Improvements for Tesseract OCR Case Analysis for Automatic Transcription of Ancient Books at the Library of the Universidad De Seville
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Video-Based Tracking of Physical Documents on a Desk
FACULTY OF ENGINEERING Department of Electronics and Informatics Video-based Tracking of Physical Documents on a Desk Graduation thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Applied Sciences and Engineering: Applied Computer Science Sone Nsime Ngole Promoter: Prof. Dr. Beat Signer Advisor: Dr. Bruno Dumas JANUARY 2014 FACULTEIT INGENIEURSWETENSCHAPPEN Vakgroep Elektronica en Informatica Video-based Tracking of Physical Documents on a Desk Afstudeer eindwerk ingediend in gedeeltelijke vervulling van de eisen voor het behalen van de graad Master of Science in de Ingenieurswetenschappen: Toegepaste Computerwetenschappen Sone Nsime Ngole Promoter: Prof. Dr. Beat Signer Advisors: Dr. Bruno Dumas JANUARI 2014 Abstract Currently, physical and digital documents tend to stay in their world, without any direct relationship linking them. How- ever, a lot of physical documents are printed from digital doc- uments and conversely, digital documents can be scanned ver- sions of printed papers. Furthermore, the organization of piles of physical documents on a desk hints at shared semantic fea- tures between a set of documents. This thesis explores an ap- proach to link or re-link physical documents with their digital counterpart. This integration will be done by designing a sys- tem that uses an overhead digital camera to recognize, identify, localize and track paper documents on the physical desk space in real time (or offline by means of a pre-recorded video stream) and automatically matching them against an image database of electronic documents. The system locates each paper docu- ment that is present on the desk and reconstructs a complete configuration of documents on the desk at each instant in time. -
Diplomová Práce Inteligentní Vyhledávání Dokumentů
Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra informatiky a výpočetní techniky Diplomová práce Inteligentní vyhledávání dokumentů Plzeň 2017 Jiří Martínek Místo této strany bude zadání práce. Prohlášení Prohlašuji, že jsem diplomovou práci vypracoval samostatně a výhradně s použitím citovaných pramenů. V Plzni dne 16. května 2017 Jiří Martínek Poděkování Na tomto místě bych chtěl poděkovat svému vedoucímu diplomové práce doc. Ing. Pavlu Královi Ph.D. za odborné vedení, za pomoc a rady při zpracování této práce. Jiří Martínek Abstract This diploma thesis deals with information retrieval in a set of scanned documents in form of raster images. First, the images are converted into the text form using optical character recognition (OCR) methods. Unfortunately, there are errors in conversion, therefore another part of the work deals with error correction. This thesis propose several error correction methods that are combined to achieve the best possible results. Then, the corrected documents are indexed into the full-text Apache Solr database. The resulting application allows to efficiently find the requested document according to a full-text query. Error correction of the OCR output helps to increase the accuracy of full-text search. The accuracy of the system was experimentally verified on the real data. Abstrakt Tato diplomová práce se zabývá problematikou vyhledávání informací v množině naskenovaných dokumentů v podobě rastrových obrázků. Nejdříve je proto proveden převod rastrového obrázku do textové podoby pomocí metod optického rozpoznávání znaků (OCR). V rámci převodu bohužel dochází k chybám, proto se další část práce zabývá samotnou opravou chyb. V práci je navrženo několik metod oprav chyb, které jsou zkombinovány pro dosažení co nejlepšího výsledku. -
OCR Pwds and Assistive Qatari Using OCR Issue No
Arabic Optical State of the Smart Character Art in Arabic Apps for Recognition OCR PWDs and Assistive Qatari using OCR Issue no. 15 Technology Research Nafath Efforts Page 04 Page 07 Page 27 Machine Learning, Deep Learning and OCR Revitalizing Technology Arabic Optical Character Recognition (OCR) Technology at Qatar National Library Overview of Arabic OCR and Related Applications www.mada.org.qa Nafath About AboutIssue 15 Content Mada Nafath3 Page Nafath aims to be a key information 04 Arabic Optical Character resource for disseminating the facts about Recognition and Assistive Mada Center is a private institution for public benefit, which latest trends and innovation in the field of Technology was founded in 2010 as an initiative that aims at promoting ICT Accessibility. It is published in English digital inclusion and building a technology-based community and Arabic languages on a quarterly basis 07 State of the Art in Arabic OCR that meets the needs of persons with functional limitations and intends to be a window of information Qatari Research Efforts (PFLs) – persons with disabilities (PWDs) and the elderly in to the world, highlighting the pioneering Qatar. Mada today is the world’s Center of Excellence in digital work done in our field to meet the growing access in Arabic. Overview of Arabic demands of ICT Accessibility and Assistive 11 OCR and Related Through strategic partnerships, the center works to Technology products and services in Qatar Applications enable the education, culture and community sectors and the Arab region. through ICT to achieve an inclusive community and educational system. The Center achieves its goals 14 Examples of Optical by building partners’ capabilities and supporting the Character Recognition Tools development and accreditation of digital platforms in accordance with international standards of digital access. -
Glosar De Termeni
CUPRINS 1. Reprezentarea digitală a informaţiei……………………………………………………….8 1.1. Reducerea datelor………………………………………………………………..10 1.2. Entropia şi câştigul informaţional………………………………………………. 10 2. Identificarea şi analiza tipurilor formatelor de documente pe suport electronic……... 12 2.1. Tipuri de formate pentru documentele pe suport electronic……………………..…13 2.1.1 Formate text……………………………………………………………… 13 2.1.2 Formate imagine……………………...........……………………………....26 2.1.3 Formate audio……………………………………………………………...43 2.1.4 Formate video……………………………………………………………. 48 2.1.5. Formate multimedia.....................................................................................55 2.2. Comparaţie între formate………………………….………………………………72 3. Conţinutul web………………………………………………………………………………74 3.1. Identificarea formatelor de documente pentru conţinutul web……………………. 74 4. Conversia documentelor din format tradiţional în format electronic…………………101 4.1. Metode de digitizare……………………………………………………………..104 4.1.1 Cerinţe în procesul de digitizare……………………………………………104 4.1.2. Scanarea……………………………………………………………………104 4.1.3. Fotografiere digitală………………………………………………………105 4.1.4. Scanarea fotografiilor analogice………………………………………106 4.2. Arhitectura unui sistem de digitizare………………………………………………106 4.3. Moduri de livrare a conţinutului digital………………………………………….108 4.3.1. Text sub imagine………….……………………………………………..108 4.3.2. Text peste imagine…………………………………………….…………108 4.4. Alegerea unui format………………………………………………………………108 4.5. Tehnici de conversie prin Recunoaşterea Optică a Caracterelor (Optical Charater Recognition-OCR)……………………………………………109 4.5.1. Scurt istoric al conversiei documentelor din format tradiţional prin scanare şi OCR-izare…………………... …..109 4.5.2. Starea actuală a tehnologiei OCR……………………………………….110 4.5.3. Tehnologii curente, produse software pentru OCR-izare………………112 4.5.4. Suportul lingvistic al produselor pentru OCR-izare………………….…114 1 4.5.5. Particularităţi ale sistemelor OCR actuale………………………..……..118 5. Elaborarea unui model conceptual pentru un sistem de informare şi documentare………………………………………………………126 5.1. -
Reconocimiento De Escritura Lecture 4/5 --- Layout Analysis
Reconocimiento de Escritura Lecture 4/5 | Layout Analysis Daniel Keysers Jan/Feb-2008 Keysers: RES-08 1 Jan/Feb-2008 Outline Detection of Geometric Primitives The Hough-Transform RAST Document Layout Analysis Introduction Algorithms for Layout Analysis A `New' Algorithm: Whitespace Cuts Evaluation of Layout Analyis Statistical Layout Analysis OCR OCR - Introduction OCR fonts Tesseract Sources of OCR Errors Keysers: RES-08 2 Jan/Feb-2008 Outline Detection of Geometric Primitives The Hough-Transform RAST Document Layout Analysis Introduction Algorithms for Layout Analysis A `New' Algorithm: Whitespace Cuts Evaluation of Layout Analyis Statistical Layout Analysis OCR OCR - Introduction OCR fonts Tesseract Sources of OCR Errors Keysers: RES-08 3 Jan/Feb-2008 Detection of Geometric Primitives some geometric entities important for DIA: I text lines I whitespace rectangles (background in documents) Keysers: RES-08 4 Jan/Feb-2008 Outline Detection of Geometric Primitives The Hough-Transform RAST Document Layout Analysis Introduction Algorithms for Layout Analysis A `New' Algorithm: Whitespace Cuts Evaluation of Layout Analyis Statistical Layout Analysis OCR OCR - Introduction OCR fonts Tesseract Sources of OCR Errors Keysers: RES-08 5 Jan/Feb-2008 Hough-Transform for Line Detection Assume we are given a set of points (xn; yn) in the image plane. For all points on a line we must have yn = a0 + a1xn If we want to determine the line, each point implies a constraint yn 1 a1 = − a0 xn xn Keysers: RES-08 6 Jan/Feb-2008 Hough-Transform for Line Detection The space spanned by the model parameters a0 and a1 is called model space, parameter space, or Hough space. -
Desenvolvimento De Um Sistema De Apoio Ao Arquivo E À Gestão De
Diogo Alexandre Nascimento Alves Licenciatura em Ciências da Engenharia Electrotécnica e de Computadores [Nome completo do autor] Desenvolvimento de um Sistema de Apoio ao Arquivo e à [Habilitações Académicas]Gestão de Blocos Histológicos [Nome completo do autor] [Habilitações Académicas] [Nome[Título completo da Tese] do autor] Dissertação para obtenção do Grau de Mestre em [Habilitações Académicas] Engenharia Electrotécnica e de Computadores [Nome completo do autor] Orientador: José Manuel Matos Ribeiro da Fonseca, Professor Auxiliar com Dissertação para obtenção do Grau de Mestre em [Habilitações Agregação,Académicas] Faculdade de Ciências e Tecnologia da Universidade [Engenharia Informática] Nova de Lisboa Co-orientador[Nome completo: André do Teixeira autor] Bento Damas Mora, Professor Auxiliar, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa [Habilitações Académicas] [Nome completo do autor] [Habilitações Académicas] [Nome completo do autor] [Habilitações Académicas] i Setembro, 2018 Desenvolvimento de um Sistema de Apoio ao Arquivo e á Gestão de Blocos Histológicos Copyright © Diogo Alexandre Nascimento Alves, Faculdade de Ciências e Tecnologia, Univer- sidade Nova de Lisboa. A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa têm o direito, perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de exemplares impres- sos reproduzidos em papel ou de forma digital, ou por qualquer outro meio conhecido ou que venha a ser inventado, e de a divulgar através de repositórios -
An Accuracy Examination of OCR Tools
International Journal of Innovative Technology and Exploring Engineering (IJITEE) ISSN: 2278-3075, Volume-8, Issue-9S4, July 2019 An Accuracy Examination of OCR Tools Jayesh Majumdar, Richa Gupta texts, pen computing, developing technologies for assisting Abstract—In this research paper, the authors have aimed to do a the visually impaired, making electronic images searchable comparative study of optical character recognition using of hard copies, defeating or evaluating the robustness of different open source OCR tools. Optical character recognition CAPTCHA. (OCR) method has been used in extracting the text from images. OCR has various applications which include extracting text from any document or image or involves just for reading and processing the text available in digital form. The accuracy of OCR can be dependent on text segmentation and pre-processing algorithms. Sometimes it is difficult to retrieve text from the image because of different size, style, orientation, a complex background of image etc. From vehicle number plate the authors tried to extract vehicle number by using various OCR tools like Tesseract, GOCR, Ocrad and Tensor flow. The authors in this research paper have tried to diagnose the best possible method for optical character recognition and have provided with a comparative analysis of their accuracy. Keywords— OCR tools; Orcad; GOCR; Tensorflow; Tesseract; I. INTRODUCTION Optical character recognition is a method with which text in images of handwritten documents, scripts, passport documents, invoices, vehicle number plate, bank statements, Fig.1: Functioning of OCR [2] computerized receipts, business cards, mail, printouts of static-data, any appropriate documentation or any II. OCR PROCDURE AND PROCESSING computerized receipts, business cards, mail, printouts of To improve the probability of successful processing of an static-data, any appropriate documentation or any picture image, the input image is often ‘pre-processed’; it may be with text in it gets processed and the text in the picture is de-skewed or despeckled. -
Gradu04243.Pdf
Paperilomakkeesta tietomalliin Kalle Malin Tampereen yliopisto Tietojenkäsittelytieteiden laitos Tietojenkäsittelyoppi Pro gradu -tutkielma Ohjaaja: Erkki Mäkinen Toukokuu 2010 i Tampereen yliopisto Tietojenkäsittelytieteiden laitos Tietojenkäsittelyoppi Kalle Malin: Paperilomakkeesta tietomalliin Pro gradu -tutkielma, 61 sivua, 3 liitesivua Toukokuu 2010 Tässä tutkimuksessa käsitellään paperilomakkeiden digitalisointiin liittyvää kokonaisprosessia yleisellä tasolla. Prosessiin tutustutaan tarkastelemalla eri osa-alueiden toimintoja ja laitteita kokonaisjärjestelmän vaatimusten näkökul- masta. Tarkastelu aloitetaan paperilomakkeiden skannaamisesta ja lopetetaan kerättyjen tietojen tallentamiseen tietomalliin. Lisäksi luodaan silmäys markki- noilla oleviin valmisratkaisuihin, jotka sisältävät prosessin kannalta oleelliset toiminnot. Avainsanat ja -sanonnat: lomake, skannaus, lomakerakenne, lomakemalli, OCR, OFR, tietomalli. ii Lyhenteet ADRT = Adaptive Document Recoginition Technology API = Application Programming Interface BAG = Block Adjacency Graph DIR = Document Image Recognition dpi= Dots Per Inch ICR = Intelligent Character Recognition IFPS = Intelligent Forms Processing System IR = Information Retrieval IRM = Image and Records Management IWR = Intelligent Word Recognition NAS = Network Attached Storage OCR = Optical Character Recognition OFR = Optical Form Recognition OHR = Optical Handwriting Recognition OMR = Optical Mark Recognition PDF = Portable Document Format SAN = Storage Area Networks SDK = Software Development Kit SLM -
Extracción De Eventos En Prensa Escrita Uruguaya Del Siglo XIX Por Pablo Anzorena Manuel Laguarda Bruno Olivera
UNIVERSIDAD DE LA REPÚBLICA Extracción de eventos en prensa escrita Uruguaya del siglo XIX por Pablo Anzorena Manuel Laguarda Bruno Olivera Tutora: Regina Motz Informe de Proyecto de Grado presentado al Tribunal Evaluador como requisito de graduación de la carrera Ingeniería en Computación en la Facultad de Ingeniería 1 1. Resumen En este proyecto, se plantea el diseño y la implementación de un sistema de extracción de eventos en prensa uruguaya del siglo XIX digitalizados en formato de imagen, generando clusters de eventos agrupados según su similitud semántica. La solución propuesta se divide en 4 módulos: módulo de preprocesamiento compuesto por el OCR y un corrector de texto, módulo de extracción de eventos implementado en Python y utilizando Freeling1, módulo de clustering de eventos implementado en Python utilizando Word Embeddings y por último el módulo de etiquetado de los clusters también utilizando Python. Debido a la cantidad de ruido en los datos que hay en los diarios antiguos, la evaluación de la solución se hizo sobre datos de prensa digital de la actualidad. Se evaluaron diferentes medidas a lo largo del proceso. Para la extracción de eventos se logró conseguir una Precisión y Recall de un 56% y 70% respectivamente. En el caso del módulo de clustering se evaluaron las medidas de Silhouette Coefficient, la Pureza y la Entropía, dando 0.01, 0.57 y 1.41 respectivamente. Finalmente se etiquetaron los clusters utilizando como etiqueta las secciones de los diarios de la actualidad, realizándose una evaluación del etiquetado. 1 http://nlp.lsi.upc.edu/freeling/demo/demo.php 2 Índice general 1. -
Tesseract Als Komponente Im OCR-D-Workflow
- Projekt Optimierter Einsatz von OCR-Verfahren – Tesseract als Komponente im OCR-D-Workflow OCR Noah Metzger, Stefan Weil Universitätsbibliothek Mannheim 30.07.2019 Prozesskette Forschungdaten aus Digitalisaten Digitalisierung/ Text- Struktur- Vorverarbeitung erkennung parsing (OCR) Strukturierung Bücher Generierung Generierung der digitalen Inhalte digitaler Ausgangsformate der digitalen Inhalte (Datenextraktion) 28.03.2019 2 OCR Software (Übersicht) kommerzielle fett = eingesetzt in Bibliotheken Software ABBYY Finereader Tesseract freie Software BIT-Alpha OCRopus / Kraken / Readiris Calamari OmniPage CuneiForm … … Adobe Acrobat CorelDraw ABBYY Cloud OCR Microsoft OneNote Google Cloud Vision … Microsoft Azure Computer Vision OCR.space Online OCR … Cloud OCR 28.03.2019 3 Tesseract OCR • Open Source • Komplettlösung „All-in-1“ • Mehr als 100 Sprachen / mehr als 30 Schriften • Liest Bilder in allen gängigen Formaten (nicht PDF!) • Erzeugt Text, PDF, hOCR, ALTO, TSV • Große, weltweite Anwender-Community • Technologisch aktuell (Texterkennung mit neuronalem Netz) • Aktive Weiterentwicklung u. a. im DFG-Projekt OCR-D 28.03.2019 4 Tesseract an der UB Mannheim • Verwendung im DFG-Projekt „Aktienführer“ https://digi.bib.uni-mannheim.de/aktienfuehrer/ • Volltexte für Deutscher Reichsanzeiger und Vorgänger https://digi.bib.uni-mannheim.de/periodika/reichsanzeiger • DFG-Projekt „OCR-D“ http://www.ocr-d.de/, Modulprojekt „Optimierter Einsatz von OCR-Verfahren – Tesseract als Komponente im OCR-D-Workflow“: Schnittstellen, Stabilität, Performance -
Integral Estimation in Quantum Physics
INTEGRAL ESTIMATION IN QUANTUM PHYSICS by Jane Doe A dissertation submitted to the faculty of The University of Utah in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematical Physics Department of Mathematics The University of Utah May 2016 Copyright c Jane Doe 2016 All Rights Reserved The University of Utah Graduate School STATEMENT OF DISSERTATION APPROVAL The dissertation of Jane Doe has been approved by the following supervisory committee members: Cornelius L´anczos , Chair(s) 17 Feb 2016 Date Approved Hans Bethe , Member 17 Feb 2016 Date Approved Niels Bohr , Member 17 Feb 2016 Date Approved Max Born , Member 17 Feb 2016 Date Approved Paul A. M. Dirac , Member 17 Feb 2016 Date Approved by Petrus Marcus Aurelius Featherstone-Hough , Chair/Dean of the Department/College/School of Mathematics and by Alice B. Toklas , Dean of The Graduate School. ABSTRACT Blah blah blah blah blah blah blah blah blah blah blah blah blah blah blah. Blah blah blah blah blah blah blah blah blah blah blah blah blah blah blah. Blah blah blah blah blah blah blah blah blah blah blah blah blah blah blah. Blah blah blah blah blah blah blah blah blah blah blah blah blah blah blah. Blah blah blah blah blah blah blah blah blah blah blah blah blah blah blah. Blah blah blah blah blah blah blah blah blah blah blah blah blah blah blah. Blah blah blah blah blah blah blah blah blah blah blah blah blah blah blah. Blah blah blah blah blah blah blah blah blah blah blah blah blah blah blah. -
Paperport 14 Getting Started Guide Version: 14.7
PaperPort 14 Getting Started Guide Version: 14.7 Date: 2019-09-01 Table of Contents Legal notices................................................................................................................................................4 Welcome to PaperPort................................................................................................................................5 Accompanying programs....................................................................................................................5 Install PaperPort................................................................................................................................. 5 Activate PaperPort...................................................................................................................6 Registration.............................................................................................................................. 6 Learning PaperPort.............................................................................................................................6 Minimum system requirements.......................................................................................................... 7 Key features........................................................................................................................................8 About PaperPort.......................................................................................................................................... 9 The PaperPort desktop.....................................................................................................................