTMEG Torreya taxifolia (Yew Family) by Dr. Kim D. Coder, Professor of tree Biology & Health Care Warnell School of Forestry & Natural Resources, University of Georgia The Florida torreya is a small to medium sized, evergreen tree with a pungent, aromatic odor. Trees have horizontal and spreading branches with drooping tips. Mature height is 10.6 meters (35 feet) tall and mature diameter is 18cm (1.5 feet). Needles are stiff, pointed, 2.5-4cm (1-1 1/2 inches) long and 3mm (0.13 inches) wide with the upper surface shiny dark green and lower surface pale green to silvery green with two distinct whitish bands. Periderm (bark) is brown to dark brown with an orange cast. Male and female cones are on different trees (dioecious). Cones appear in March and April. Female cone (seed) is 2.5-3cm (1-1 1/4 inches) long, dark green in color, with a fleshy outer-layer with a purple cast and whitish bloom. Ripe seeds are similar in appearance to a large green olive. A similar species is the Florida yew Taxus floridana which grows in the same area. The Florida yew has a low spreading crown and short, soft needles that are pale yellow-green below with no distinct white bands. The Florida yew has a female cone partially surrounded with a bright red cup. The Florida torreya is found in rich, hardwood hammock forests along the Apalachicola River and its tributaries in western Florida and far southwest Georgia. Sites have rich, moist, sandy-loam soils. Figure 1 shows the general regional distribution. This species is only native in four counties: Georgia (1 county) and Florida (3 counties). This species is federally listed as endangered. There are no large mature trees left in the native range. A few large mature trees of both sexes exist outside the native range of the species. Figure 2 provides a county distribution for Georgia. Publication WSFNR-17-34 April 2017 The University of Georgia Warnell School of Forestry and Natural Resources offers educational programs, assistance and materials to all people without regard to race, color, national origin, age, gender or disability. The University of Georgia is committed to principles of equal opportunity and affirmative action. Burning, soil/site disturbance, thinning or clearing overstory vegetation can destroy habitat and stems. Wild hogs have destroyed many seedlings. In the early 1960s, a root-rot/needle blight pest complex began to destroy most of the older trees. Natural pest cycles, destruction of habitat, and stress patterns constraining ecological competitiveness have lead to the decline of Torreya and reduction of its range. Several photographs of mature trees in Columbus, GA (i.e. outside native range of species) are shown. Figure 1: General distribution in the Southeastern US. WS MI SD PA NJ IOWA OH DE MY NE IN IL WV VA KY KS MO. NC TN S C AR OK GA AL MS TX LA FL Dr. Kim D. Coder Warnell School University of Georgia page 2 Figure 2: General distribution in Georgia. DADE CATOOSA FANNIN TOWNS RABUN MURRAY UNION WALKER WHITFIELD GILMER WHITE CHATTOOGA LUMPKIN GORDON STEPHENS PICKENS HABERSHAM DAWSON FRANKLIN HALL BANKS HART FLOYD CHEROKEE GEORGIA BARTOW FORSYTH JACKSON MADISON ELBERT POLK BARROW COBB GWINNETT CLARKE OGLETHORPE PAULDING OCONEE HARALSON WALTON DEKALB WILKES LINCOLN DOUGLAS FULTON CARROLL ROCKDALE MORGAN GREENE NEWTON COLUMBIA CLAYTON HENRY TALIAFERRO COWETA WARREN McDUFFIE FAYETTE HEARD JASPER PUTNAM RICHMOND SPALDING BUTTS HANCOCK GLASCOCK PIKE BALDWIN JEFFERSON BURKE TROUP LAMAR MONROE JONES MERIWETHER WASHINGTON UPSON BIBB WILKINSON JENKINS HARRIS TALBOT CRAWFORD JOHNSON SCREVEN TWIGGS EMANUEL MUSCOGEE TAYLOR PEACH LAURENS HOUSTON CHATTA- BLECKLEY TREUTLEN BULLOCH HOOCHEE MARION MACON CANDLER EFFINGHAM SCHLEY PULASKI DOOLY DODGE EVANS STEWART WHEELER TOOMBS SUMTER BRYAN CHATHAM WEBSTER WILCOX MONTGOMERY TATTNALL CRISP TELFAIR LIBERTY QUITMAN TERRELL LEE JEFF RANDOLPH BEN HILL DAVIS APPLING TURNER LONG CLAY IRWIN CALHOUN DOUGHERTY WAYNE WORTH COFFEE BACON McINTOSH TIFT EARLY BAKER PIERCE BERRIEN ATKINSON MITCHELL GLYNN MILLER COLQUITT BRANTLEY COOK WARE LANIER DECATUR CLINCH GRADY THOMAS LOWNDES CHARLTON CAMDEN SEMINOLE BROOKS ECHOLS Background map from Carl Vinson Institute of Government, University of Georgia. Dr. Kim D. Coder Warnell School University of Georgia page 3 Male and female trees side-by-side in historic residential neighborhood. (photographic credit = Dr. Kim D. Coder) Dr. Kim D. Coder Warnell School University of Georgia page 4 Upward view into crown base and periderm (bark) surface of main stem. (photographic credit = Dr. Kim D. Coder) Dr. Kim D. Coder Warnell School University of Georgia page 5 Foliage / needles. (photographic credit = Dr. Kim D. Coder) Dr. Kim D. Coder Warnell School University of Georgia page 6 Young female cones, fallen mature female cones, and male cones on underside of needles. (photographic credit = Dr. Kim D. Coder) Dr. Kim D. Coder Warnell School University of Georgia page 7.
Recommended publications
  • Cephalotaxus
    Reprinted from the Winter 1970 issue of t'he THE AMERICA HORTICULTURAL \t{AGAZIl\'E Copyright 1970 by The American Horticultural Society, Inc. Cephalotaxus­ Source of Harringtonine, A Promising New Anti..Cancer Alkaloid ROBERT E. PERDUE, JR.,l LLOYD A. SPETZMAN,l and RICHARD G. POWELL2 The plumyews (Cephalotaxus) are yew-like evergreen trees and shrubs. The genus includes seven species native to southeastern Asia from Japan and Korea to Taiwan and Hainan, and west through China to northeastern India. Two species are in cultivation in the United States, C. harringtoniaJ (Fig. 1 & 2) of which there are several varieties (one often listed as C. drupacea) , and C. fortunii (Fig. 3). The cultivars are shrubs up to about 20 feet in height; most have broad crowns. The linear and pointed leaves are spirally arranged or in two opposite ranks. The upper sur­ Fig. 1. Japanese plumyew (Cephalo­ face is dark shiny green with a conspicu­ taxus harringtonia var. drupacea), an ous mid-rib; the lower surface has a evergreen shrub about 6 ft. high, at broad silvery band on either side of the the USDA Plant Introduction Station, mid-rib. These bands are made up of Glenn Dale, Maryland. This photo­ conspicuous white stomata arranged in graph was made in 1955. The plant is numerous distinct lines. Leaf length is now about 7 ft. high, but the lower variable, from about one inch in varie­ branches have been severely pruned ties of C. harringtonia to three or four to provide material for chemical re­ inches in C. fortunii. The leaves are search.
    [Show full text]
  • The Quarterly Journal of the Florida Native Plant Society
    Volume 28: Number 1 > Winter/Spring 2011 PalmettoThe Quarterly Journal of the Florida Native Plant Society Protecting Endangered Plants in Panhandle Parks ● Native or Not? Carica papaya ● Water Science & Plants Protecting Endangered Plant Species Sweetwater slope: Bill and Pam Anderson To date, a total of 117 listed taxa have been recorded in 26 panhandle parks, making these parks a key resource for the protection of endangered plant species. 4 ● The Palmetto Volume 28:1 ● Winter/Spring 2011 in Panhandle State Parks by Gil Nelson and Tova Spector The Florida Panhandle is well known for its natural endowments, chief among which are its botanical and ecological diversity. Approximately 242 sensitive plant taxa occur in the 21 counties west of the Suwannee River. These include 15 taxa listed as endangered or threatened by the U. S. Fish and Wildlife Service (USFWS), 212 listed as endangered or threatened by the State of Florida, 191 tracked by the Florida Natural Areas Inventory, 52 candidates for federal listing, and 7 categorized by the state as commercially exploited. Since the conservation of threatened and endangered plant species depends largely on effective management of protected populations, the occurrence of such plants on publicly or privately owned conservation lands, coupled with institutional knowledge of their location and extent is essential. District 1 of the Florida Sarracenia rosea (purple pitcherplant) at Ponce de Leon Springs State Park: Park Service manages 33 state parks encompassing approximately Tova Spector, Florida Department of Environmental Protection 53,877 acres in the 18 counties from Jefferson County and the southwestern portion of Taylor County westward.
    [Show full text]
  • Taxus Floridana Florida Yew1
    FPS-573 Taxus floridana Florida Yew1 Edward F. Gilman2 Introduction USDA hardiness zones: 8 through 9A (Fig. 2) Planting month for zone 8: year round This lovely Florida native is an evergreen shrub or small Planting month for zone 9: year round tree. It grows slowly to a height of 20 feet (Fig. 1). The Origin: native to Florida horizontally held, spreading branches are clothed with Uses: near a deck or patio; screen; attracts butterflies; short, dark green needles that look pointed but are actually superior hedge very soft to the touch. New growth is bright green, making Availability: grown in small quantities by a small number a nice contrast to the darker, mature foliage. Insignificant of nurseries flowers are produced in March on female plants and are followed by single-seeded, small, pulpy fruits, ripening to red in the fall. Both leaves and fruit of Florida yew are poisonous. Figure 2. Shaded area represents potential planting range. Figure 1. Florida yew Description Height: 10 to 25 feet General Information Spread: 15 to 25 feet Scientific name: Taxus floridana Plant habit: oval; vase shape Pronunciation: TACK-suss flor-rid-DAY-nuh Plant density: dense Common name(s): Florida yew Growth rate: slow Family: Taxaceae Texture: fine Plant type: shrub 1. This document is FPS-573, one of a series of the Environmental Horticulture Department, UF/IFAS Extension. Original publication date October 1999. Reviewed February 2014. Visit the EDIS website at http://edis.ifas.ufl.edu. 2. Edward F. Gilman, professor, Environmental Horticulture Department; UF/IFAS Extension, Gainesville, FL 32611. The Institute of Food and Agricultural Sciences (IFAS) is an Equal Opportunity Institution authorized to provide research, educational information and other services only to individuals and institutions that function with non-discrimination with respect to race, creed, color, religion, age, disability, sex, sexual orientation, marital status, national origin, political opinions or affiliations.
    [Show full text]
  • Torreya Taxifolia
    photograph © Abraham Rammeloo Torreya taxifolia produces seeds in 40 Kalmthout Arboretum ABRAHAM RAMMELOO, Curator of the Kalmthout Arboretum, writes about this rare conifer that recently produced seed for the first time. Torreya is a genus of conifers that comprises four to six species that are native to North America and Asia. It is closely related to Taxus and Cephalotaxus and is easily confused with the latter. However, it is relatively easy to distinguish them apart by their leaves. Torreya has needles with, on the underside, two small edges with stomas giving it a green appearance; Cephalotaxus has different rows of stomas, and for this reason the underside is more of a white colour. It is very rare to find Torreya taxifolia in the wild; it is native to a small area in Florida and Georgia. It grows in steep limestone cliffs along the Apalachicola River. These trees come from a warm and humid climate where the temperature in winter occasionally falls below freezing. They grow mainly on north-facing slopes between Fagus grandifolia, Liriodendron tulipifera, Acer barbatum, Liquidambar styraciflua and Quercus alba. They can grow up to 15 to 20 m high. The needles are sharp and pointed and grow in a whorled pattern along the branches. They are 25 to 35 mm long and stay on the tree for three to four years. If you crush them, they give off a strong, sharp odour. The health and reproduction of the adult population of this species suffered INTERNATIONAL DENDROLOGY SOCIETY TREES Opposite Torreya taxifolia ‘Argentea’ growing at Kalmthout Arboretum in Belgium.
    [Show full text]
  • (Taxus Sumatrana) MELALUI STEK PUCUK
    PERBANYAKAN VEGETATIF CEMARA SUMATRA (Taxus Sumatrana) MELALUI STEK PUCUK SKRIPSI HAMDU AFANDI RAMBE 131201071 DEPARTEMEN BUDIDAYA HUTAN FAKULTAS KEHUTANAN UNIVERSITAS SUMATERA UTARA 2018 PERBANYAKAN VEGETATIF CEMARA SUMATRA (Taxus Sumatrana) MELALUI STEK PUCUK SKRIPSI OLEH : HAMDU AFANDI RAMBE 131201071 DEPARTEMEN BUDIDAYA HUTAN FAKULTAS KEHUTANAN UNIVERSITAS SUMATERA UTARA 2018 PERBANYAKAN VEGETATIF CEMARA SUMATRA (Taxus sumatrana) MELALUI STEK PUCUK SKRIPSI Oleh: HAMDU AFANDI RAMBE 131201071 Skripsi sebagai salah satu syarat untuk memperoleh Gelar Sarjana Kehutanan di Fakultas Kehutanan Universitas Sumatera Utara DEPARTEMEN BUDIDAYA HUTAN FAKULTAS KEHUTANAN UNIVERSITAS SUMATERA UTARA 2018 LEMBAR PENGESAHAN Judul Skripsi : Perbanyakan Vegetatif Cemara Sumatra (Taxus sumatrana) Melalui Stek Pucuk Nama Mahasiswa : Hamdu Afandi Rambe NIM : 131201071 Program Studi : Kehutanan Minat : Budidaya Hutan Disetujui oleh Komisi Pembimbing Dr. Arida Susilowati S.Hut., M.Si Cut Rizlani Kholibrina S.Hut., M.Si Ketua Anggota Mengetahui, Mohammad Basyuni, S.Hut., M.Si., Ph.D Ketua Departemen Budidaya Hutan Tanggal Lulus : ABSTRACT HAMDU AFANDI RAMBE: Vegetative Propagation of Sumatran Yew(Taxus sumatrana) Through Shoot Cuttings. Supervised by ARIDASUSILOWATI and CUT RIZALNI KHOLIBRINA. Taxus sumatrana is native endangered taxol producing trees from Indonesia. Sumatran yew tree known as source of promising drug for cancer. This tree is one of the rare plants in Indonesia, and even IUCN Redlist put it in Critically Endangered or critical conservation status. The application of shoot cuttings method on this plant is expected to overcome the natural regeneration type problems, producing qualified seedling and encourage the sustainability of growth, cultivation and conservation efforts of sumatran yew. Randomized Complete Random Design (RAL) Factorial with 2 factors and 20 repetitions was used in this research.
    [Show full text]
  • Conifer Quarterly
    Conifer Quarterly Vol. 24 No. 4 Fall 2007 Picea pungens ‘The Blues’ 2008 Collectors Conifer of the Year Full-size Selection Photo Credit: Courtesy of Stanley & Sons Nursery, Inc. CQ_FALL07_FINAL.qxp:CQ 10/16/07 1:45 PM Page 1 The Conifer Quarterly is the publication of the American Conifer Society Contents 6 Competitors for the Dwarf Alberta Spruce by Clark D. West 10 The Florida Torreya and the Atlanta Botanical Garden by David Ruland 16 A Journey to See Cathaya argyrophylla by William A. McNamara 19 A California Conifer Conundrum by Tim Thibault 24 Collectors Conifer of the Year 29 Paul Halladin Receives the ACS Annual Award of Merits 30 Maud Henne Receives the Marvin and Emelie Snyder Award of Merit 31 In Search of Abies nebrodensis by Daniel Luscombe 38 Watch Out for that Tree! by Bruce Appeldoorn 43 Andrew Pulte awarded 2007 ACS $1,000 Scholarship by Gerald P. Kral Conifer Society Voices 2 President’s Message 4 Editor’s Memo 8 ACS 2008 National Meeting 26 History of the American Conifer Society – Part One 34 2007 National Meeting 42 Letters to the Editor 44 Book Reviews 46 ACS Regional News Vol. 24 No. 4 CONIFER QUARTERLY 1 CQ_FALL07_FINAL.qxp:CQ 10/16/07 1:45 PM Page 2 PRESIDENT’S MESSAGE Conifer s I start this letter, we are headed into Afall. In my years of gardening, this has been the most memorable year ever. It started Quarterly with an unusually warm February and March, followed by the record freeze in Fall 2007 Volume 24, No 4 April, and we just broke a record for the number of consecutive days in triple digits.
    [Show full text]
  • PHYLOGENETIC RELATIONSHIPS of TORREYA (TAXACEAE) INFERRED from SEQUENCES of NUCLEAR RIBOSOMAL DNA ITS REGION Author(S): Jianhua Li, Charles C
    PHYLOGENETIC RELATIONSHIPS OF TORREYA (TAXACEAE) INFERRED FROM SEQUENCES OF NUCLEAR RIBOSOMAL DNA ITS REGION Author(s): Jianhua Li, Charles C. Davis, Michael J. Donoghue, Susan Kelley and Peter Del Tredici Source: Harvard Papers in Botany, Vol. 6, No. 1 (July 2001), pp. 275-281 Published by: Harvard University Herbaria Stable URL: http://www.jstor.org/stable/41761652 Accessed: 14-06-2016 15:35 UTC REFERENCES Linked references are available on JSTOR for this article: http://www.jstor.org/stable/41761652?seq=1&cid=pdf-reference#references_tab_contents You may need to log in to JSTOR to access the linked references. Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://about.jstor.org/terms JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Harvard University Herbaria is collaborating with JSTOR to digitize, preserve and extend access to Harvard Papers in Botany This content downloaded from 128.103.224.4 on Tue, 14 Jun 2016 15:35:14 UTC All use subject to http://about.jstor.org/terms PHYLOGENETIC RELATIONSHIPS OF TORREYA (TAXACEAE) INFERRED FROM SEQUENCES OF NUCLEAR RIBOSOMAL DNA ITS REGION Jianhua Li,1 Charles C. Davis,2 Michael J. Donoghue,3 Susan Kelley,1 And Peter Del Tredici1 Abstract. Torreya, composed of five to seven species, is distributed disjunctly in eastern Asia and the eastern and western United States.
    [Show full text]
  • A Phylogenetic Study
    92 Agnes Robertson. THE TAXOIDE/E; A PHYLOGENETIC STUDY. BY AGNES ROBERTSON, D.SC. Quain Student in Botany ; University CoUege, London. [WITH PLATE I.] I.—INTRODUCTION. ARLY in 1904, at the suggestion of Professor F. W. Oliver, I E began to make a study of the Taxoidex. At that time the the minute structure and development of the reproductive organs of the group were not known with any completeness except in Taxus, but in the course of the last three years several papers have appeared on the subject, culminating quite recently in Professor Ai A. Lawson's interesting study of Cephalotaxus, (see Literature Citations, 16, 17, 18, 19, 26). We are now acquainted with at least the main outlines of the reproductive processes of these plants, and a considerable mass of information has accumulated as to their floral morphology, anatomy, etc., so that it seems as if the moment has come to enquire what bearing this knowledge may have upon our ideas as to the phylogeny of the group. I have made some attempt to do this in the following pages. I should like to take this opportunity of thanking Professor F. W. Oliver for the help and encouragement which he has constantly given me in the study of the group. Before entering on any general discussion I have a correction to make and a few observations to record, 11.—OBSERVATIONS. (a). Torreya californica. Torr. I wish to begin these notes by correcting an error into which I fell in a paper on Torreya californica (17) published in this journal in 1904.
    [Show full text]
  • Evaluating the Invasive Potential of an Exotic Scale Insect Associated with Annual Christmas Tree Harvest and Distribution in the Southeastern U.S
    Trees, Forests and People 2 (2020) 100013 Contents lists available at ScienceDirect Trees, Forests and People journal homepage: www.elsevier.com/locate/tfp Evaluating the invasive potential of an exotic scale insect associated with annual Christmas tree harvest and distribution in the southeastern U.S. Adam G. Dale a,∗, Travis Birdsell b, Jill Sidebottom c a University of Florida, Entomology and Nematology Department, Gainesville, FL 32611 b North Carolina State University, NC Cooperative Extension, Ashe County, NC c North Carolina State University, College of Natural Resources, Mountain Horticultural Crops Research and Extension Center, Mills River, NC 28759 a r t i c l e i n f o a b s t r a c t Keywords: The movement of invasive species is a global threat to ecosystems and economies. Scale insects (Hemiptera: Forest entomology Coccoidea) are particularly well-suited to avoid detection, invade new habitats, and escape control efforts. In Fiorinia externa countries that celebrate Christmas, the annual movement of Christmas trees has in at least one instance been Elongate hemlock scale associated with the invasion of a scale insect pest and subsequent devastation of indigenous forest species. In the Conifers eastern United States, except for Florida, Fiorinia externa is a well-established exotic scale insect pest of keystone Fraser fir hemlock species and Fraser fir Christmas trees. Annually, several hundred thousand Fraser firs are harvested and shipped into Florida, USA for sale to homeowners and businesses. There is concern that this insect may disperse from Christmas trees and establish on Florida conifers of economic and conservation interest. Here, we investigate the invasive potential of F.
    [Show full text]
  • Fusarium Torreyae (Sp
    HOST RANGE AND BIOLOGY OF FUSARIUM TORREYAE (SP. NOV), CAUSAL AGENT OF CANKER DISEASE OF FLORIDA TORREYA (TORREYA TAXIFOLIA ARN.) By AARON J. TRULOCK A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2012 1 © 2012 Aaron J. Trulock 2 To my wife, for her support, patience, and dedication 3 ACKNOWLEDGMENTS I would like to thank my chair, Jason Smith, and committee members, Jenny Cruse-Sanders and Patrick Minogue, for their guidance, encouragement, and boundless knowledge, which has helped me succeed in my graduate career. I would also like to thank the Forest Pathology lab for aiding and encouraging me in both my studies and research. Research is not an individual effort; it’s a team sport. Without wonderful teammates it would never happen. Finally, I would like to that the U.S. Forest Service for their financial backing, as well as, UF/IFAS College of Agriculture and Life Science for their matching funds. 4 TABLE OF CONTENTS page ACKNOWLEDGMENTS .................................................................................................. 4 LIST OF TABLES ............................................................................................................ 6 LIST OF FIGURES .......................................................................................................... 7 ABSTRACT ..................................................................................................................... 8
    [Show full text]
  • John Day Fossil Beds NM: Geology and Paleoenvironments of the Clarno Unit
    John Day Fossil Beds NM: Geology and Paleoenvironments of the Clarno Unit JOHN DAY FOSSIL BEDS Geology and Paleoenvironments of the Clarno Unit John Day Fossil Beds National Monument, Oregon GEOLOGY AND PALEOENVIRONMENTS OF THE CLARNO UNIT John Day Fossil Beds National Monument, Oregon By Erick A. Bestland, PhD Erick Bestland and Associates, 1010 Monroe St., Eugene, OR 97402 Gregory J. Retallack, PhD Department of Geological Sciences University of Oregon Eugene, OR 7403-1272 June 28, 1994 Final Report NPS Contract CX-9000-1-10009 TABLE OF CONTENTS joda/bestland-retallack1/index.htm Last Updated: 21-Aug-2007 http://www.nps.gov/history/history/online_books/joda/bestland-retallack1/index.htm[4/18/2014 12:20:25 PM] John Day Fossil Beds NM: Geology and Paleoenvironments of the Clarno Unit (Table of Contents) JOHN DAY FOSSIL BEDS Geology and Paleoenvironments of the Clarno Unit John Day Fossil Beds National Monument, Oregon TABLE OF CONTENTS COVER ABSTRACT ACKNOWLEDGEMENTS CHAPTER I: INTRODUCTION AND REGIONAL GEOLOGY INTRODUCTION PREVIOUS WORK AND REGIONAL GEOLOGY Basement rocks Clarno Formation John Day Formation CHAPTER II: GEOLOGIC FRAMEWORK INTRODUCTION Stratigraphic nomenclature Radiometric age determinations CLARNO FORMATION LITHOSTRATIGRAPHIC UNITS Lower Clarno Formation units Main section JOHN DAY FORMATION LITHOSTRATIGRAPHIC UNITS Lower Big Basin Member Middle and upper Big Basin Member Turtle Cove Member GEOCHEMISTRY OF LAVA FLOW AND TUFF UNITS Basaltic lava flows Geochemistry of andesitic units Geochemistry of tuffs STRUCTURE OF CLARNO
    [Show full text]
  • Panflora Site Plant List Apalachicola Bluffs and Ravines Preserve (TNC) Generated: 7 June 2005 Copyright: Gil Nelson 186 Records
    PanFlora Site Plant List Apalachicola Bluffs and Ravines Preserve (TNC) Generated: 7 June 2005 Copyright: Gil Nelson 186 Records Acer negundo (BOXELDER) Acer rubrum (RED MAPLE) Aesculus pavia (RED BUCKEYE) Agalinis divaricata (PINELAND FALSE FOXGLOVE) Albizia julibrissin (MIMOSA) Amelanchier arborea (COMMON SERVICEBERRY) Arenaria lanuginosa (SPREADING SANDWORT) Arenaria serpyllifolia (THYMELEAF SANDWORT) Arisaema dracontium (GREENDRAGON) Arisaema quinatum (PESTER-JOHN) Arisaema triphyllum (JACK-IN-THE-PULPIT) Aristida stricta beyrichiana (WIREGRASS) Aristolochia serpentaria (VIRGINIA SNAKEROOT) Aristolochia tomentosa (WOOLLY DUTCHMAN'S-PIPE; PIPEVINE) Arundinaria gigantea (SWITCHCANE) Asarum arifolium (WILD GINGER; LITTLE BROWN JUG; HEARTLEAF WILD GINGER) Asimina parviflora (SMALLFLOWER PAWPAW) Asplenium platyneuron (EBONY SPLEENWORT) Athyrium filix-femina asplenioides (SOUTHERN LADY FERN) Aureolaria flava (SMOOTH YELLOW FALSE FOXGLOVE) Baptisia lanceolata (GOPHERWEED) Berlandiera pumila (SOFT GREENEYES) Betula nigra (RIVER BIRCH) Bignonia capreolata (CROSSVINE) Boechera canadensis (SICKLEPOD) Calamintha dentata (FLORIDA CALAMINT; TOOTHED SAVORY) Callicarpa americana (AMERICAN BEAUTYBERRY) Calycanthus floridus (EASTERN SWEETSHRUB; CAROLINA ALLSPICE) Calycocarpum lyonii (CUPSEED) Carex baltzellii (BALTZELL'S SEDGE) Carex digitalis (SLENDER WOODLAND SEDGE) Carex nigromarginata floridana (BLACKEDGE SEDGE) Carpinus caroliniana (AMERICAN HORNBEAM; BLUEBEECH) Carya glabra (PIGNUT HICKORY) Carya pallida (SAND HICKORY) Ceanothus microphyllus (LITTLELEAF
    [Show full text]