Advances in Plant Molecular Farming

Total Page:16

File Type:pdf, Size:1020Kb

Advances in Plant Molecular Farming View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Covenant University Repository Biotechnology Advances 29 (2011) 210–222 Contents lists available at ScienceDirect Biotechnology Advances journal homepage: www.elsevier.com/locate/biotechadv Research review paper Advances in plant molecular farming Olawole O. Obembe a,⁎, Jacob O. Popoola a, Sadhu Leelavathi b, Siva V. Reddy b a Department of Biological Sciences, Covenant University, PMB 1023 Ota, Ogun State, Nigeria b Plant Transformation Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India article info abstract Article history: Plant molecular farming (PMF) is a new branch of plant biotechnology, where plants are engineered to Received 27 July 2010 produce recombinant pharmaceutical and industrial proteins in large quantities. As an emerging subdivision Received in revised form 12 November 2010 of the biopharmaceutical industry, PMF is still trying to gain comparable social acceptance as the already Accepted 12 November 2010 established production systems that produce these high valued proteins in microbial, yeast, or mammalian Available online 27 November 2010 expression systems. This article reviews the various cost-effective technologies and strategies, which are being developed to improve yield and quality of the plant-derived pharmaceuticals, thereby making plant- Keywords: Plant-derived proteins based production system suitable alternatives to the existing systems. It also attempts to overview the Clinical development different novel plant-derived pharmaceuticals and non-pharmaceutical protein products that are at various Commercialization stages of clinical development or commercialization. It then discusses the biosafety and regulatory issues, Biosafety which are crucial (if strictly adhered to) to eliminating potential health and environmental risks, which in Regulation turn is necessary to earning favorable public perception, thus ensuring the success of the industry. © 2010 Elsevier Inc. All rights reserved. Contents 1. Introduction .............................................................. 211 2. Plant transformation strategies ..................................................... 211 2.1. Stable nuclear transformation................................................... 211 2.2. Stable plastid transformation ................................................... 211 2.3. Plant cell-suspension cultures................................................... 211 2.4. Transient expression systems ................................................... 212 2.4.1. Agroinfiltration method ................................................. 212 2.4.2. Virus infection method ................................................. 212 2.4.3. The magnifection technology............................................... 212 3. Limitations and optimization of plant production systems......................................... 212 3.1. The problem of low yield..................................................... 212 3.1.1. Optimizing transcript expression ............................................. 212 3.1.2. Optimizing protein's stability............................................... 213 3.2. The glycosylation challenge.................................................... 213 3.3. Choice of suitable host plants ................................................... 213 3.3.1. Cost of downstream processing ............................................. 214 4. Overview of plant-derived recombinant proteins ............................................. 215 4.1. Plant-derived vaccine antigens .................................................. 215 4.2. Plant-derived antibodies ..................................................... 215 4.3. Therapeutic and nutraceutical proteins .............................................. 217 4.4. Non-pharmaceutical plant-derived proteins ............................................ 217 5. Biosafety and regulatory issues ..................................................... 217 5.1. Problem of co-mingling and contamination of the food/feed chain ................................. 217 5.2. The problem of gene spread and unintended exposures ...................................... 218 5.3. Risk of horizontal gene transfer .................................................. 218 6. Concluding remarks. .......................................................... 218 ⁎ Corresponding author. Tel.: +234 8130928965. E-mail address: [email protected] (O.O. Obembe). 0734-9750/$ – see front matter © 2010 Elsevier Inc. All rights reserved. doi:10.1016/j.biotechadv.2010.11.004 O.O. Obembe et al. / Biotechnology Advances 29 (2011) 210–222 211 Acknowledgement ............................................................. 218 References ................................................................. 218 1. Introduction recombinant proteins till date. The method has been used to accumulate protein in the dry seeds of cereals, which allows long- Plant molecular farming (PMF) refers to the production of term storage of the seed at room temperature without degradation of recombinant proteins (including pharmaceuticals and industrial the protein (Horn et al., 2004). Additionally, the system has high proteins) and other secondary metabolites, in plants. This involves scale-up capacity, as crops such as the cereals are grown practically the growing, harvesting, transport, storage, and downstream proces- everywhere. However, a long production cycle of some crops and the sing of extraction and purification of the protein (Wilde et al., 2002). potential to cross with native species or food crops are limiting public This technology hinges on the genetic transformability of plants, acceptance of this method (Commandeur et al., 2003). which was first demonstrated in the 1980s (Bevan et al., 1983). The first recombinant plant-derived pharmaceutical protein (the human 2.2. Stable plastid transformation growth hormone) and the first recombinant antibody (expressed in the progeny of the cross of two individual transgenic plants Plastid transformation provides a valuable alternative to nuclear expressing single immunoglobulin gamma and kappa chains) were transformation because it combines numerous advantages that the produced in transgenic plants in 1986 and 1989, respectively (Hiatt nuclear transformation lacks, including the provision of a natural et al., 1989; Barta et al., 1986). However, it was not until 1997 that the biocontainment of transgene flow by out-crossing (as plastids are first recombinant protein, avidin (an egg protein) was expressed in inherited through maternal tissues in most species and the pollen transgenic maize for commercial purpose (Hood et al., 1997). These does not contain chloroplasts, hence the transgene may not be exploits really demonstrated that plants could be turned into bio- transferable, thereby allaying public concerns (Cardi et al., 2010; factories for the large scale production of recombinant proteins. It has Meyers et al., 2010). Transgenic plants with homoplastomic chloro- been proven over the years that plants have the ability to produce plast transformation (in which every chloroplast carries the trans- even more complex functional mammalian proteins with therapeutic gene) are selected after several generations of plant regeneration activity, such as human serum proteins and growth regulators, from bombarded leaf explants, on selection medium containing antibodies, vaccines, hormones, cytokines, enzymes and antibodies spectinomycin or in combination with streptomycin. Our group (Liénard et al., 2007). This has been possible due to their ability to (Reddy et al., 2002; Sadhu and Reddy, 2003) had previously achieved perform post-translational modifications that make these recombi- accumulation of a bacterial- and a human therapeutic protein, up to nant proteins fold properly and maintain their structural and 3–6% of total soluble proteins in tobacco chloroplasts. Recently, Oey functional integrity. et al. (2009) reported a whopping expression level (70% of the total The fast-growing market for recombinant biopharmaceuticals, soluble proteins) for a proteinaceous antibiotic, with the chloroplast which accounted for about 10% of the pharmaceutical market in 2007 system, which represents the highest recombinant protein accumu- (Lowe and Jones, 2007), had been predicted to expand to US $ lation achieved so far in plants. This enormous potentials notwith- 100 billion in 2010 (Knäblein, 2005). With increasing demand for bio- standing, plastid transformation is still limited in its applications, in pharmaceuticals, coupled with the high costs and inefficiency of the that even though it has been achieved in other plant species such as existing production systems (Knäblein, 2005), which include yeast, tomato, eggplant, lettuce, and soybeans (Bock, 2007; Singh and microbes, animals cells (Jones et al., 2003) and transgenic animals Verma, 2010), routine chloroplast transformation is only possible in (Harvey et al., 2002), there now exists a shortage in manufacturing tobacco, which is inedible and highly regulated, being rich in toxic capacity, to such an extent that some patients have to wait for these alkaloids. It is also envisaged that protein stability will change over products. Hence transgenic plants are gaining more attention as the time even with refrigeration (Horn et al., 2004). new generation bio-reactors; with active research and development activity in PMF identified
Recommended publications
  • Annual Conference Online 2021
    CANDIDAANNUAL CONFERENCEAND ONLINECANDIDIASIS 2021 2021 21–27 March 2021 POSTER ABSTRACT BOOK #Candida2021 001A Candida auris gene expression: modulation upon caspofungin treatment Lysangela Alves1, Rafaela Amatuzzi1, Daniel Zamith-Miranda2, Sharon Martins1, Joshua Nosanchuk2 1Carlos Chagas Institute, Curitiba, Brazil. 2Departments of Medicine (Division of Infectious Diseases) and Microbiology and Immunology, Albert Einstein College of Medicine, New York, USA Abstract Candida auris has emerged as a serious worldwide threat by causing invasive infections in humans that are frequently resistant to one or more conventional antifungal medications, resulting in high mortality rates. Against this backdrop, health warnings around the world have focused efforts on understanding C. auris fungal biology and effective treatment approaches to combat this fungus. To date, there is little information about C. auris gene expression regulation in response to antifungal treatment. Our integrated analyses focused on the comparative transcriptomics of C. auris in the presence and absence of caspofungin as well as a detailed analysis of the yeast’s extracellular vesicle (EV)-RNA composition. The results showed that genes coding oxidative stress response, ribosomal proteins, cell wall, and cell cycle were significantly up-regulated in the presence of caspofungin, whereas transcriptional regulators and proteins related to nucleus were down-regulated. The mRNAs in the EVs were associated with the stress responses induced by caspofungin and the ncRNA content of the EVs shifted during caspofungin treatment. Altogether, the results provide further insights into the fungal response to caspofungin and demonstrate that analyses of C. auris growth under antifungal stress can elucidate resistance and survival mechanisms of this fungus in response to medical therapy.
    [Show full text]
  • Plant Molecular Farming: a Viable Platform for Recombinant Biopharmaceutical Production
    plants Review Plant Molecular Farming: A Viable Platform for Recombinant Biopharmaceutical Production Balamurugan Shanmugaraj 1,2, Christine Joy I. Bulaon 2 and Waranyoo Phoolcharoen 1,2,* 1 Research Unit for Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand; [email protected] 2 Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences Chulalongkorn University, Bangkok 10330, Thailand; [email protected] * Correspondence: [email protected]; Tel.: +66-2-218-8359; Fax: +66-2-218-8357 Received: 1 May 2020; Accepted: 30 June 2020; Published: 4 July 2020 Abstract: The demand for recombinant proteins in terms of quality, quantity, and diversity is increasing steadily, which is attracting global attention for the development of new recombinant protein production technologies and the engineering of conventional established expression systems based on bacteria or mammalian cell cultures. Since the advancements of plant genetic engineering in the 1980s, plants have been used for the production of economically valuable, biologically active non-native proteins or biopharmaceuticals, the concept termed as plant molecular farming (PMF). PMF is considered as a cost-effective technology that has grown and advanced tremendously over the past two decades. The development and improvement of the transient expression system has significantly reduced the protein production timeline and greatly improved the protein yield in plants. The major factors that drive the plant-based platform towards potential competitors for the conventional expression system are cost-effectiveness, scalability, flexibility, versatility, and robustness of the system. Many biopharmaceuticals including recombinant vaccine antigens, monoclonal antibodies, and other commercially viable proteins are produced in plants, some of which are in the pre-clinical and clinical pipeline.
    [Show full text]
  • US EPA, Pesticide Product Label, WIDESTRIKE 3 INSECT
    UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, D.C. 20460 OFFICE OF CHEMICAL SAFETY AND POLLUTION PREVENTION October 18, 2016 Stephanie L. Burton US Regulatory Manager Dow AgroSciences LLC 9330 Zionsville Road Indianapolis, IN 46268-1054 Subject: PRIA (Pesticide Registration Improvement Act) Amendment – to update the terms of registration related to gene flow and revise the product label. Product Name: WideStrike® 3 Insect Resistant Cotton EPA Registration Number: 68467-19 Application Date: June 23, 2016 OPP Decision Number: 518794 Dear Ms. Burton: The amendment referred to above, submitted in connection with registration under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA), as amended, are acceptable provided you comply with the revised terms of registration as set forth below: 1. Submit/cite all data required for registration of your product under FIFRA § 3(c)(5) when the Agency requires all registrants of similar products to submit such data. 2. Gene Flow The following information regarding commercial production must be included in the grower guide for WideStrike® 3 Insect Resistant Cotton: a) No planting of WideStrike® 3 Insect Resistant Cotton is permitted south of Route 60 (near Tampa) in Florida. b) Commercial culture of WideStrike® 3 Insect Resistant Cotton is prohibited in Hawaii, Puerto Rico, and the US Virgin Islands. The following information regarding test plots and seed production must appear in contracts or on bags of WideStrike® 3 Insect Resistant Cotton intended for the following purposes: Page 2 of 10 EPA Reg. No. 68467-19 OPP Decision No. 518794 a) Test plots or breeding nurseries, regardless of the plot size, established in Hawaii must not be planted within 3 miles of Gossypium tomentosum.
    [Show full text]
  • Glossary Terms
    Glossary Terms € 1584 5W6 5501 a 7181, 12203 5’UTR 8126 a-g Transformation 6938 6Q1 5500 r 7181 6W1 5501 b 7181 a 12202 b-b Transformation 6938 A 12202 d 7181 AAV 10815 Z 1584 Abandoned mines 6646 c 5499 Abiotic factor 148 f 5499 Abiotic 10139, 11375 f,b 5499 Abiotic stress 1, 10732 f,i, 5499 Ablation 2761 m 5499 ABR 1145 th 5499 Abscisic acid 9145 th,Carnot 5499 Absolute humidity 893 th,Otto 5499 Absorbed dose 3022, 4905, 8387, 8448, 8559, 11026 v 5499 Absorber 2349 Ф 12203 Absorber tube 9562 g 5499 Absorption, a(l) 8952 gb 5499 Absorption coefficient 309 abs lmax 5174 Absorption 309, 4774, 10139, 12293 em lmax 5174 Absorptivity or absorptance (a) 9449 μ1, First molecular weight moment 4617 Abstract community 3278 o 12203 Abuse 6098 ’ 5500 AC motor 11523 F 5174 AC 9432 Fem 5174 ACC 6449, 6951 r 12203 Acceleration method 9851 ra,i 5500 Acceptable limit 3515 s 12203 Access time 1854 t 5500 Accessible ecosystem 10796 y 12203 Accident 3515 1Q2 5500 Acclimation 3253, 7229 1W2 5501 Acclimatization 10732 2W3 5501 Accretion 2761 3 Phase boundary 8328 Accumulation 2761 3D Pose estimation 10590 Acetosyringone 2583 3Dpol 8126 Acid deposition 167 3W4 5501 Acid drainage 6665 3’UTR 8126 Acid neutralizing capacity (ANC) 167 4W5 5501 Acid (rock or mine) drainage 6646 12316 Glossary Terms Acidity constant 11912 Adverse effect 3620 Acidophile 6646 Adverse health effect 206 Acoustic power level (LW) 12275 AEM 372 ACPE 8123 AER 1426, 8112 Acquired immunodeficiency syndrome (AIDS) 4997, Aerobic 10139 11129 Aerodynamic diameter 167, 206 ACS 4957 Aerodynamic
    [Show full text]
  • Monsanto Company in Microsoft Word Format Together with a Copy of the Transmittal Letter That Accompanies the Filing of Two Paper Copies of the Submission
    From: Letzler, Kenneth [mailto:[email protected]] Sent: Thursday, December 31, 2009 1:03 PM To: ATR-Agricultural Workshops Subject: Comment Attached please find a comment submitted on behalf of Monsanto Company in Microsoft Word format together with a copy of the transmittal letter that accompanies the filing of two paper copies of the submission. _____________________________ U.S. Treasury Circular 230 Notice Any U.S. federal tax advice included in this communication (including any attachments) was not intended or written to be used, and cannot be used, for the purpose of (i) avoiding U.S. federal tax-related penalties or (ii) promoting, marketing or recommending to another party any tax-related matter addressed herein. _____________________________ This communication may contain information that is legally privileged, confidential or exempt from disclosure. If you are not the intended recipient, please note that any dissemination, distribution, or copying of this communication is strictly prohibited. Anyone who receives this message in error should notify the sender immediately by telephone or by return e-mail and delete it from his or her computer. ---------------------------------------------------------------------- For more information about Arnold & Porter LLP, click here: http://www.arnoldporter.com Competition and Innovation in American Agriculture A Response to the American Antitrust Institute’s “Transgenic Seed Platforms: Competition Between a Rock and a Hard Place?” Submitted on Behalf of Monsanto Company In Response to the Request for Comments by the United States Department of Agriculture and United States Department of Justice, Antitrust Division, in Connection with Their Hearings on “Agriculture and Antitrust Enforcement Issues in Our 21st Century Economy” Vandy Howell, Ph.D.
    [Show full text]
  • Dow Agrosciences
    Dow AgroSciences LLC (Dow AgroSciences) markets crop protection Dow AgroSciences products and seeds for a broad spectrum of crops, including maize, soybean, cotton and forage. The company began in the 1950s as the agricultural unit of The Dow Chemical Company. As a joint venture Corporate Data of The Dow Chemical Company and Eli Lilly & Co., it was known as Headquarters: Indianapolis, Indiana, USA DowElanco from 1989 onwards. In 1997, The Dow Chemical Company Ownership type: Listed Group revenue (2014): USD 729,000,0000 acquired 100% ownership.* Global Index – Commitment Performance Transparency Innovation Field Crop Seed Companies 1.27 1.46 2.05 0.25 Dow AgroSciences ranks in the lower 5 range of the Global Index of Field Crop Seed Companies. It has clear rank out of 7 approaches to Public Policy & Stakeholder A Governance & 1.13 score 1.38 Engagement and existing breeding Strategy B Public Policy & 2.68 programs for resistance to pests and Stakeholder Engagement diseases, abiotic stress tolerance and C Genetic Resources & 1.09 Intellectual Property yield, although it is not clear to what extent these programs D Research & 1.31 specifically target the development of varieties suitable for Development E Marketing & 1.11 Index countries and smallholder farmers. Seed sales were Sales found only in Latin American Index countries. Given the F Capacity 2.08 indications of research and capacity-building activities rel- Building G Local Seed Sector 0.91 evant for improved access to seeds for smallholder farmers in Advancement other regions, the company is encouraged to develop its seed 0 1 2 3 4 5 business serving smallholder farmers on a more global scale.
    [Show full text]
  • Induction of a Protective Antibody Response to Foot and Mouth
    Virology 255, 347–353 (1999) Article ID viro.1998.9590, available online at http://www.idealibrary.com on View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Induction of a Protective Antibody Response to Foot and Mouth Disease Virus in Mice Following Oral or Parenteral Immunization with Alfalfa Transgenic Plants Expressing the Viral Structural Protein VP11 Andre´s Wigdorovitz,* Consuelo Carrillo,* Marı´a J. Dus Santos,* Karina Trono,* Andrea Peralta,* Marı´a C. Go´mez,‡ Rau´l D. Rı´os,‡ Pascual M. Franzone,‡ Ana M. Sadir,* Jose´M. Escribano,† and Manuel V. Borca*,2 *Instituto de Virologı´a, C. I. C. V., INTA-Castelar, CC77, Moro´n, (1708) Pcia. de Buenos Aires, Argentina; ‡Instituto de Gene´tica “E. A. Favret”, C. I. C. A., INTA-Castelar, Buenos Aires, Argentina; and †Centro de Investigacio´n en Sanidad Animal (CISA-INIA), Valdeolmos, Madrid, Spain Received September 17, 1998; returned to author for revision October 19, 1998; accepted December 28, 1998 The utilization of transgenic plants expressing recombinant antigens to be used in the formulation of experimental immunogens has been recently communicated. We report here the development of transgenic plants of alfalfa expressing the structural protein VP1 of foot and mouth disease virus (FMDV). The presence of the transgenes in the plants was confirmed by PCR and their specific transcription was demonstrated by RT-PCR. Mice parenterally immunized using leaf extracts or receiving in their diet freshly harvested leaves from the transgenic plants developed a virus-specific immune response. Animals immunized by either method elicited a specific antibody response to a synthetic peptide representing amino acid residues 135–160 of VP1, to the structural protein VP1, and to intact FMDV particles.
    [Show full text]
  • DRAFT Landscape of COVID-19 Candidate Vaccines – 10 August 2020
    DRAFT landscape of COVID-19 candidate vaccines – 10 August 2020 28 candidate vaccines in clinical evaluation COVID-19 Vaccine Number of Route of Clinical Stage Vaccine platform Type of candidate vaccine Timing of doses developer/manufacturer doses Administration Phase 1 Phase 1/2 Phase 2 Phase 3 PACTR202006922165132 Non-Replicating University of Oxford/AstraZeneca ChAdOx1-S 1 IM 2020-001072-15 2020-001228-32 ISRCTN89951424 Viral Vector Interim Report NCT04383574 Sinovac Inactivated Inactivated 2 0, 14 days IM NCT04456595 NCT04352608 Wuhan Institute of Biological Inactivated Inactivated 2 0,14 or 0,21 days IM ChiCTR2000031809 ChiCTR2000034780 Products/Sinopharm Beijing Institute of Biological Inactivated Inactivated 2 0,14 or 0,21 days IM ChiCTR2000032459 ChiCTR2000034780 Products/Sinopharm NCT04283461 NCT04405076 NCT04470427 Moderna/NIAID RNA LNP-encapsulated mRNA 2 0, 28 days IM Interim Report 2020-001038-36 BioNTech/Fosun Pharma/Pfizer RNA 3 LNP-mRNAs 2 0, 28 days IM NCT04368728 ChiCTR2000034825 CanSino Biological Inc./Beijing Institute Non-Replicating ChiCTR2000030906 ChiCTR2000031781 Adenovirus Type 5 Vector 1 IM of Biotechnology Viral Vector Study Report Study Report Anhui Zhifei Longcom Adjuvanted recombinant protein 0,28 or 0,28,56 Protein Subunit 2 or 3 IM NCT04445194 NCT04466085 Biopharmaceutical/Institute of (RBD-Dimer) days DISCLAIMER: These landscape documents have been prepared by the World Health Organization (WHO) for information purposes only concerning the 2019-2020 pandemic of the novel coronavirus. Inclusion of any particular product or entity in any of these landscape documents does not constitute, and shall not be deemed or construed as, any approval or endorsement by WHO of such product or entity (or any of its businesses or activities).
    [Show full text]
  • Association for Consumer Research
    ASSOCIATION FOR CONSUMER RESEARCH Labovitz School of Business & Economics, University of Minnesota Duluth, 11 E. Superior Street, Suite 210, Duluth, MN 55802 Cyborg As Commodity: Exploring Conceptions of Self-Identity, Body and Citizenship Within the Context of Emerging Transplant Technologies Ai-Ling Lai, University of Leicester, UK This paper explores how advances in transplant technologies shape conceptions of self-identity, embodiment and citizenship. Drawing on the posthuman writing of Donna Haraway and through phenomenological interviews, I explore ambivalence towards the commoditization of the cyborg-body, suggesting that biotechnology may potentially lead to a dystopian posthuman consumer society. [to cite]: Ai-Ling Lai (2012) ,"Cyborg As Commodity: Exploring Conceptions of Self-Identity, Body and Citizenship Within the Context of Emerging Transplant Technologies ", in NA - Advances in Consumer Research Volume 40, eds. Zeynep Gürhan-Canli, Cele Otnes, and Rui (Juliet) Zhu, Duluth, MN : Association for Consumer Research, Pages: 386-394. [url]: http://www.acrwebsite.org/volumes/1011658/volumes/v40/NA-40 [copyright notice]: This work is copyrighted by The Association for Consumer Research. For permission to copy or use this work in whole or in part, please contact the Copyright Clearance Center at http://www.copyright.com/. Cyborg as Commodity: Exploring Conception of Self-Identity, Body and Citizenship within the Context of Emerging Transplant Technologies Ai-Ling Lai, University of Leicester, UK ABSTRACT technology (Thompson 2004). In doing so, I aim to contribute to This paper explores how advances in transplant technologies previous writings by Johnson and Roberts (1997) and Belk (1990). shape conceptions of self-identity, embodiment and citizenship. Most notably, these scholars observe how the marketing of organ Drawing on the posthuman writing of Donna Haraway and from transplantation has previously been predicated on the ‘mechanistic’ phenomenological interviews, I explore ambivalence towards the metaphor of the body (Belk 1990).
    [Show full text]
  • Potential Drug Candidates Underway Several Registered Clinical Trials for Battling COVID-19
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 April 2020 doi:10.20944/preprints202004.0367.v1 Potential Drug Candidates Underway Several Registered Clinical Trials for Battling COVID-19 Fahmida Begum Minaa, Md. Siddikur Rahman¥a, Sabuj Das¥a, Sumon Karmakarb, Mutasim Billahc* aDepartment of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi-6205, Bangladesh bMolecular Biology and Protein Science Laboratory, University of Rajshahi, Rajshahi-6205, Bangladesh cProfessor Joarder DNA & Chromosome Research Laboratory, University of Rajshahi, Rajshahi-6205, Bangladesh *Corresponding Author: Mutasim Billah, Professor Joarder DNA & Chromosome Research Laboratory, University of Rajshahi, Rajshahi, Bangladesh Corresponding Author Mail: [email protected] ¥Co-second author Abstract The emergence of new type of viral pneumonia cases in China, on December 31, 2019; identified as the cause of human coronavirus, labeled as "COVID-19," took a heavy toll of death and reported cases of infected people all over the world, with the potential to spread widely and rapidly, achieved worldwide prominence but arose without the procurement guidance. There is an immediate need for active intervention and fast drug discovery against the 2019-nCoV outbreak. Herein, the study provides numerous candidates of drugs (either alone or integrated with another drugs) which could prove to be effective against 2019- nCoV, are under different stages of clinical trials. This review will offer rapid identification of a number of repurposable drugs and potential drug combinations targeting 2019-nCoV and preferentially allow the international research community to evaluate the findings, to validate the efficacy of the proposed drugs in prospective trials and to lead potential clinical practices. Keywords: COVID-19; Drugs; 2019-nCoV; Clinical trials; SARS-CoV-2 Introduction A new type of viral pneumonia cases occurred in Wuhan, Hubei Province in China, on December 31, 2019; named "COVID-19" on January 12, 2020 by the World Health Organization (WHO) [1].
    [Show full text]
  • 2019 Annual Report
    2019 Annual Report 1 TABLE OF CONTENTS - 2 DEPARTMENT PHOTO - 3 MISSION - 4 PRIMARY FACULTY PROMOTIONS & DEPARTURES - 5 NEW APPOINTMENTS OF SECONDARY FACULTY-6 SECONDARY FACULTY DEPARTURES – 8 IN MEMORIAM – 9 FACULTY WITH PRIMARY APPOINTMENTS - 10 FACULTY WITH SECONDARY APPOINTMENTS - 21 FACULTY WITH EMERITUS APPOINTMENTS – 31 FACULTY WITH ADJUNCT APPOINTMENTS - 32 ADMINISTRATIVE STAFF - 32 NEW GRADUATE STUDENT CLASS – 33 GRADUATE STUDENTS – 36 GRADUATES– 37 FACULTY HONORS – 39 STUDENT HONORS - 40 PUBLICATIONS - 42 ABSTRACTS - 47 RESEARCH GRANTS ACTIVE - 59 RESEARCH GRANTS SUBMITTED - 68 INVITED SCIENTIFIC PRESENTATIONS - 76 INTELLECTUAL PROPERTY ACTIONS – 80 DEPARTMENTAL COURSES - 81 STANDING COMMITTEES – 82 NCI CANCER EDUCATION PROGRAM - 83 2 3 MISSION The Department of Pharmacology and Toxicology will ensure academic excellence and achievement of regional, national, and international recognition for the quality of its educational, research, and service activities. Guided by the University of Louisville and the School of Medicine Strategic Plans, the mission of the Department of Pharmacology and Toxicology focuses on five broad objectives: • Provide instruction in pharmacology and toxicology of the highest quality for the education and preparation of medical, dental, and other health care professional students. Emphasis is placed on the fundamental principles necessary for life-long learning and the essential knowledge required for rational, effective, and safe use of drug therapy. • Advance biomedical knowledge through high quality research and other scholarly activities, particularly in pharmacology and toxicology and other areas of focus within the University of Louisville and School of Medicine Strategic Plans. • Provide robust research and educational experiences in pharmacology and toxicology for the education and training of future biomedical scientists who will provide and advance biomedical education, research, and service.
    [Show full text]
  • Molecular Pharming to Support Human Life on the Moon, Mars, and Beyond
    UC Berkeley UC Berkeley Previously Published Works Title Molecular pharming to support human life on the moon, mars, and beyond. Permalink https://escholarship.org/uc/item/0vc0786j Journal Critical reviews in biotechnology, 41(6) ISSN 0738-8551 Authors McNulty, Matthew J Xiong, Yongao Mary Yates, Kevin et al. Publication Date 2021-09-01 DOI 10.1080/07388551.2021.1888070 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Critical Reviews in Biotechnology ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/ibty20 Molecular pharming to support human life on the moon, mars, and beyond Matthew J. McNulty, Yongao (Mary) Xiong, Kevin Yates, Kalimuthu Karuppanan, Jacob M. Hilzinger, Aaron J. Berliner, Jesse Delzio, Adam P. Arkin, Nancy E. Lane, Somen Nandi & Karen A. McDonald To cite this article: Matthew J. McNulty, Yongao (Mary) Xiong, Kevin Yates, Kalimuthu Karuppanan, Jacob M. Hilzinger, Aaron J. Berliner, Jesse Delzio, Adam P. Arkin, Nancy E. Lane, Somen Nandi & Karen A. McDonald (2021): Molecular pharming to support human life on the moon, mars, and beyond, Critical Reviews in Biotechnology, DOI: 10.1080/07388551.2021.1888070 To link to this article: https://doi.org/10.1080/07388551.2021.1888070 © 2021 The Author(s). Published by Informa View supplementary material UK Limited, trading as Taylor & Francis Group Published online: 09 Mar 2021. Submit your article to this journal Article views: 455 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=ibty20 CRITICAL REVIEWS IN BIOTECHNOLOGY https://doi.org/10.1080/07388551.2021.1888070 REVIEW ARTICLE Molecular pharming to support human life on the moon, mars, and beyond a,b a,bà a,bà a,c Matthew J.
    [Show full text]