Ultrasonography of the Small Intestine in Small Animals. In

Total Page:16

File Type:pdf, Size:1020Kb

Ultrasonography of the Small Intestine in Small Animals. In Published in IVIS with the permission of the editor Close window to return to IVIS Ultrasonography of the small intestine in small animals Examination techniques Ideally, the patient should be fasted overnight to reduce the interference with gastric contents and intraluminal gas. However, non-fasted dogs may show adequate image quality. The intra-luminal gas causes imaging artifacts, such as reverberation, comet tail and acoustic shadowing. Sedation is not usually necessary, but when needed, xylazine Amalia Agut, DVM, PhD, Dipl. ECVDI should be avoided because it causes gastric stasis The Veterinary Faculty, Department of Medicine leading to massive gaseous distension (1). and Animal Surgery, University of Murcia, Spain In 1981 Dr. Agut graduated from the University of The animal is typically placed in dorsal recumb- Zaragoza in Spain and obtained her PhD in 1984. ency, although the position may depend on the She joined the University of Murcia in 1985 and is patient’s restlessness, discomfort, or on the operat- currently Lecturer in Radiology. She received her Diploma in the European College of Veterinary or’s preferences. The examination with the patient Diagnostic Imaging (ECVD) in 1998. Dr. Agut’s main standing, or via a hole in the supporting table, the interests lie in the fields of ultrasound in small recumbent side is useful. This makes use of the animals. intraluminal fluid gravitating to the dependent wall of the stomach or intestinal tract where it serves as an acoustic window (2). KEY POINTS Five MHz, 7.5 MHz or higher frequency transducers ± Ultrasound examination of the small intestine has are used, with higher frequency transducers offer- become routine in investigation of the intestinal ing the best resolution of bowel wall layers (1,2). diseases Transducers with small footprint are useful to ± The principal limitation of intestinal tract ultrasound is evaluate the proximal duodenum when the probe the presence of luminal gas must be placed below the rib cage or between ribs (2). ± Radiographs should precede the ultrasound examination to evaluate the amount, location and pattern of intestinal gas Ultrasonographic anatomy ± Ultrasound examination can provide information of of the small intestine bowel wall thickness, layering of the wall, peristalsis, The duodenum is located in the right side of the and luminal contents abdomen, beginning from between the last ribs and then followed distally along the right body wall. The other portions of small bowel are assessed moving the transducer from right to left and left to 20 / / Veterinary Focus / / Vol 19 No 1 / / 2009 Published in IVIS with the permission of the editor Close window to return to IVIS Figure 1. Figure 2. Ultrasonographic layers of the intestinal wall. Ultrasound image of the ileocolic junction of a cat. s (submucosa), m (musculature). right, and then from cranial to caudal to image the Wall thickness entire small intestinal tract. Sections of small The thickness of the bowel wall is measured intestine will be viewed sagittally, transversely and between the outer echogenic serosal surface and in various oblique images, depending on the trans- the mucosal-luminal interface (Figure 1). In dogs, ducer and intestinal tract position (2). The ileum the intestinal wall is between 2-6 mm thick depend- can be identified by its location in the right mid-to ing on the size of the dog and part of the small cranial abdomen and its relationship with the bowel (Table 1 and 2) (5), while in cats a mean ascending colon and cecum. In the intestinal tract of 2 mm thick has been evaluated (Table 1) (6). wall layers, wall thickness, peristalsis, and luminal contents must be assessed (1). Luminal patterns The ultrasonographic appearance of the small Layers of the bowel wall intestine depends on the type and amount of lumin- Five ultrasonographic layers can be identified al content (Figure 3). When empty, a “mucous in the small bowel, corresponding from the pattern” is present, the bowel lumen appears as a lumen outward, to the luminal/mucosal interface, hyperechoic core ("mucosal stripe") surrounded mucosa, submucosa, muscular, and the serosa layer by a hypoechoic halo of the bowel wall. This (Figure 1). The mucosa and muscular layers are hyperechoic core represents mucus and small air hypoechoic, whereas mucosal surface, submucosa bubbles trapped at the mucosal-luminal interface. and serosa are hyperechoic (3). The mucosal layer When fluid is present in the bowel lumen (“fluid is the thickest layer of the intestinal wall. The ileum pattern”), an anechoic area is seen between the in cats can be identified by a thicker echogenic walls of the bowel that appears tubular in long axis and irregular submucosal layer (Figure 2) (4). views, and circular in short axis views. Gas-filled Table 1. Table 2. Normal range of wall thickness for different Normal range of wall thickness (mm) for the segments of the intestinal tract in cats (4) and different segments of the intestinal tract in dogs dogs (2) based on body weight (5) Wall thickness Cats Dogs Body weight Duodenum Body Jejunum (mm) (kg) weight (kg) Duodenum 2.0 - 2.4 3 - 6 < 20 < 5.1 < 20 < 4.1 Jejunum 2.1 - 2.5 2 - 5 20 - 29.9 < 5.3 20 - 39.9 < 4.4 Ileum 2.5 - 3.2 2 - 4 > 30 < 6 > 40 < 4.7 Vol 19 No 1 / / 2009 / / Veterinary Focus / / 21 Published in IVIS with the permission of the editor Close window to return to IVIS A A B B Figure 3. Figure 4. Luminal Patterns: A.- Longitudinal sonogram of a normal duo- A.- Transverse and B.- Longitudinal sonogram of a jejunal denum. The mucous (m) and gas (g) patterns can be observed. intussusception in a 5-year old German Shepherd. The hypo- B.- Transverse sonogram of jejunum segments. Fluid pattern is echoic and hyperechoic rings with hyperechoic center (Fat) is noted. consistent with intussusceptions. small intestinal loops cause a highly echogenic within the jejunum, ileocolic or ileocecal junctions interface with distal acoustic shadowing or reverb- or within the colon (colocolic) and rarely do they eration (“gas pattern”) (7). involve the stomach or duodenum. They often occur in puppies and kittens secondary to primary Peristalsis intestinal disease such as enteritis from intestinal The mean number of peristaltic contractions parasites, bacterial or viral infections. In older observed in the proximal duodenum is four to patients, the intussusceptions can occur close to five per minute and two contractions per minute pseudocysts, enlarged lymph nodes, foreign bodies in the jejunum and ileum (7). or tumoral mass (2). Ultrasonographic patterns of Intussusceptions have a characteristic ultrasound small intestinal diseases appearance that in most cases allows a definitive Intussusception diagnosis to be made with confidence (8). Intussusception is the invagination of a portion of the intestine, called intussusceptum, into the The most common sonographic pattern observed in lumen of an adjacent segment of intestine, called transverse sections of the bowel is a target-like mass intussuscipiens. Intussusceptions usually occur consisting of multiple hyperechoic and hypoechoic 22 / / Veterinary Focus / / Vol 19 No 1 / / 2009 Published in IVIS with the permission of the editor Close window to return to IVIS ULTRASONOGRAPHY OF THE SMALL INTESTINE IN SMALL ANIMALS A Figure 6. The linear foreign body appears as a bright linear interface in the bowel lumen (arrow). with irreducible intussusceptions (10). However, the recognition of blood flow in the intussuscepted bowel using color flow Doppler ultrasonography appears to be the most valuable factor for predict- B ing bowel reducibility (10). Figure 5. Foreign bodies Intestinal foreign bodies. A.- A rubber teat is in the lumen of a In small animals, foreign bodies are the main cause bowel loop as two ovoid echogenic lines (arrows). B.- A peach pit of mechanical obstruction. A distension of the small is in the lumen of the bowel, as curved interface with small intestine with fluid, gas, or a combination of both, is protuberances associated with strong acoustic shadowing. an indicator of mechanical ileus (obstruction). The degree of bowel distension depends on whether the obstruction is partial or complete, on the duration and the location of the obstruction. When the entire concentric rings around a hyperechoic center that small intestine is dilated, it is important to different- represents the entrapped mesentery (Figures 4A iate diffuse intestinal disease (e.g., parvovirus and 4B). In longitudinal sections, multiple hyper- infection) from a distal small bowel obstruction. echoic and hypoechoic parallel lines are usually Visualizing a small portion of normal, non-distend- visible. Ultrasonographic patterns may vary with ed small bowel (distal to the obstruction) is a clue the length of bowel involved, the duration of the that a distal obstruction is present (1). process, and the orientation of the scan plane in relation to the axis of the intussusception (9). So, Some foreign bodies like balls or rocks are easily in some instances the concentric or layered appear- identified by ultrasonography because of their ance is distorted and not as easily recognized characteristic shape and the presence of acoustic because of inflammation and edema. The presence shadowing. However, the balls may vary in echo- of a thin, external hypoechoic ring of the target-like genicity, depending on their physical properties mass is usually associated with reducible intus- (Figure 5A). Most of foreign bodies produce a susceptions. The appearance of fluid within the bright interface associated with strong shadowing. apex of the intussusceptions, absence of peristaltic Occasionally, the contour of the interface can activity of the bowel, and enlarged lymph nodes help identifying the type of foreign body in the in the intussuscepted intestine are compatible intestine (Figure 5B) (2). Vol 19 No 1 / / 2009 / / Veterinary Focus / / 23 Published in IVIS with the permission of the editor Close window to return to IVIS The ultrasonographic appearance of the perforated The presence of gastrointestinal parasites can mimic bowel wall by foreign bodies, such as sticks, is a the appearance of a linear foreign body (7,12).
Recommended publications
  • General Principles of GIT Physiology Objectives
    General Principles of GIT Physiology Objectives: ❖ Physiologic Anatomy of the Gastrointestinal Wall. ❖ The General & Specific Characteristics of Smooth Muscle. ❖ Neural & Hormonal Control of Gastrointestinal Function. ❖ Types of Neurotransmitters Secreted by Enteric Neurons. ❖ Functional Types of Movements in the GIT. ❖ Gastrointestinal Blood Flow "Splanchnic Circulation". ❖ Effect of Gut Activity and Metabolic Factors on GI Blood Flow. Done by : ➔ Team leader: Rahaf AlShammari ➔ Team members: ◆ Renad AlMigren, Rinad Alghoraiby ◆ Yazeed AlKhayyal, Hesham AlShaya Colour index: ◆ Turki AlShammari, Abdullah AlZaid ● Important ◆ Dana AlKadi, Alanoud AlEssa ● Numbers ◆ Saif AlMeshari, Ahad AlGrain ● Extra َ Abduljabbar AlYamani ◆ َوأن َّل ْي َ َس ِلْ ِْلن َسا ِنَ ِإََّلَ َما َس َع ىَ Gastrointestinal System: GIT Gastrointestinal System Associated Organs (Liver,gallbladder,pancreas,salivary gland) Gastrointestinal Function: ● The alimentary tract provides the body with a continual supply of water, electrolytes, and nutrients. To achieve this function, it requires: 1 Movement of food through the alimentary tract (motility). 2 Secretion of digestive juices and digestion of the food. 3 Absorption of water, various electrolytes, and digestive products. 4 Circulation of blood through the gastrointestinal organs to carry away the absorbed substances. ● Control of all these functions is by local, nervous, and hormonal systems. The Four Processes Carried Out by the GIT: 2 Physiologic Anatomy of the Gastrointestinal Wall ● The following layers structure the GI wall from inner surface outward: ○ The mucosa ○ The submucosa ○ Circular muscle layer ○ longitudinal muscle layer Same layers in Same layers Histology lecture Histology ○ The serosa. ● In addition, sparse bundles of smooth muscle fibers, the mucosal muscle, lie in the deeper layers of the mucosa. The General Characteristics of Smooth Muscle 1- Two Smooth Muscle Classification: Unitary type ● Contracts spontaneously in response to stretch, in the Rich in gap junctions absence of neural or hormonal influence.
    [Show full text]
  • General Principles of GIT Physiology
    LECTURE I: General Principles of GIT Physiology EDITING FILE IMPORTANT MALE SLIDES EXTRA FEMALE SLIDES LECTURER’S NOTES 1 GENERAL PRINCIPlES OF GIT PHYSIOLOGY Lecture One OBJECTIVES • Physiologic Anatomy of the Gastrointestinal Wall • The General/specific Characteristics of Smooth Muscle • Smooth muscle cell classifications and types of contraction • Muscle layers in GI wall • Electrical Activity of Gastrointestinal Smooth Muscle • Slow Waves and spike potentials • Calcium Ions and Muscle Contraction • Neural Control of Gastrointestinal Function-Enteric Nervous System (ENS) • Differences Between the Myenteric and Submucosal Plexuses • Types of Neurotransmitters Secreted by Enteric Neurons • Autonomic Control of the Gastrointestinal Tract • Hormonal Control of Gastrointestinal Motility • Functional Types of Movements in the GI Tract • Gastrointestinal Blood Flow (Splanchnic Circulation) • Effects of Gut Activity and Metabolic Factors on Gastrointestinal Blood Flow Case Study Term baby boy born to a 29 year old G2P1+ 0 by NSVD found to have features of Down’s syndrome. At 30 hours of age Baby was feeding well but didn’t pass meconium. On examination abdomen distended. Anus patent in normal position. During PR examination passed gush of meconium. Diagnosis: Hirschsprung disease. Figure 1-1 It is a developmental disorder characterized by the absence of ganglia in the distal colon, resulting in a functional obstruction. Gastrointestinal Tract (GIT) ★ A hollow tube from mouth to anus ★ Hollow organs are separated from each other at key locations by sphincters. System Gastrointestinal Accessory (Glands & Organs) ★ Produce secretions. Figure 1-2 2 GENERAL PRINCIPlES OF GIT PHYSIOLOGY Lecture One Functions of the GI System (Alimentary Tract) provides the body with a continual supply of Water Electrolytes Nutrients ★ To achieve this function it requires: 1 Movement of food through the alimentary tract (motility).
    [Show full text]
  • EFSUMB Recommendations and Guidelines for Gastrointestinal Ultrasound EFSUMB-Empfehlungen Und Leitlinien Des Gastrointestinalen
    Guidelines & Recommendations EFSUMB Recommendations and Guidelines for Gastrointestinal Ultrasound Part 1: Examination Techniques and Normal Findings (Long version) EFSUMB-Empfehlungen und Leitlinien des Gastrointestinalen Ultraschalls Teil 1: Untersuchungstechniken und Normalbefund (Langversion) Authors Kim Nylund1, Giovanni Maconi2, Alois Hollerweger3,TomasRipolles4, Nadia Pallotta5, Antony Higginson6, Carla Serra7, Christoph F. Dietrich8,IoanSporea9,AdrianSaftoiu10, Klaus Dirks11, Trygve Hausken12, Emma Calabrese13, Laura Romanini14, Christian Maaser15, Dieter Nuernberg16, Odd Helge Gilja17 Affiliations and Department of Clinical Medicine, University of Bergen, 1 National Centre for Ultrasound in Gastroenterology, Norway Haukeland University Hospital, Bergen, Norway Key words 2 Gastroenterology Unit, Department of Biomedical and guideline, ultrasound, gastrointestinal, examination Clinical Sciences, “L.Sacco” University Hospital, Milan, Italy technique, normal variants 3 Department of Radiology, Hospital Barmherzige Brüder, Salzburg, Austria received 24.06.2016 4 Department of Radiology, Hospital Universitario Doctor accepted 09.08.2016 Peset, Valencia, Spain 5 Department of Internal Medicine and Medical Specialties, Bibliography Sapienza University of Rome, Roma, Italy DOI https://doi.org/10.1055/s-0042-115853 6 Department of Radiology, Queen Alexandra Hospital, Published online: September 07, 2016 | Ultraschall in Med Portsmouth Hospitals NHS Trust, Portsmouth, United 2017; 38: e1–15 © Georg Thieme Verlag KG, Stuttgart · New Kingdom
    [Show full text]
  • Duodenal Leiomyoma: a Rare Cause of Gastrointestinal Haemorrhage S Sahu, S Raghuvanshi, P Sachan, D Bahl
    The Internet Journal of Surgery ISPUB.COM Volume 11 Number 2 Duodenal Leiomyoma: A Rare Cause Of Gastrointestinal Haemorrhage S Sahu, S Raghuvanshi, P Sachan, D Bahl Citation S Sahu, S Raghuvanshi, P Sachan, D Bahl. Duodenal Leiomyoma: A Rare Cause Of Gastrointestinal Haemorrhage. The Internet Journal of Surgery. 2006 Volume 11 Number 2. Abstract Benign neoplasms of smooth muscles of the duodenum are a rare condition. A 60-year-old male presented with recurrent history of melaena. Upper GI endoscopy showed a smooth bulging in the second part of the duodenum. Contrast enhanced CT scan of the abdomen showed a lobulated duodenal wall thickening in the second part of the duodenum causing luminal distortion without any exoenteric component and local infiltration, suggestive of leiomyoma. Awareness and proper evaluation of patients with upper gastrointestinal bleeding may help in diagnosing this rare condition. INTRODUCTION Figure 1 Leiomyomas are benign neoplasms of smooth muscles that Figure 1: Contrast enhanced computed tomography of the abdomen showing duodenal wall thickening in the second commonly arise in tissues with a high content of smooth part. muscles such as uterus. CASE A 60-year-old male presented with recurrent history of malaena and pain in the upper abdomen since one year. Examination revealed a moderate degree of pallor and tenderness in the right hypochondrium. Investigations showed a haemoglobin of 7.5gm/dl, a total leukocyte count of 9500/cu.mm and a differential count with neutrophils 63%, lymphocytes 31%, eosinophils 4% and basophils 2%. Liver and renal function tests were within normal limits. Upper GI endoscopy was planned which showed a smooth bulging in the second part of the duodenum.
    [Show full text]
  • Intestinal Organoids Generated from Human Pluripotent Stem Cells
    DOI: 10.31662/jmaj.2019-0027 https://www.jmaj.jp/ Review Article Intestinal Organoids Generated from Human Pluripotent Stem Cells Satoru Tsuruta1),2), Hajime Uchida3), and Hidenori Akutsu2) Abstract: The gastrointestinal system is one of the most complex organ systems in the human body, and consists of numerous cell types originating from three germ layers. To understand intestinal development and homeostasis and elucidate the patho- genesis of intestinal disorders, including unidentified diseases, several in vitro models have been developed. Human pluripo- tent stem cells (PSCs), including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), have remarkable developmental plasticity and possess the potential for a wide variety of applications. Three-dimensional organs, termed organoids and produced in vitro by PSCs, contain not only epithelium but also mesenchymal tissue and partially recapitu- late intestinal functions. Such intestinal organoids have begun to be applied in disease models and drug development and have contributed to a detailed analysis of molecular interactions and findings in the synergistic development of biomedicine for human digestive organs. In this review, we describe gastrointestinal organoid technology derived from PSCs and consid- er its potential applications. Key Words: intestinal organoids, embryonic stem cells, induced pluripotent stem cells, gastrointestinal disease, drug discovery Introduction the anterior to posterior axis. Accompanied by the develop- ment of the fetus, repeated gut
    [Show full text]
  • Correlation of Ultrasonographic Small Intestinal Wall Layering with Histology in Normal Dogs
    Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School 2015 Correlation of Ultrasonographic Small Intestinal Wall Layering with Histology in Normal Dogs Alexandre Benjamin Le Roux Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Veterinary Medicine Commons Recommended Citation Le Roux, Alexandre Benjamin, "Correlation of Ultrasonographic Small Intestinal Wall Layering with Histology in Normal Dogs" (2015). LSU Master's Theses. 1148. https://digitalcommons.lsu.edu/gradschool_theses/1148 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. CORRELATION OF ULTRASONOGRAPHIC SMALL INTESTINAL WALL LAYERING WITH HISTOLOGY IN NORMAL DOGS A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Masters of Science in The School of Veterinary Medicine through The Department of Veterinary Clinical Sciences by Alexandre Benjamin Le Roux DrMedVet, Ecole Nationale Vétérinaire de Nantes, 2006 May 2015 To my parents, my family and all my friends, for their continuous support… ii ACKNOWLEDGMENTS Foremost, I would like to express my deepest gratitude to the members of my committee, Drs. Lorrie Gaschen, Frederic Gaschen, Abbigail Granger and Nathalie Rademacher for the continuous support and guidance that they gave me through my residency and Master program research, as well as during the preparation of this manuscript.
    [Show full text]
  • Sympathetic Input Into the Enteric Nervous System Gut: First Published As 10.1136/Gut.47.Suppl 4.Iv33 on 1 December 2000
    Gut 2000;(Suppl IV)47:iv33–iv35 iv33 Sympathetic input into the enteric nervous system Gut: first published as 10.1136/gut.47.suppl_4.iv33 on 1 December 2000. Downloaded from O Lundgren Introduction nerves to the gut elicits a blood flow response The basic concepts of the autonomic nervous which is very characteristic. Immediately on system of organs and tissues were formulated electrically stimulating the splanchnic nerves, around the turn of the century and summa- pronounced vasoconstriction is observed rised in a classical monograph by Langley which, however, subsides within a few minutes (1921).1 The detailed distribution of the to reach a steady state level of blood flow. It sympathetic nerves was, however, not eluci- seems probable that flow during steady state dated until it became possible to stain sympa- represents the “physiological” response to thetic neurones specifically using the Falck- nerve activation. Intestinal flow resistance is Hillarp technique. When this technique was thus only moderately increased (2–3 times) applied to the gastrointestinal tract the picture even when stimulating the sympathetic vaso- seen was in some respects surprising. At the constrictor nerves at high rates (8–16 Hz). time it was generally believed that most organs When investigating blood flow distribution and tissues had a dual innervation (sympa- within the intestinal wall it has been demon- thetic and parasympathetic) with opposite strated that villus blood flow is not under neu- eVects on function. It seemed, therefore, ral influence during the steady state part of puzzling when the Falck-Hillarp technique vasoconstriction. The decrease in blood flow revealed that innervation of a major part of the occurs in the crypts and muscle layers.3 gastrointestinal wall, the smooth muscle layers, The sympathetic nerves not only control was very scarce.
    [Show full text]
  • The Digestive, Reproductive, and Urinary Systems
    The Digestive, Reproductive, and Urinary Systems THE DIGESTIVE SYSTEM Your body is constantly using energy, even when you’re at rest. Your cells use energy to carry out the normal functions of protein synthesis, cell maintenance and repair, and their own particular functions. On a larger scale, processes such as breathing, pumping of the heart, maintenance of normal levels of substances within the body, and digestion and absorption of foods are vital to life. All these processes continue while you’re sleeping. Because your body can’t man- ufacture energy, it must obtain that energy from elsewhere. In all animals, energy comes from food. Food also provides the body with fresh raw materials for growth, maintenance, and repair of body structures. The digestive system deals with the intake, physical breakdown, chemical digestion, and absorption of food, along with the elimination of waste products created by this process. The digestive system also eliminates certain toxic substances and secretes hormones it uses to regulate itself. The Oral Cavity The mouth, or oral cavity, consists of the lips, teeth and gums, tongue, oropharynx, and the associated salivary glands. The lips are a zone of transition from the skin of the face to the mucous membrane (a general term denoting the surface of an organ lubricated by moisture) lining the gums and the inside of your cheeks. Several layers of muscle help the lips grab and retain food and water within the mouth. 1 Different animals have different degrees of lip muscle devel- opment. Grazing animals like cattle, sheep, and horses have muscular lips that are prehensile (i.e., adapted to grasp plant material).
    [Show full text]
  • IBD in Canine & Human Bowel, a Comparison
    IBD in Canine & Human Bowel, a comparison Introduction: Ultrasound of small intestine has become routine investigation in small animals, becoming more common with human due to improved imaging. It is limited by bowel gas. Ultrasound can provide information on bowel wall thickness, layering of the wall, peristalsis and luminal contents. Canine intestinal ultrasound plays an important role in the recognition, diagnosis, and monitoring of many gastroenterological diseases and is becoming increasingly important in the management of inflammatory bowel disease (IBD). Normal Canine Bowel IBD is an irritant disease that results in inflamed cells within the gastrointestinal wall. Suggestions for the cause are hypersensitivity to certain foods, bacteria, parasites or other foreign elements. There is thickening of the bowel. Also two patterns of increased mucosal echogenicity have been reported, hyperechoic speckles and hyperechoic striations. Canine bowel showing mucosal hyperechoic striations, lymphagiectasia. Thickened jejunal segments with hyperechoic striations within the mucosal layer represent dilated lacteals. Hyperechoic speckles within the mucosa are a sensitive parameter for determining the presence of inflammatory disease, may represent chronic changes that may require a longer period of time to resolve Normal jejunum/ileum wall thickness is 3-3.8mm and 1.5mm for Striated Canine Bowel large intestine A normal, hypoechoic intestinal mucosa in dogs with chronic diarrhoea is a sensitive and specificity finding for the diagnosis Speckled Canine Bowel of food-responsive disease. Human Bowel: Using ultrasound, bowel wall thickness is the most common indicator for the detection of inflammatory activity within the intestine. Wall thickness of the alimentary tract differs by region and depends on the degree of distension and contraction and probe compression Common cut off values are 2 mm of wall thickness for the small intestine and 3-4 mm for the large intestine, although there is no standardisation.
    [Show full text]
  • Rectosigmoidal Manifestations of Venous Malformations: MR Imaging Findings and Interdisciplinary Therapeutic Modalities
    www.nature.com/scientificreports Corrected: Author Correction OPEN Rectosigmoidal manifestations of venous malformations: MR imaging fndings and interdisciplinary therapeutic modalities Richard Brill1*, Eva Brill2, Wibke Uller 3, Veronika Teusch3, Hubert Gufer1, Simone Hammer3, Claudia Fellner3, Katja Evert4, Constantin Goldann1, Maximilian Helm1, Jonas Rosendahl5 & Walter A. Wohlgemuth1 The aim of this study was to identify the frequency of rectosigmoidal involvement in patients with venous malformations (VM) of the lower extremities and to demonstrate multidisciplinary therapeutic options. The medical records and magnetic resonance images (MRI) of patients with VM of the lower extremities, over a six-year period, were reviewed retrospectively in order to determine the occurrence of rectosigmoidal involvement. Vascular interventions, surgical treatments, percutaneous and hybrid (endoscopy-guided angiography) sclerotherapy and procedural complications (according to Clavien- Dindo classifcation) were also noted. Of the 378 patients with vascular malformation of the lower limbs, 19 patients (5%) had documented venous rectosigmoidal malformation. All of these 19 patients reported episodes of rectal bleeding, while seven patients (36.8%) also had anemia. All patients underwent endoscopy. By endoscopy, seven patients (36.8%) showed discreet changes, and 12 patients (63.2%) showed pronounced signs of submucosal VM with active (47.3%) or previous (15.7%) bleeding. Treatment was performed in all patients with pronounced fndings. Six patients underwent endoscopy- guided hybrid sclerotherapy, one patient underwent endoscopic tissue removal, one patient received percutaneous sclerotherapy and one patient received a combination of transvenous embolization and hybrid sclerotherapy. Three patients required open surgery. No complications occurred after conservative treatments; however, one complication was reported after open surgery. None of the treated patients reported further bleeding and anemia at the end of the follow-up period.
    [Show full text]
  • The Gastrointestinal System
    U.S. ARMY MEDICAL DEPARTMENT CENTER AND SCHOOL FORT SAM HOUSTON, TEXAS 78234-6100 THE GASTROINTESTINAL SYSTEM SUBCOURSE MD0581 EDITION 100 DEVELOPMENT This subcourse is approved for resident and correspondence course instruction. It reflects the current thought of the Academy of Health Sciences and conforms to printed Department of the Army doctrine as closely as currently possible. Development and progress render such doctrine continuously subject to change. The subject matter expert responsible for content accuracy of this edition was the NCOIC, Nursing Science Division, DSN 471-3086 or area code (210) 221-3086, M6 Branch, Academy of Health Sciences, ATTN: MCCS-HNP, Fort Sam Houston, Texas 78234-6100. ADMINISTRATION Students who desire credit hours for this correspondence subcourse must meet eligibility requirements and must enroll in the subcourse. Application for enrollment should be made at the Internet website: http://www.atrrs.army.mil. You can access the course catalog in the upper right corner. Enter School Code 555 for medical correspondence courses. Copy down the course number and title. To apply for enrollment, return to the main ATRRS screen and scroll down the right side for ATRRS Channels. Click on SELF DEVELOPMENT to open the application and then follow the on screen instructions. For comments or questions regarding enrollment, student records, or examination shipments, contact the Nonresident Instruction Branch at DSN 471-5877, commercial (210) 221-5877, toll-free 1-800-344-2380; fax: 210-221-4012 or DSN 471-4012, e-mail [email protected], or write to: NONRESIDENT INSTRUCTION BRANCH AMEDDC&S ATTN: MCCS-HSN 2105 11TH STREET SUITE 4191 FORT SAM HOUSTON TX 78234-5064 CLARIFICATION OF TERMINOLOGY When used in this publication, words such as "he," "him," "his," and "men" 'are intended to include both the masculine and feminine genders, unless specifically stated otherwise or when obvious in context.
    [Show full text]
  • Digestion and Absorption
    © shotty/Shutterstock. CHAPTER 2 Digestion and Absorption ← HERE’S WHERE YOU HAVE BEEN 1. The basic unit of human life is the cell, which operates independently and in concert with other cells to sustain human life. 2. There are approximately 200 different types of cells in the human body, each one with different roles and nutrient requirements. 3. Cell structural and operational components have specialized functions that affect nutrient processing, storage, and requirements. 4. Many nutrients play a role in protein synthesis by influencing gene expression or various steps in protein manufacturing. 5. Proteins have many specialized functions, including serving as enzymes, transporters, receptors, and hormones. HERE’S WHERE YOU ARE GOING → 1. Digestion is a complex synergy of the physical actions of chewing, mixing, and movement and the chemical actions of acids, enzymes, and detergent-like emulsifiers. 2. Absorption refers to the movement of nutrients from the digestive tract into the blood or lymphatic circulation, whereas the concept of bioavailability also includes the uptake and use of a nutrient by cells or tissue. 3. Perceptions of hunger and satiety involve multiple hormonal and neurologic signals, including cholecystokinin, neuropeptide Y, ghrelin, obestatin, insulin, and leptin. 4. Different types of bacteria are found throughout the entire digestive tract; the specific conditions of the different segments (e.g., mouth, stomach, colon) determine which species will thrive. 35 36 Chapter 2 Digestion and Absorption ▸ (FIGURE 2.1). The gastrointestinal tract, or simply “the Introduction gut,” and several organs (the salivary glands, pancreas, With the exception of intravenous infusion, nutrient liver, and gallbladder) that empty supportive substances entry into the body takes place by way of the gastro- into the gut make up the gastrointestinal system.
    [Show full text]