Gradu04243.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Gradu04243.Pdf Paperilomakkeesta tietomalliin Kalle Malin Tampereen yliopisto Tietojenkäsittelytieteiden laitos Tietojenkäsittelyoppi Pro gradu -tutkielma Ohjaaja: Erkki Mäkinen Toukokuu 2010 i Tampereen yliopisto Tietojenkäsittelytieteiden laitos Tietojenkäsittelyoppi Kalle Malin: Paperilomakkeesta tietomalliin Pro gradu -tutkielma, 61 sivua, 3 liitesivua Toukokuu 2010 Tässä tutkimuksessa käsitellään paperilomakkeiden digitalisointiin liittyvää kokonaisprosessia yleisellä tasolla. Prosessiin tutustutaan tarkastelemalla eri osa-alueiden toimintoja ja laitteita kokonaisjärjestelmän vaatimusten näkökul- masta. Tarkastelu aloitetaan paperilomakkeiden skannaamisesta ja lopetetaan kerättyjen tietojen tallentamiseen tietomalliin. Lisäksi luodaan silmäys markki- noilla oleviin valmisratkaisuihin, jotka sisältävät prosessin kannalta oleelliset toiminnot. Avainsanat ja -sanonnat: lomake, skannaus, lomakerakenne, lomakemalli, OCR, OFR, tietomalli. ii Lyhenteet ADRT = Adaptive Document Recoginition Technology API = Application Programming Interface BAG = Block Adjacency Graph DIR = Document Image Recognition dpi= Dots Per Inch ICR = Intelligent Character Recognition IFPS = Intelligent Forms Processing System IR = Information Retrieval IRM = Image and Records Management IWR = Intelligent Word Recognition NAS = Network Attached Storage OCR = Optical Character Recognition OFR = Optical Form Recognition OHR = Optical Handwriting Recognition OMR = Optical Mark Recognition PDF = Portable Document Format SAN = Storage Area Networks SDK = Software Development Kit SLM = Statistical Language Model SOAP = Simple Object Access Protocol iii Sisällys 1. Johdanto ...................................................................................................................... 1 2. Yleiskuvaus paperilomakkeiden digitalisointiprosessista .................................. 4 2.1. Prosessin toteuttaminen ................................................................................. 5 2.2. Varmistus .......................................................................................................... 6 3. Paperilomakkeiden skannaus digitaalisiksi .......................................................... 8 3.1. Kuvanlukija ...................................................................................................... 8 3.2. Kuvan korjaus ................................................................................................ 10 3.2.1. Suoristus ............................................................................................ 10 3.2.2. Artefaktien poisto kuvasta .............................................................. 12 3.3. Tehokkuus ...................................................................................................... 13 4. Lomakerakenteen tunnistaminen .......................................................................... 16 4.1. Automatisoitu tunnistaminen ..................................................................... 17 4.2. Dokumenttitietämys ..................................................................................... 18 4.3. Taulukoiden tunnistaminen......................................................................... 18 4.4. Solujen tunnistaminen .................................................................................. 19 4.5. Värien käyttäminen ....................................................................................... 20 4.6. Editointi........................................................................................................... 20 5. Lomakemallilla tarkennusta lomakerakenteeseen ............................................. 21 6. Tekstintunnistaminen lomakkeen sisällöstä ........................................................ 23 6.1. Historiaa .......................................................................................................... 24 6.2. Esikäsittely ...................................................................................................... 24 6.3. Oikeellisuuden varmistus ............................................................................ 25 6.4. Jälkikäsittely ................................................................................................... 26 6.4.1. Tunnistus- ja kirjoitusvirheet .......................................................... 27 6.4.2. Manuaalinen korjaus ....................................................................... 28 6.5. Käsinkirjoitettu teksti .................................................................................... 29 6.6. Rajapinnat ....................................................................................................... 30 6.6.1. ABBYY FineReader .......................................................................... 30 6.6.2. Asprise OCR...................................................................................... 31 6.6.3. GOCR ................................................................................................. 32 6.6.4. OCR .Net ............................................................................................ 32 6.6.5. Tesseract OCR ................................................................................... 33 6.6.6. TOCR .................................................................................................. 34 6.7. Verkkopalvelut .............................................................................................. 35 6.7.1. OCR Terminal ................................................................................... 36 6.7.2. Online OCR ....................................................................................... 37 6.7.3. Muut verkkopalvelut ....................................................................... 38 iv 6.7.4. Integraatio tiedostonhallintaan ...................................................... 38 6.8. Tiedostoformaateista ..................................................................................... 39 7. Tiedot tietomalliin ................................................................................................... 41 7.1. Tunnettu tietomalli ........................................................................................ 41 7.2. Tuntematon tietomalli .................................................................................. 42 8. Diagnostiikka ja etähallinta prosessissa ............................................................... 43 9. Markkinakatsaus valmisratkaisuihin ................................................................... 45 9.1. ABBYY Finereader ......................................................................................... 45 9.2. FormSuite ........................................................................................................ 47 9.3. OCRopus ......................................................................................................... 48 9.4. SimpleIndex .................................................................................................... 48 9.5. WindFORM .................................................................................................... 49 10. Yhteenveto .............................................................................................................. 51 Viiteluettelo .................................................................................................................. 53 Liite 1 ............................................................................................................................. 62 Liite 2 ............................................................................................................................. 64 1 1. Johdanto Kotona ja toimistoissa on pyöritelty ja käsitelty paperisia lomakkeita jo iät ja ajat. Teknologisen kehityksen myötä paperilomakkeiden käyttötarve on vain kasvanut, vaikka voisi toisin olettaa. Omalta osaltaan lain säädöksetkin vaikut- tavat tarpeeseen, koska tietyissä tapauksissa lomakkeet on arkistoitava määrä- tyksi ajaksi. Suuntauksen kääntämiseksi turhien tulostusten osalta nykypäivänä suositaan paperittoman toimiston konseptia sekä ekologisista syistä että kus- tannustehokkuuden takia. Täydellistä paperittomuutta ei ole kuitenkaan help- po saavuttaa, sillä suuri osa ihmisistä on tottunut käyttämään sekä täyttämään paperilomakkeita. Lisäksi on tilanteita, joissa sähköinen lomake ei myöskään toimi riittävän tehokkaasti tai käyttäminen voi olla mahdotonta. Unohtaa ei myöskään sovi sitä, että paperittomuuden tavoittelun on lähdettävä liikkeelle lomaketta käyttävästä tahosta. Käyttötapauksia, joihin sähköinen lomake ei sovellu kovinkaan hyvin, ovat esim. erilaiset paikan päällä täytettävät kyselyt, esitäytettävät asiointi-, hake- mus- ja arvontalomakkeet. Lomakkeiden sähköinen täyttäminen paikan päällä olisi mahdollista toteuttaa, mutta se vaatisi huomattavia henkilöstö- ja laitteis- toresursseja. Paperilomakkeella saavutetaan myös parempi hyötysuhde, koska paperi on halpaa ja lomake voidaan jakaa useammalle ihmiselle täytettäväksi yhtä aikaa. Lisäksi paperilomake voidaan jakaa “anna ja unohda”-periaatteella: lomake annetaan ihmiselle, ja samalla häntä pyydetään palauttamaan se täyt- tämisen jälkeen palautuslaatikkoon tms. paikkaan. Erillisen laitteen vaativaa sähköistä lomaketta ei voida laitteen hinnan takia käsitellä näin vapaasti, koska laite on kuitenkin saatava takaisin. Täyttämätön paperilomake sen sijaan on hukattavissa. Toimistot toimivat nykyään pitkälti sähköisesti, ja tästä johtuen lomakkeet on saatava digitaaliseen muotoon,
Recommended publications
  • Video-Based Tracking of Physical Documents on a Desk
    FACULTY OF ENGINEERING Department of Electronics and Informatics Video-based Tracking of Physical Documents on a Desk Graduation thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Applied Sciences and Engineering: Applied Computer Science Sone Nsime Ngole Promoter: Prof. Dr. Beat Signer Advisor: Dr. Bruno Dumas JANUARY 2014 FACULTEIT INGENIEURSWETENSCHAPPEN Vakgroep Elektronica en Informatica Video-based Tracking of Physical Documents on a Desk Afstudeer eindwerk ingediend in gedeeltelijke vervulling van de eisen voor het behalen van de graad Master of Science in de Ingenieurswetenschappen: Toegepaste Computerwetenschappen Sone Nsime Ngole Promoter: Prof. Dr. Beat Signer Advisors: Dr. Bruno Dumas JANUARI 2014 Abstract Currently, physical and digital documents tend to stay in their world, without any direct relationship linking them. How- ever, a lot of physical documents are printed from digital doc- uments and conversely, digital documents can be scanned ver- sions of printed papers. Furthermore, the organization of piles of physical documents on a desk hints at shared semantic fea- tures between a set of documents. This thesis explores an ap- proach to link or re-link physical documents with their digital counterpart. This integration will be done by designing a sys- tem that uses an overhead digital camera to recognize, identify, localize and track paper documents on the physical desk space in real time (or offline by means of a pre-recorded video stream) and automatically matching them against an image database of electronic documents. The system locates each paper docu- ment that is present on the desk and reconstructs a complete configuration of documents on the desk at each instant in time.
    [Show full text]
  • Diplomová Práce Inteligentní Vyhledávání Dokumentů
    Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra informatiky a výpočetní techniky Diplomová práce Inteligentní vyhledávání dokumentů Plzeň 2017 Jiří Martínek Místo této strany bude zadání práce. Prohlášení Prohlašuji, že jsem diplomovou práci vypracoval samostatně a výhradně s použitím citovaných pramenů. V Plzni dne 16. května 2017 Jiří Martínek Poděkování Na tomto místě bych chtěl poděkovat svému vedoucímu diplomové práce doc. Ing. Pavlu Královi Ph.D. za odborné vedení, za pomoc a rady při zpracování této práce. Jiří Martínek Abstract This diploma thesis deals with information retrieval in a set of scanned documents in form of raster images. First, the images are converted into the text form using optical character recognition (OCR) methods. Unfortunately, there are errors in conversion, therefore another part of the work deals with error correction. This thesis propose several error correction methods that are combined to achieve the best possible results. Then, the corrected documents are indexed into the full-text Apache Solr database. The resulting application allows to efficiently find the requested document according to a full-text query. Error correction of the OCR output helps to increase the accuracy of full-text search. The accuracy of the system was experimentally verified on the real data. Abstrakt Tato diplomová práce se zabývá problematikou vyhledávání informací v množině naskenovaných dokumentů v podobě rastrových obrázků. Nejdříve je proto proveden převod rastrového obrázku do textové podoby pomocí metod optického rozpoznávání znaků (OCR). V rámci převodu bohužel dochází k chybám, proto se další část práce zabývá samotnou opravou chyb. V práci je navrženo několik metod oprav chyb, které jsou zkombinovány pro dosažení co nejlepšího výsledku.
    [Show full text]
  • OCR Pwds and Assistive Qatari Using OCR Issue No
    Arabic Optical State of the Smart Character Art in Arabic Apps for Recognition OCR PWDs and Assistive Qatari using OCR Issue no. 15 Technology Research Nafath Efforts Page 04 Page 07 Page 27 Machine Learning, Deep Learning and OCR Revitalizing Technology Arabic Optical Character Recognition (OCR) Technology at Qatar National Library Overview of Arabic OCR and Related Applications www.mada.org.qa Nafath About AboutIssue 15 Content Mada Nafath3 Page Nafath aims to be a key information 04 Arabic Optical Character resource for disseminating the facts about Recognition and Assistive Mada Center is a private institution for public benefit, which latest trends and innovation in the field of Technology was founded in 2010 as an initiative that aims at promoting ICT Accessibility. It is published in English digital inclusion and building a technology-based community and Arabic languages on a quarterly basis 07 State of the Art in Arabic OCR that meets the needs of persons with functional limitations and intends to be a window of information Qatari Research Efforts (PFLs) – persons with disabilities (PWDs) and the elderly in to the world, highlighting the pioneering Qatar. Mada today is the world’s Center of Excellence in digital work done in our field to meet the growing access in Arabic. Overview of Arabic demands of ICT Accessibility and Assistive 11 OCR and Related Through strategic partnerships, the center works to Technology products and services in Qatar Applications enable the education, culture and community sectors and the Arab region. through ICT to achieve an inclusive community and educational system. The Center achieves its goals 14 Examples of Optical by building partners’ capabilities and supporting the Character Recognition Tools development and accreditation of digital platforms in accordance with international standards of digital access.
    [Show full text]
  • Reconocimiento De Escritura Lecture 4/5 --- Layout Analysis
    Reconocimiento de Escritura Lecture 4/5 | Layout Analysis Daniel Keysers Jan/Feb-2008 Keysers: RES-08 1 Jan/Feb-2008 Outline Detection of Geometric Primitives The Hough-Transform RAST Document Layout Analysis Introduction Algorithms for Layout Analysis A `New' Algorithm: Whitespace Cuts Evaluation of Layout Analyis Statistical Layout Analysis OCR OCR - Introduction OCR fonts Tesseract Sources of OCR Errors Keysers: RES-08 2 Jan/Feb-2008 Outline Detection of Geometric Primitives The Hough-Transform RAST Document Layout Analysis Introduction Algorithms for Layout Analysis A `New' Algorithm: Whitespace Cuts Evaluation of Layout Analyis Statistical Layout Analysis OCR OCR - Introduction OCR fonts Tesseract Sources of OCR Errors Keysers: RES-08 3 Jan/Feb-2008 Detection of Geometric Primitives some geometric entities important for DIA: I text lines I whitespace rectangles (background in documents) Keysers: RES-08 4 Jan/Feb-2008 Outline Detection of Geometric Primitives The Hough-Transform RAST Document Layout Analysis Introduction Algorithms for Layout Analysis A `New' Algorithm: Whitespace Cuts Evaluation of Layout Analyis Statistical Layout Analysis OCR OCR - Introduction OCR fonts Tesseract Sources of OCR Errors Keysers: RES-08 5 Jan/Feb-2008 Hough-Transform for Line Detection Assume we are given a set of points (xn; yn) in the image plane. For all points on a line we must have yn = a0 + a1xn If we want to determine the line, each point implies a constraint yn 1 a1 = − a0 xn xn Keysers: RES-08 6 Jan/Feb-2008 Hough-Transform for Line Detection The space spanned by the model parameters a0 and a1 is called model space, parameter space, or Hough space.
    [Show full text]
  • Desenvolvimento De Um Sistema De Apoio Ao Arquivo E À Gestão De
    Diogo Alexandre Nascimento Alves Licenciatura em Ciências da Engenharia Electrotécnica e de Computadores [Nome completo do autor] Desenvolvimento de um Sistema de Apoio ao Arquivo e à [Habilitações Académicas]Gestão de Blocos Histológicos [Nome completo do autor] [Habilitações Académicas] [Nome[Título completo da Tese] do autor] Dissertação para obtenção do Grau de Mestre em [Habilitações Académicas] Engenharia Electrotécnica e de Computadores [Nome completo do autor] Orientador: José Manuel Matos Ribeiro da Fonseca, Professor Auxiliar com Dissertação para obtenção do Grau de Mestre em [Habilitações Agregação,Académicas] Faculdade de Ciências e Tecnologia da Universidade [Engenharia Informática] Nova de Lisboa Co-orientador[Nome completo: André do Teixeira autor] Bento Damas Mora, Professor Auxiliar, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa [Habilitações Académicas] [Nome completo do autor] [Habilitações Académicas] [Nome completo do autor] [Habilitações Académicas] i Setembro, 2018 Desenvolvimento de um Sistema de Apoio ao Arquivo e á Gestão de Blocos Histológicos Copyright © Diogo Alexandre Nascimento Alves, Faculdade de Ciências e Tecnologia, Univer- sidade Nova de Lisboa. A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa têm o direito, perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de exemplares impres- sos reproduzidos em papel ou de forma digital, ou por qualquer outro meio conhecido ou que venha a ser inventado, e de a divulgar através de repositórios
    [Show full text]
  • Download Resume
    [email protected] +919635337441 Bibhash Chandra Mitra A dynamic professional, targeting challenging & rewarding opportunities in Machine Learning and Artificial Intelligence with an organization of high repute and big challenges preferably in Pune, Bangalore or Kolkata. https://www.linkedin.com/in/bibhashmitra220896 https://github.com/Bibyutatsu https://bibyutatsu.github.io https://bibyutatsu.github.io/Blogs Profile Summary A focused and goal-oriented professional with 1+ year of industrial exposure in Data Science, Machine Learning-supervised/unsupervised, Artificial Intelligence and Algorithms Alumni of IIT, Kharagpur ; graduated with a Major in Aerospace Engineering and a Minor in Computer Science Engineering Currently associated with Innoplexus Consulting Services Pvt. Ltd.; working on critical projects likeNovel Drug Discovery with AI and Cluster- ing Graph Networks for Entity Normalisation Received rating of 5/5 employee for “Outstanding” performance for two quarters (Jun’19 to Dec’19) Expertise in OCR Engines, Deep Learning, Data Exploration and Visualization, Predictive Modelling and Optimization Proficiency in using various AI techniques such as RCNN, VAE, GAN and RL Worked on projects such as ‘Table Detection and Extraction using FRCNN and Image processing’ & ‘Hierarchy using Graphs Hands-on experience in Docker, Virtual Environments, Anaconda, DGX-1, Tesla V100 Modeling: Designing and implementing statistical/predictive models and cutting edge algorithms by utilizing diverse sources of data to predict demand,
    [Show full text]
  • Insight MFR By
    Manufacturers, Publishers and Suppliers by Product Category 11/6/2017 10/100 Hubs & Switches ASCEND COMMUNICATIONS CIS SECURE COMPUTING INC DIGIUM GEAR HEAD 1 TRIPPLITE ASUS Cisco Press D‐LINK SYSTEMS GEFEN 1VISION SOFTWARE ATEN TECHNOLOGY CISCO SYSTEMS DUALCOMM TECHNOLOGY, INC. GEIST 3COM ATLAS SOUND CLEAR CUBE DYCONN GEOVISION INC. 4XEM CORP. ATLONA CLEARSOUNDS DYNEX PRODUCTS GIGAFAST 8E6 TECHNOLOGIES ATTO TECHNOLOGY CNET TECHNOLOGY EATON GIGAMON SYSTEMS LLC AAXEON TECHNOLOGIES LLC. AUDIOCODES, INC. CODE GREEN NETWORKS E‐CORPORATEGIFTS.COM, INC. GLOBAL MARKETING ACCELL AUDIOVOX CODI INC EDGECORE GOLDENRAM ACCELLION AVAYA COMMAND COMMUNICATIONS EDITSHARE LLC GREAT BAY SOFTWARE INC. ACER AMERICA AVENVIEW CORP COMMUNICATION DEVICES INC. EMC GRIFFIN TECHNOLOGY ACTI CORPORATION AVOCENT COMNET ENDACE USA H3C Technology ADAPTEC AVOCENT‐EMERSON COMPELLENT ENGENIUS HALL RESEARCH ADC KENTROX AVTECH CORPORATION COMPREHENSIVE CABLE ENTERASYS NETWORKS HAVIS SHIELD ADC TELECOMMUNICATIONS AXIOM MEMORY COMPU‐CALL, INC EPIPHAN SYSTEMS HAWKING TECHNOLOGY ADDERTECHNOLOGY AXIS COMMUNICATIONS COMPUTER LAB EQUINOX SYSTEMS HERITAGE TRAVELWARE ADD‐ON COMPUTER PERIPHERALS AZIO CORPORATION COMPUTERLINKS ETHERNET DIRECT HEWLETT PACKARD ENTERPRISE ADDON STORE B & B ELECTRONICS COMTROL ETHERWAN HIKVISION DIGITAL TECHNOLOGY CO. LT ADESSO BELDEN CONNECTGEAR EVANS CONSOLES HITACHI ADTRAN BELKIN COMPONENTS CONNECTPRO EVGA.COM HITACHI DATA SYSTEMS ADVANTECH AUTOMATION CORP. BIDUL & CO CONSTANT TECHNOLOGIES INC Exablaze HOO TOO INC AEROHIVE NETWORKS BLACK BOX COOL GEAR EXACQ TECHNOLOGIES INC HP AJA VIDEO SYSTEMS BLACKMAGIC DESIGN USA CP TECHNOLOGIES EXFO INC HP INC ALCATEL BLADE NETWORK TECHNOLOGIES CPS EXTREME NETWORKS HUAWEI ALCATEL LUCENT BLONDER TONGUE LABORATORIES CREATIVE LABS EXTRON HUAWEI SYMANTEC TECHNOLOGIES ALLIED TELESIS BLUE COAT SYSTEMS CRESTRON ELECTRONICS F5 NETWORKS IBM ALLOY COMPUTER PRODUCTS LLC BOSCH SECURITY CTC UNION TECHNOLOGIES CO FELLOWES ICOMTECH INC ALTINEX, INC.
    [Show full text]
  • Extracción De Eventos En Prensa Escrita Uruguaya Del Siglo XIX Por Pablo Anzorena Manuel Laguarda Bruno Olivera
    UNIVERSIDAD DE LA REPÚBLICA Extracción de eventos en prensa escrita Uruguaya del siglo XIX por Pablo Anzorena Manuel Laguarda Bruno Olivera Tutora: Regina Motz Informe de Proyecto de Grado presentado al Tribunal Evaluador como requisito de graduación de la carrera Ingeniería en Computación en la Facultad de Ingeniería ​ ​ 1 1. Resumen ​ ​ En este proyecto, se plantea el diseño y la implementación de un sistema de extracción de eventos en prensa uruguaya del siglo XIX digitalizados en formato de imagen, generando clusters de eventos agrupados según su similitud semántica. La solución propuesta se divide en 4 módulos: módulo de preprocesamiento compuesto por el OCR y un corrector de texto, módulo de extracción de eventos implementado en Python y utilizando Freeling1, módulo de clustering de eventos implementado en Python utilizando Word Embeddings y por último el módulo de etiquetado de los clusters también utilizando Python. Debido a la cantidad de ruido en los datos que hay en los diarios antiguos, la evaluación de la solución se hizo sobre datos de prensa digital de la actualidad. Se evaluaron diferentes medidas a lo largo del proceso. Para la extracción de eventos se logró conseguir una Precisión y Recall de un 56% y 70% respectivamente. En el caso del módulo de clustering se evaluaron las medidas de Silhouette Coefficient, la Pureza y la Entropía, dando 0.01, 0.57 y 1.41 respectivamente. Finalmente se etiquetaron los clusters utilizando como etiqueta las secciones de los diarios de la actualidad, realizándose una evaluación del etiquetado. 1 http://nlp.lsi.upc.edu/freeling/demo/demo.php 2 Índice general 1.
    [Show full text]
  • A Java Autopilot for Parrot A.R. Drone Designed with Diaspec
    UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE INFORMÁTICA CURSO DE ENGENHARIA DE COMPUTAÇÃO JOÃO VICTOR PORTAL A Java Autopilot for Parrot A.R. Drone Designed with DiaSpec Trabalho de Graduação. Prof. Dr. Carlos Eduardo Pereira Orientador Porto Alegre, novembro de 2011. UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL Reitor: Prof. Carlos Alexandre Netto Vice-Reitor: Prof. Rui Vicente Oppermann Pró-Reitora de Graduação: Profa. Valquiria Link Bassani Diretor do Instituto de Informática: Prof. Luís da Cunha Lamb Coordenador do ECP: Prof. Sérgio Luís Cechin Bibliotecária-Chefe do Instituto de Informática: Beatriz Regina Bastos Haro SUMMARY LISTA DE ABREVIATURAS E SIGLAS..........................................................................................4 LISTA DE FIGURAS............................................................................................................................5 RESUMO...............................................................................................................................................6 ABSTRACT...........................................................................................................................................7 1 CONTEXT.........................................................................................................................................8 1.1 Motivation.......................................................................................................................................8 1.2 Objectives........................................................................................................................................8
    [Show full text]
  • JETIR Research Journal
    © 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162) IMAGE TEXT CONVERSION FROM REGIONAL LANGUAGE TO SPEECH/TEXT IN LOCAL LANGUAGE 1Sayee Tale,2Manali Umbarkar,3Vishwajit Singh Javriya,4Mamta Wanjre 1Student,2Student,3Student,4Assistant Professor 1Electronics and Telecommunication, 1AISSMS, Institute of Information Technology, Pune, India. Abstract: The drivers who drive in other states are unable to recognize the languages on the sign board. So this project helps them to understand the signs in different language and also they will be able to listen it through speaker. This paper describes the working of two module image processing module and voice processing module. This is done majorly using Raspberry Pi using the technology OCR (optical character recognition) technique. This system is constituted by raspberry Pi, camera, speaker, audio playback module. So the system will help in decreasing the accidents causes due to wrong sign recognition. Keywords: Raspberry pi model B+, Tesseract OCR, camera module, recording and playback module,switch. 1. Introduction: In today’s world life is too important and one cannot loose it simply in accidents. The accident rates in today’s world are increasing day by day. The last data says that 78% accidents were because of driver’s fault. There are many faults of drivers and one of them is that they are unable to read the signs and instructions written on boards when they drove into other states. Though the instruction are for them only but they are not able to make it. So keeping this thing in mind we have proposed a system which will help them to understand the sign boards written in regional language.
    [Show full text]
  • Optical Character Recognition As a Cloud Service in Azure Architecture
    International Journal of Computer Applications (0975 – 8887) Volume 146 – No.13, July 2016 Optical Character Recognition as a Cloud Service in Azure Architecture Onyejegbu L. N. Ikechukwu O. A. Department of Computer Science, Department of Computer Science, University of Port Harcourt. University of Port Harcourt. Port Harcourt. Rivers State. Nigeria. Port Harcourt. Rivers State. Nigeria ABSTRACT The dawn of digital computers has made it unavoidable that Cloud computing and Optical Character Recognition (OCR) everything processed by the digital computer must be technology has become an extremely attractive area of processed in digital form. For example, most famous libraries research over the last few years. Sometimes it is difficult to in the world like the Boston public library has over 6 million retrieve text from the image because of different size, style, books, for public consumption, inescapably has to change all orientation and complex background of image. There is need its paper-based books into digital documents in order that they to convert paper books and documents into text. OCR is still could be stored on a storage drive. It can also be projected that imperfect as it occasionally mis-recognizes letters and falsely every year over 200 million books are being published[22], identifies scanned text, leading to misspellings and linguistics many of which are disseminated and published on papers [6]. errors in the OCR output text. A cloud based Optical Thus, for several document-input jobs, Opitcal Character Character Recognition Technology was used. This was Reconigtion is the utmost economical and swift process powered on Microsoft Windows Azure in form of a Web obtainable.
    [Show full text]
  • An Open-Source Tool Providing a (Semi-)Automatic OCR Workflow For
    Article OCR4all - An Open-Source Tool Providing a (Semi-)Automatic OCR Workflow for Historical Printings Christian Reul 1, Dennis Christ 1, Alexander Hartelt 1, Nico Balbach 1, Maximilian Wehner 1, Uwe Springmann 2, Christoph Wick 1, Christine Grundig 3, Andreas Büttner 4, and Frank Puppe 1 1 Chair for Artificial Intelligence and Applied Computer Science, University of Würzburg, 97074 Würzburg, Germany 2 Center for Information and Language Processing, LMU Munich, 80538 Munich, Germany 3 Institute for Modern Art History, University of Zurich, 8006 Zurich, Switzerland 4 Institute for Philosophy, University of Würzburg, 97074 Würzburg, Germany * Correspondence: [email protected] Version September 11, 2019 submitted to Appl. Sci. Abstract: Optical Character Recognition (OCR) on historical printings is a challenging task mainly due to the complexity of the layout and the highly variant typography. Nevertheless, in the last few years great progress has been made in the area of historical OCR, resulting in several powerful open-source tools for preprocessing, layout recognition and segmentation, character recognition and post-processing. The drawback of these tools often is their limited applicability by non-technical users like humanist scholars and in particular the combined use of several tools in a workflow. In this paper we present an open-source OCR software called OCR4all, which combines state-of-the-art OCR components and continuous model training into a comprehensive workflow. A comfortable GUI allows error corrections not only in the final output, but already in early stages to minimize error propagations. Further on, extensive configuration capabilities are provided to set the degree of automation of the workflow and to make adaptations to the carefully selected default parameters for specific printings, if necessary.
    [Show full text]