<<

Research

Relative embryo length as an adaptation to habitat and life cycle in

Filip Vandelook1, Steven B. Janssens2 and Robin J. Probert3 1Plant Ecology, Philipps-Universita¨t Marburg, Karl-von-Frisch-Strasse 8, D-35043 Marburg, Germany; 2Laboratory of Systematics, Institute of Botany and Microbiology, KU Leuven, PO Box 2437, BE-3001 Leuven, Belgium; 3Seed Conservation Department, Royal Botanic Gardens Kew, Wakehurst Place, Ardingly, West Sussex RH17 6TN, UK

Summary

Author for correspondence: • The factors driving the evolution of the relative embryo length in Apiaceae were examined. Filip Vandelook We tested the hypothesis that seeds with large relative embryo length, because of more rapid Tel: +49 6421 2822053 germination, are beneficial in dry and open habitats and for short-lived . We also ana- Email: fi[email protected] lyzed to what extent delayed germination as a result of embryo growth can be considered a Received: 13 March 2012 dormancy mechanism. Accepted: 5 April 2012 • Hypotheses were tested by correlating the relative embryo length with other plant traits, habitat and climatic variables. The adaptive nature of the relative embryo length was deter- New Phytologist (2012) mined by comparing the performance of a pure drift, Brownian motion (BM) model of trait doi: 10.1111/j.1469-8137.2012.04172.x evolution with that of a selection–inertia, Ornstein–Uhlenbeck (OU) model. • A positive correlation of the relative embryo length with germination speed and negative correlations with the amount of habitat shade, longevity and precipitation were found. An Key words: Apiaceae, comparative method, dormancy, embryo, evolution, seed size. OU model, in which the evolution of longer embryos corresponded to a transition to habitats of high light, or to a short life cycle, outperformed significantly a BM model. • The results indicated that the relative embryo length may have evolved as an adaptation to habitat and life cycle, whereas dormancy was mainly related to temperature at the sampling sites.

The storage of food reserves in an external tissue, rather than Introduction in the embryo, has been suggested to be related to germination Angiosperm seeds usually contain not only an embryo, but also timing and seedling vigor (Stebbins, 1974). The predicted nutrient reserves consisting of either endosperm or perisperm. To positive relation between germination speed and relative embryo understand evolutionary changes in the size of the embryo size was confirmed for Mediterranean plant species (Vivrette, relative to the amount of nutritive tissue, both phylogenetic and 1995), but later disputed when phylogeny was taken into account ecological factors should be considered (Nikolaeva, 2004). Over (Verdu´, 2006). It has been argued that a large relative embryo size 100 yr ago, the ecological significance of relative embryo size was is especially beneficial in dry habitats, where rapid germination already recognized (Goebel, 1898; Crocker, 1916; Findeis, during short wet periods is advantageous (Hodgson & Mackey, 1917). The importance of phylogeny in the distribution of rela- 1986; Vivrette, 1995). Embryo size may also be related to adult tive embryo size among angiosperms became clear from the work longevity, as short-lived species often have long-lived seeds that of Martin (1946). Species with small embryos embedded in copi- are incorporated in the soil seed bank (Rees, 1993; Thompson ous endosperm are generally considered to be the plesiomorphic et al., 1998). Seeds in a seed bank usually germinate during short condition in angiosperms, whereas more derived species often spells of suitable environmental conditions, for example after dis- have a more developed embryo (Martin, 1946; Stebbins, 1974; turbance of soil or vegetation (Fenner & Thompson, 2005). The Forbis et al., 2002). Small relative embryos sizes are typical of production of seeds with a small underdeveloped embryo that primitive taxa, such as the Ranunculales in the and requires an extensive period of embryo growth before germina- some representatives of the ANITA grade, the most basal tion would be disadvantageous under such conditions. Species angiosperms (Chien et al., 2011; but see Baskin & Baskin, with small embryos are, however, common in moist habitats such 2007). Verdu´ (2006) suggested that this evolutionary trend as woodlands or damp grasslands (Baskin & Baskin, 1988, towards increased relative embryo size was not driven by either 1998). It is in these environments that seeds are imbibed for an anagenesis or cladogenesis, but that the evolution of embryo size uninterrupted sufficiently long period for extensive embryo rather occurred as a passive process away from a minimum size. growth to be completed (Fenner & Thompson, 2005).

2012 The Authors New Phytologist (2012) 1 New Phytologist 2012 New Phytologist Trust www.newphytologist.com New 2 Research Phytologist

Some angiosperm taxa typically have other mechanisms not Materials and Methods related to embryo size that control germination rate and dormancy. These mechanisms may obscure analyses of selective Data sampling forces that drive changes in relative embryo size across all angio- sperms. Therefore, we confined our study to the Apiaceae, A dataset of 275 Apiaceae species was compiled, containing data which all require post-dispersal embryo growth. This family on seed traits, plant traits, niche characteristics and the climate includes almost 3500 species divided into four subfamilies of conditions in which the species grow. Seed material of the study which the Saniculoideae and Apioideae are by far the largest species was obtained from seed banks, botanical gardens and by (Plunkett & Lowry, 2001; Magee et al., 2010). A southern field sampling. A complete species list with detailed information African origin of these two subfamilies, followed by migrations on the source of the data and references is available in Supporting northwards into , has been suggested (Calvino et al., Information Table S1. 2006, 2008). typically consist of two mericarps, each con- The mean relative embryo length (embryo length · seed ) taining a seed with copious nuclear endosperm and a small length 1) of each species was determined by incubating 20 seeds embryo (Corner, 1976). Despite these general characteristics, in water for 24 h, cutting them in half and measuring embryo considerable interspecific variation in relative embryo size exists and seed length under a dissecting microscope equipped with an within the Apiaceae, ranging from species with tiny rudimentary ocular micrometer. Seeds were incubated in water for 24 h before embryos to species with embryos more than one-half the length measurement. Data on seed dry mass were either obtained from of the seed (Martin, 1946). A period of post-dispersal embryo the seed information database (Royal Botanic Gardens Kew Seed growth, varying from 1–2 wk to several months, usually Information Database, 2008) or, if not available, by weighing precedes protrusion and germination (reviewed in 100 air-dried seeds and calculating the mean mass per seed. Ger- Vandelook, 2009). These seed characteristics, together with the mination data were based on germination trials performed at the large variation in habitats in which Apiaceae grow, and the Millennium Seed Bank (Kew), using 20 seeds incubated on moist enormous amount of effort that has been put into resolving the filter paper in Petri dishes and placed in temperature-controlled phylogenetic relationships between Apiaceae during the last 15 incubators at 5 or 15C for at least 30 d. Germinated seeds were yr (see Downie et al., 2010), make the Apiaceae a good choice counted and usually discarded weekly, until no further germina- for studying questions related to factors driving embryo size tion occurred for at least 2 wk. The germinationP rate was evolution. expressed as the mean time to germinate = ( (gd · d )) ⁄ D, Although the functional ecology of embryo size has been where gd is the number of seeds that germinated on day d from studied extensively, the environmental conditions driving the sowing and D is the total number of seeds that germinated in the evolution of relative embryo size, and correlations with other test. Species with < 10% germination were excluded from the plant traits, have never been analyzed explicitly. In this study, analyses of germination rate. Before testing germination, seeds we first aim to analyze the factors driving the evolution of the were stored for variable periods of time at ) 18C after drying to relative embryo length in the Apiaceae by applying phylogenetic equilibrium at 15% relative humidity (RH). No correlation regressions. We tested the hypotheses that seeds with a large rel- existed between the storage time (d) and mean time to germinate ative embryo length germinate faster and to a higher percentage. at 5C(r2 = 0.04, P = 0.08) or 15C(r2 < 0.01, P = 0.56), or As a result of the advantages related to faster germination, we with the final germination percentage at 5C(r2 = 0.01, expect species with a large relative embryo length to be frequent P = 0.36) or 15C(r2 < 0.01, P = 0.95). Data on the germina- in open, dry habitats and among short-lived species. Although tion rate of seeds incubated at 5 and 15C were obtained for a previous work has suggested that only weak relationships subset of 60 and 59 species, respectively. The final germination between plant traits and climatic factors are to be expected, percentages at 5C and 15C were determined for 69 and 122 because of often considerable differences in plant traits between species, respectively. coexisting species (Wright et al., 2004; Moles et al., 2005), we Maximum plant height and adult longevity were retrieved expect more species with a large relative embryo length in dry from floras and online databases. The species were divided into regions. three adult longevity classes: annuals, biennials and perennials. Finally, we tested to what extent the relative embryo length is When were listed as both annual and biennial, or as mono- an adaptation to habitat and plant longevity by means of carpic perennial, we assigned them to the biennial class. Habitat Ornstein–Uhlenbeck (OU) models of trait evolution (Hansen, moisture and habitat shade characteristics were based on state- 1997). If the relative embryo length is a strongly adaptive trait, ments of habitats in floras and online databases. Species were the OU models of trait evolution should outperform a random classified into three classes according to habitat moisture (1, dry; walk or Brownian motion (BM) model of trait evolution. This 2, moist; 3, wet) and habitat shade (1, open; 2, semi-shaded; 3, method also enabled us to examine whether the evolutionary shaded). The geographical coordinates of the sampling sites of optimal relative embryo length differs according to habitat condi- most species were given by the institutes that provided seed mate- tions and plant longevity. If the relative embryo length is a rial. If coordinates were not available, coordinates of species strongly adaptive trait, we should find the optimal relative occurrence were retrieved from the Global Biodiversity Informa- embryo length to be lowest in moist and shady habitats, and in tion Facility website (GBIF Data Portal, 2011). When more than perennial species. one set of coordinates was available, we chose coordinates on the

New Phytologist (2012) 2012 The Authors www.newphytologist.com New Phytologist 2012 New Phytologist Trust New Phytologist Research 3 basis of two criteria: the most recent observation and the observa- method of Janssens et al. (2009) corroborated the results of tion closest to the presumed sampling site of the species. Using Bremer et al. (2004), estimating the stem group age at 87 and these coordinates, climatic data associated with the sampling or 84 million yr (ma), respectively. occurrence sites were estimated using the Worldclim database Phylogenetic regressions were performed using subtrees derived version 1.3 (Hijmans et al., 2005), accessed through DIVA-GIS from this original phylogenetic . These subtrees were con- version 7.1.7 (Hijmans et al., 2001). Climatic data consisted of structed using Phylocom 4.1 software (Webb et al., 2009). Most the annual mean temperature, mean diurnal temperature range taxa analyzed (> 95%) were already included in the original tree. (mean of monthly maximum minus minimum temperature), For the remaining < 5% of the taxa, no ITS sequence was avail- maximum temperature of the warmest month, minimum tem- able; instead, the ITS sequence of a congeneric taxon was used. perature of the coldest month and annual precipitation. In addi- tion, the altitude of the sampling sites was incorporated into our Analyses dataset. The relative embryo length, seed mass, plant height, annual precipitation and mean time to germinate were log-trans- Phylogenetic regression We explored our ecological and evolu- formed before statistical analyses to meet the assumption of a tionary hypotheses by examining correlations between species normal distribution of residuals. traits or between a trait and habitat or climate characteristic, whilst correcting for the nonindependence of species as a result of phylogenetic relatedness (Freckleton & Pagel, 2006). Recent Construction and dating of phylogeny simulations have shown that the decision on whether to use a To construct a phylogenetic tree, 323 sequences in total of the phylogenetic regression cannot be based solely on measures of the internal transcribed spacer (ITS) of the order were phylogenetic signal calculated on individual variables in the analy- obtained from GenBank (Table S2) using the Geneious software sis (Hansen & Orzack, 2005; Labra et al., 2009; Revell, 2010). package v 4.7.5. (Biomatters Ltd., Auckland, New Zealand). Of Instead, we applied an alternative approach, consisting of an ML these, one species belongs to the Griseliniaceae, one to the Penn- procedure, whereby the phylogenetic signal and regression model antiaceae, 10 to the , 48 to the and 263 were estimated simultaneously. As a measure of the phylogenetic to the Apiaceae. Brighamia insignis, Asyneura campanuloides and signal, we applied Pagel’s k (Pagel, 1999). The phylogenetic acarnanica (, ), and regression was performed with a phylogenetic tree whose internal Haplocarpha scaposa (Asteraceae, Asterales), were used as out- branches were all multiplied by k, leaving tip branches as their group taxa. The usefulness of ITS sequence data to resolve the original length. The k statistic proposed by Pagel (1997, 1999) intergeneric phylogenetic relationships within the species-rich measures how well a BM model fits the data, that is, measures the Apiaceae family has been shown by Downie et al. (2010). Initial phylogenetic signal (Lynch, 1991; Freckleton et al., 2002; sequence alignment was performed with MUSCLE using default Housworth et al., 2004). When k equals zero, related taxa are parameters (Edgar, 2004) and subsequently fine-tuned by hand not more similar than expected by chance and the trait is evolving in MacClade 4.05 (Maddison & Maddison, 2002). Phylogenetic as in star-like phylogeny (Pagel, 1999). In such a scenario, phylo- analyses of the nuclear ribosomal ITS datasets were carried out genetic correction becomes redundant. Significant phylogenetic using the probabilistic maximum likelihood (ML) method. ML signal or clumping of trait states on the phylogenetic tree occurs analyses were performed using the RaxML search algorithm when k > 0, meaning taxa are more similar than expected by (Stamatakis et al., 2005) under the GTRGAMMA approxima- chance. When k = 1, the trait is evolving following a constant tion of rate heterogeneity for each gene (Stamatakis, 2006). Five variance random walk or BM model. If 1 > k > 0, traits are less hundred bootstrap were inferred using the RaxML Rapid similar among species than expected from their phylogenetic bootstrap algorithm (ML-BS) to provide support values for the relationships, but more similar than expected by chance. best-scoring ML tree. The ML topology with the highest likeli- Simple and multiple generalized least-squares regressions were hood obtained with RaxML was used for further dating analysis. performed, with the relative embryo length as the dependent vari- A strict molecular clock for the combined dataset had to be able and all other variables as independent variables. The three rejected using a v2 likelihood ratio test (P < 0.001). Because of discrete variables in our dataset, adult longevity, habitat moisture rejection of the null hypothesis of constant rate, age estimates for and light, were implemented as continuous variables in this anal- the Apiales and Apiaceae were therefore inferred with a relaxed ysis. Using a backward selection approach, we successively clock model (penalized likelihood algorithm; Sanderson, 2002) excluded the least significant variables from the model until the implemented in the r8s software package (Sanderson, 2004). The Akaike information criterion (AIC; Akaike, 1973) was minimal. most favorable rate-smoothing penalty parameter was calculated Correlations between other traits and habitat variables are in r8s with a statistical cross-validation method. As a result of a included as supplementary data (Table S3). rather precarious fossil record for the Apiacaeae (Martinez- The relationship between germination rate and final percent- Milla´n, 2010), we used a fossil-based age estimate of the order age germination, on the one hand, and embryo length and all Apiales to infer dating estimates within the Apiaceae. This cali- other variables measured, on the other, was tested by means of bration point was obtained from the study of Janssens et al. multiple ordinary least-squares regression (OLS) with germina- (2009), who analyzed the whole asterid clade using nine different tion rate and the final germination percentage (at 5Cand15C) reference fossils to calibrate their phylogeny. The sophisticated as dependent variables. In all these analyses, k = 0 (i.e. no

2012 The Authors New Phytologist (2012) New Phytologist 2012 New Phytologist Trust www.newphytologist.com New 4 Research Phytologist

phylogenetic signal) resulted in the lowest AIC score, indicating sequences yielded a highly resolved phylogeny that was fairly con- that the phylogenetic regressions collapsed to OLS regressions. gruent with the results of Downie et al. (2010) (Supporting Again, we used a backward selection approach to exclude the least Information Fig. S1). A small number of discrepancies between significant variables from the model until AIC was minimal. the two phylogenies were probably the result of differences in Analyses were performed using the APE (Paradis, 2006) and sampling size and alignment. However, these small disparities nlme (Pinheiro et al., 2009) packages in R version 2.12.0 (R had only a minor influence on the ecological analyses carried out Development Core Team, 2009). in the present study, as the main branching events leading to dif- ferent subfamilies in Apiaceae were the same for both studies. Models of trait evolution We tested the adaptive nature of the Interestingly, our results illustrate that a clade consisting of the relative embryo length using two models reflecting hypothetical Hydrocotyle and the family Araliaceae are a sister group to selective regimes on the relative embryo length. The simplest the Apiaceae. Applying the divergence time of the previously esti- model is a BM mode of trait evolution which assumes that embryo mated age of the Apiales crown group by Janssens et al. (2009), length evolved following a pure drift process. The second model, we dated the split between Apiaceae and Araliaceae–Hydrocotyle an OU model, is a simple linear model that allows the quantifica- at 73.5 ma, whereas the crown group of Apiaceae was estimated tion of the effects of both natural selection and inertia (Hansen, at 64.3 ma. Age estimations of the main Apiaceae clades are listed 1997; Butler & King, 2004; Hansen et al., 2008). In its simplest in Table 1. form, the model assumes that the relative embryo length evolves towards a single hypothetical optimum h . The model also includes s Phylogenetic regression a parameter a measuring the rate of adaptation towards the opti- mum and a stochasticity component r which is a measure of the Almost all the variables tested, including the relative embryo intensity of the random fluctuations in the evolutionary process. If length, showed a significant phylogenetic signal, with k differing a is large, species will adapt very rapidly to new conditions, whereas significantly from zero (Table 2). Altitude (k = 0, CI 0, 0.28), a low a makes ancient adaptations relatively more important mean time to germinate (k = 0.33, CI 0, 0.95) and final germi- (Hansen, 1997). We calculated a more intuitive measure of the nation percentage (k = 0, CI 0, 0.91) at 5C were randomly dis- phylogenetic signal in this OU model: phylogenetic half-life, tributed across the phylogenetic tree. Phylogenetic signal was also t1 ⁄ 2 = loge(2) ⁄ a. This half-life indicates how long it takes before absent in mean time to germinate at 15C(k = 0, CI 0, 0.82), adaptation to a new selective regime is expected to be more influen- but not in the final germination percentage for seeds tested at this tial than the constraints from the ancestral state (Hansen, 1997). temperature (k = 0.546, CI 0.22, 0.80). k differed significantly As the evolutionary optimum is expected to differ according to from unity for all variables tested, implying that traits are less habitat conditions and plant longevity, we further refined this similar between species than expected from their phylogenetic model so that it included different evolutionary optima based on relationships, and that evolution did not result from a pure drift different hypotheses regarding evolutionary adaptation to differ- process. ent levels of habitat shade (h1, open; h2, semi-shaded; h3, Significant negative correlations (P < 0.05) between the rela- shaded), habitat moisture (h1, dry; h2, moist; h3, wet) and evolu- tive embryo length and seed mass, adult longevity, habitat shade tion of adult longevity (h1, annual; h2, biennial; h3, perennial). and annual precipitation resulted from both simple and multiple Models of evolutionary adaptation to habitat conditions and evo- linear regressions (Tables 2, 3). No significant correlations lution of longevity were based on a parsimony analysis and on an (P > 0.05) with any of the other variables tested were found. The ML analysis of the three trait states of each of these variables per- estimate of k for the relative embryo length (k = 0.78, CI 0.59, formed in Mesquite, version 2.72 (Maddison & Maddison, 0.89) was very similar to the value of k estimated in the simple 2009). Parsimony analysis was unable to provide unequivocal regressions between the relative embryo length and all other results for all nodes, especially basal nodes for habitat variables. Equivocal nodes were assigned a value of four, thus allowing evo- Table 1 Estimated age (million years, ma) for crown and stem groups of lution towards a fourth optimum (h4). In the ML analysis, the the main Apiaceae lineages nodes were assigned the most likely trait state. The performance of the models was tested by means of AIC. Penalized likelihood age estimate Percentile confidence intervals for the model parameters were Apiaceae lineage Stem Crown computed using parametric bootstrap with 10 000 replicates. Analyses were performed in the Geiger (Harmon et al., 2009) Saniculoideae 64.3 60.7 and OUCH (Butler & King, 2004) packages for R. Heteromorpheae 63.4 60.7 Bupleureae 59.3 37.4 Pleurospermeae 52.5 – Results Oenantheae 46.2 33.4 Erigenieae 48.1 – Smyrnieae 36.1 21.3 Phylogenetic reconstruction and dating analysis Scandiceae 41.3 37.4 The aligned nuclear ribosomal ITS data matrix consisted of 1274 Aciphylleae 38.9 20.7 Apioid superclade 39.1 36.5 characters, 385 of which were variable. ML analysis of the ITS

New Phytologist (2012) 2012 The Authors www.newphytologist.com New Phytologist 2012 New Phytologist Trust New Phytologist Research 5

Table 2 Simple phylogenetic regressions fitted by maximum likelihood between the relative embryo length and other plant traits, habitat or climatic conditions

Pagel’s k Phylogenetic signal

coefficient SE t value kk

Log[relative embryo length] – – – – – 0.78 (0.59, 0.89) Log[seed mass] (mg) )0.18 0.03 )6.13 *** 0.72 0.81 (0.66, 0.90) Adult longevity )0.07 0.02 )3.69 *** 0.74 0.90 (0.78, 0.96) Log[plant height] (cm) )0.06 0.04 )1.50 ns 0.77 0.76 (0.54, 0.97) Habitat moisture )0.01 0.02 )0.63 ns 0.77 0.64 (0.43, 0.81) Habitat shade )0.08 0.02 )3.89 *** 0.67 0.75 (0.53, 0.88) Altitude (m) )0.01 0.01 )0.95 ns 0.77 0 (0, 0.28) Mean temperature (C) 0.01 0.01 0.15 ns 0.77 0.50 (0.19, 0.74) Max. temperature (C) 0.01 0.01 1.30 ns 0.77 0.58 (0.30, 0.76) Min. temperature (C) )0.01 0.01 )0.81 ns 0.79 0.40 (0.10, 0.70) Temperature fluctuation (C) 0.01 0.01 0.19 ns 0.78 0.76 (0.58, 0.87) Log[annual precipitation] (mm) )0.09 0.05 )1.97 * 0.76 0.62 (0.28, 0.83)

Phylogenetic generalized least-squares regressions were based on a model in which k was estimated simultaneously. The last column provides an estimate of the phylogenetic signal k in the single variables tested. Numbers in parentheses denote the confidence intervals. ns, P > 0.05; *, P < 0.05; ***, P < 0.001; n = 275.

Table 3 Multiple phylogenetic regression fitted by maximum likelihood Table 4 Multiple ordinary least-squares regression with mean time to between the relative embryo length and other plant traits, habitat and germinate and final germination percentage (at 5 and 15C) as dependent climatic conditions variables and plant traits, habitat and climatic conditions as independent variables Log[relative embryo length] Coefficients SE t value P value Coefficient SE t value P value Log[mean time to germinate] at 5C (d); n =59 Log[seed mass] (mg) )0.17 0.03 )5.75 *** Log[relative embryo length] )0.63 0.12 )5.24 *** Adult longevity )0.04 0.02 )2.23 * Log[seed mass] (mg) )0.12 0.05 )2.28 * Habitat shade )0.07 0.02 )3.50 *** Habitat shade )0.22 0.08 )2.79 ** Log[annual precipitation] (mm) )0.11 0.04 )2.49 ** Habitat moisture 0.18 0.08 2.37 * Mean temperature (C) )14.07 3.59 )3.92 *** The regression was based on a model in which k was estimated simultaneously. Nonsignificant terms were removed successively until only Log[mean time to germinate] at 15C (d); n =60 significant terms remained. Log[relative embryo length] )0.35 0.16 )2.12 * *, P < 0.05; **, P < 0.01; ***, P < 0.001. Log[seed mass] (mg) 0.28 0.07 3.94 *** Altitude )0.01 0.01 )2.27 * Temperature fluctuation (C) 0.11 0.04 2.87 *** Maximum temperature (C) )0.07 0.02 )3.57 ** variables measured (k ranging from 0.67 to 0.79; Table 2). This contrasts with the considerably smaller estimate of k in the multi- Seed germination at 5C (%); n =69 Mean temperature (C) )0.04 0.01 )3.16 *** variate model (k = 0.53). The multiple regression models with mean time to germinate Seed germination at 15C (%); n = 122 at 5C and 15C as dependent variables were highly significant Log[relative embryo length] 0.31 0.08 3.81 *** Log[seed mass] (mg) )0.11 0.04 )2.73 ** and a large amount of variation was explained (F4, 54 = 18.2, Altitude (m) 0.01 0.01 3.72 *** 2 2 r = 0.59 and F5, 53 = 12.1, r = 0.48, respectively). For seeds Temperature fluctuation (C) )0.06 0.03 )2.39 * germinated at 5C, the relative embryo length and mean tem- Minimum temperature (C) 0.04 0.01 5.28 *** perature at collection sites were highly significant predictors Maximum temperature (C) 0.03 0.01 2.33 * (P < 0.001) of germination rate, and both were negatively related to Nonsignificant terms were removed successively until only significant mean time to germinate (Table 4). The mean time to germinate terms remained. at 5C was also significantly negatively correlated with seed mass *, P < 0.05; **, P < 0.01; ***, P < 0.001. (P < 0.05), meaning that large seeds germinate more rapidly. The picture was different for seeds germinated at 15C (Table 4). For these seeds, highly significant predictors (P < 0.001) were correlate significantly with adult longevity in the multiple regres- seed mass and mean diurnal temperature range, which were both sion models at either 5Cor15C. positively related to mean time to germinate. As at 5C, the rela- The final germination percentage at 5C was only significantly ) tive embryo length was significantly negatively correlated with (negative) related to the mean annual temperature (t1,67 = mean time to germinate at 15C. Germination rate did not 3.17, r2 = 0.13, P = 0.002) and minimum temperature during

2012 The Authors New Phytologist (2012) New Phytologist 2012 New Phytologist Trust www.newphytologist.com New 6 Research Phytologist

) 2 the coldest month (t1,67 = 2.62, r = 0.09, P = 0.01). Only with optima as a function of habitat shade, indicating a high rate the mean annual temperature was significant in a multiple regres- of adaptation in the relative embryo length. sion model. The minimum temperature during the coldest The optimum relative embryo lengths towards which species month and altitude were two of the most important predictors evolved were considerably higher in annual (h = 0.28–0.30) and 2 for germination percentage at 15C(F6, 115 = 18.7, r = 0.47; biennial (h = 0.27–0.29) species than in perennial species Table 4). Interestingly, a highly significant positive correlation (h = 0.20), with only a small overlap in the 95% confidence (P < 0.001) existed between the final germination percentage intervals (Table 5). Similarly, the optimum relative embryo and both minimum temperature and altitude. The germination length was significantly higher for species growing in open habi- percentage at 15C was also significantly positively correlated tats (h = 0.24) than for species growing in forests (h = 0.12), with the relative embryo length (P < 0.001) and negatively cor- with optima for species growing in semi-shaded habitats related with the seed mass (P < 0.01). (h = 0.19) situated in between. Species from moist habitats had a lower optimum relative embryo length (h = 0.19–0.20) than species from dry (h = 0.23–0.24) and wet (h = 0.26) habitats, Models of embryo size evolution but the overlap in confidence intervals indicated that these differ- The performance and parameters of all models tested are summa- ences were not significant. The equivocal node values in the parsi- rized in Table 5. Based on AIC, the best-fitting model is an OU mony analyses resulted in an optimum (h4) higher than that of model with multiple evolutionary optima as a function of habitat the known node values for all three traits tested. These optima shade. Only minor differences in fits were found between models also had very large confidence intervals. The model parameters of with multiple evolutionary optima based on habitat shade (AIC: the multiple optima OU models were very similar for traits ) 87.1 to ) 89.3), habitat moisture (AIC: ) 74.9 to ) 75.3) reconstructed by ML and parsimony. and adult longevity (AIC: ) 81.2 to ) 82.1). r The stochasticity component did not differ significantly Discussion between the models tested (Table 5). A k value significantly dif- ferent from unity and an a value significantly different from zero Our main conclusion is that the relative embryo length in both indicate that the evolution of the relative embryo length in Apiaceae has not evolved by a pure drift process. The evolution Apiaceae was not a pure drift process. The rate of adaptation (a) of the relative embryo length is tightly related to that other very ranged between 4.63 in the OU.s model with a single optimum important functional seed trait, seed mass. We also provide evi- and 5.84 in the OU model as a function of habitat shade recon- dence that evolution towards a larger embryo length is associated structed using ML. No significant differences in a occurred with an increased germination rate. Evolutionary changes in between the OU models tested. The phylogenetic half-life varied embryo length can be considered as adaptations to particular from 150 000 yr in the OU.s model to 120 000 yr in the OU habitat conditions (light vs shade) and adult longevity.

Table 5 Performance and parameters of eight models of the relative embryo length evolution in Apiaceae

OU habitat moisture OU habitat shade OU adult longevity

BM OU.s Parsimony ML Parsimony ML Parsimony ML

) 2 · log L )28.5 )81.1 )86.9 )85.3 )99.1 )99.3 )93.2 )92.1 df13 65 65 65 AIC )24.5 )75.1 )74.9 )75.3 )87.1 )89.3 )81.2 )82.1 r 0.47 0.59 0.73 0.72 0.73 0.73 0.70 0.69 (0.43, 0.51) (0.70, 0.89) (0.62, 0.88) (0.61, 0.86) (0.61, 0.88) (0.62, 0.88) (0.59, 0.83) (0.59, 0.82) k –– –– – –– a – 4.63 5.58 5.24 5.81 5.84 5.05 4.90 (3.11, 6.83) (3.69, 8.34) (3.49, 7.86) (3.86, 8.70) (3.91, 8.75) (3.32, 7.46) (3.30, 7.24)

hs – 0.19 –– – –– (0.21, 0.24)

h1 – – Dry 0.23 0.24 Open 0.24 0.24 Annual 0.28 0.30 (0.19, 0.27) (0.20, 0.28) (0.21, 0.27) (0.21, 0.27) (0.22, 0.37) (0.23, 0.38)

h2 – – Moist 0.19 0.20 Semi- 0.19 0.19 Biennial 0.27 0.29 (0.17, 0.22) (0.17, 0.23) shade (0.15, 0.23) (0.16, 0.23) (0.18, 0.39) (0.20, 0.38)

h3 – – Wet 0.26 0.26 Shade 0.12 0.12 Perennial 0.20 0.20 (0.19, 0.38) (0.19, 0.34) (0.08, 0.16) (0.08, 0.16) (0.17, 0.22) (0.17, 0.22)

h4 – – Equivocal 0.36 – Equivocal 0.25 – Equivocal 0.48 – (0.17, 0.71) (0.10, 0.50) (0.17, 1.00)

For each model, the likelihood values () 2 · log L) and the Akaike information criterion (AIC) are given. Ornstein–Uhlenbeck (OU) models with multiple optima were based on trait state reconstruction using parsimony or maximum likelihood (ML) analyses. BM, Brownian motion model; r, magnitude of stochasticity component; k, phylogenetic signal;

a, rate of adaptation; hs, optimum estimated for evolution towards a single optimum; h1 fi 4, optima (back-transformed) estimated for evolution towards multiple optima. Numbers in parentheses denote 95% confidence intervals.

New Phytologist (2012) 2012 The Authors www.newphytologist.com New Phytologist 2012 New Phytologist Trust New Phytologist Research 7

The hypothesis of an increased germination rate and decreased mechanism. Otherwise, we would expect it to be positively dormancy with increasing embryo length was largely confirmed. related to seed size and plant longevity, which is not the case. The positive correlation between the germination rate and This contrast with earlier studies (Rees, 1993, 1996) can be relative embryo length at the two temperature conditions tested traced back to differences in the way in which dormancy is indicates that species requiring more embryo growth before defined. A dormant seed has been defined by physiologists and germination also take longer to germinate. The absence of such a ecologists as a seed that ‘does not have the capacity to germinate relationship across all angiosperms may have two causes (cf. in a specified period of time under any combination of normal Verdu´, 2006). The evolution towards seeds that almost com- physical environmental factors that are otherwise favorable for its pletely lack endosperm has opened the door to the evolution of germination’ (Baskin & Baskin, 2004). In studies on trade-offs alternative germination regulation mechanisms, such as physical between life history traits, dormancy has usually been defined as dormancy (Baskin & Baskin, 1998). Second, many species dis- seed persistence, a seed characteristic that is poorly related to seed perse seeds with copious endosperm, but require no embryo dormancy (Thompson et al., 2003). The way in which we mea- growth before germination. These species are widespread in large sured dormancy also does not agree with the definition proposed families such as the Poaceae and Cyperaceae (Martin, 1946). by Baskin & Baskin (2004), because we did not restrict germina- Seed dormancy in Apiaceae, here expressed as the total percentage tion to a specified period of time. Some of the species that did germination, decreases with increasing relative embryo length for not germinate when placed at 15C did germinate when placed seeds incubated at 15C. No relationship between seed dormancy at 5C, and vice versa. The final germination percentage in the and embryo length exists for seeds incubated at 5C. We should Apiaceae studied was mainly related to temperature conditions remark here that the germination of several species that had and altitude at the collection sites. More specifically, the positive already germinated to a high percentage at higher temperatures correlation between environmental temperature and germination (15 or 20C) was not tested at 5C. This may have resulted in a percentage at 15C and the negative correlation between environ- bias towards species germinating only at lower temperatures mental temperature and germination at 5C indicate that evolu- (< 10C) in the germination test at 5C. tion towards germination at lower temperatures has occurred in The phylogenetic regressions revealed significant negative cor- species growing in colder regions. Germination at low temper- relations between the relative embryo length and seed mass, adult atures (< 10C) prevents seeds in regions with a clear winter longevity, habitat shade and annual precipitation. These results season from germinating in summer or autumn, which is a mech- support earlier hypotheses that embryo length is tightly related to anism to decrease the risk of frost damage during the vulnerable the ecology and habitat of a species (Fenner & Thompson, seedling stage in winter (Baskin & Baskin, 1998; Nikolaeva, 2005). A well-developed embryo, and thus fast germination, is 2004). especially advantageous for species that experience only short Like many other morphological traits, the relative embryo spells of suitable climatic or biotic conditions for embryo growth length in Apiaceae showed a strong phylogenetic component (k >0), and germination, as is the case for species growing in open and suggesting that a phylogenetic correction in comparative analyses dry habitats (Vivrette, 1995). Seeds with a large relative embryo is necessary. k < 1 and a > 0 also show that evolution has not length also appear to be advantageous for short-lived species. We been a mere random walk process. The deviation from a pure argue that this advantage is related to the formation of a soil seed drift process of evolution can be explained by the adaptive nature bank. Short-lived species often have long-lived seeds to reduce of the relative embryo length, as indicated by the fact that the the impact of environmental variability (Venable & Brown, OU models significantly outperformed the BM model. It is inter- 1988), and small seeds that become easily buried into the soil esting that evolution towards different selective optima as a func- (Thompson et al., 1998). The latter correlation was also found tion of habitat shade and adult longevity explained the data for the Apiaceae studied here (see Table S3). As seeds incorpo- significantly better than evolution towards a single optimum. rated in a soil seed bank only have a small window of opportunity The evolutionary optima towards which the relative embryo to germinate after a disturbance event, it would be particularly length evolves were higher for more open habitats and for shorter advantageous to germinate rapidly. In line with this, Grime et al. lived species. Thus, the concerted evolution of embryo length (1981) also found higher germination rates in annual forbs and with changes in habitat shade or life cycle is very likely the result grasses than in perennial forbs in an analysis of 403 British of adaptive processes as a function of habitat and ecological strat- species. By contrast, species growing in predictable habitats, such egy. Moreover, the low phylogenetic half-life calculated tells us as temperate forests, may be able to ‘afford’ small embryos, that evolution towards habitat- and life cycle-specific optima because conditions for embryo development are suitable over a occurs at a rapid pace. prolonged period of time. The adaptive nature of the relative embryo length in Apiaceae Seed dormancy has been considered to be a bet-hedging mech- contrasts with the results obtained when embryo size evolution anism for which trade-offs with other bet-hedging traits, such as was analyzed across the whole angiosperm phylogeny, where the seed size and plant longevity, have been observed (Venable & evolution of embryo size occurred as a random walk process Brown, 1988; Rees, 1996). Although species with a small relative (Verdu´, 2006). One cause of this discrepancy is that there are embryo length clearly take longer to germinate, as is indicated by major differences in the measure of relative embryo size. an increased mean time to germinate and a higher dormancy, the Although we analyzed (log) relative embryo length, Verdu´ relative embryo length should not be considered as a bet-hedging (2006), based on the data of Forbis et al. (2002), used the surface

2012 The Authors New Phytologist (2012) New Phytologist 2012 New Phytologist Trust www.newphytologist.com New 8 Research Phytologist

area of the whole embryo relative to the surface area of the Downie SR, Spalik K, Katz-Downie DS, Reduron J-P. 2010. Major clades endosperm. Second, differences in the taxonomic scale at which within Apiaceae subfamily Apioideae as inferred by phylogenetic analysis of the studies were performed will affect the results, because differ- nrDNA ITS sequences. Plant Diversity and Evolution 128: 111–136. Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and ent evolutionary pathways and selection pressures are evident in high throughput. Nucleic Acids Research 32: 1792–1797. different groups of plants. Similar evolutionary correlates as those Fenner M, Thompson K. 2005. The ecology of seeds. Cambridge, UK: Cambridge observed in Apiaceae are plausible for other plant families charac- University Press. ¨ terized by seeds that require post-dispersal embryo growth, such Findeis M. 1917.Uber das Wachstum des Embryos im ausgesa¨ten Samen vor der as Ranunculaceae, Adoxaceae and several liliaceous families. Keimung. Kaiserlichen Akademie der Wissenschaften 126: 77–102. Forbis TA, Floyd SK, de Queiroz A. 2002. The evolution of embryo size in For the first time, we have analyzed the ecological function of angiosperms and other seed plants: implications for the evolution of seed the embryo length and possible evolutionary forces acting on it by dormancy. Evolution 56: 2112–2125. means of the comparative method. It is likely that habitat condi- Freckleton RP, Harvey PH, Pagel M. 2002. Phylogenetic analysis and tions and plant longevity have been important forces driving the comparative data: a test and review of evidence. American Naturalist 160: evolution of embryo size in Apiaceae. We also emphasize that dif- 712–726. Freckleton RP, Pagel M. 2006. Recent advances in comparative methods. In: ferent mechanisms may have driven embryo size evolution in dif- Sze´kely T, Moore AJ, Komdeur J, eds. Social behaviour. Genes, ecology and ferent families or at different taxonomic levels. The enormous evolution. Cambridge, UK: Cambridge University Press, 110–126. amount of data available on seed characteristics (e.g. Baskin & GBIF Data Portal. 2011. Global Biodiversity Information Facility. [WWW Baskin, 1998) and the continuous development of new analytical document] URL http://data.gbif.org/. [accessed 30 May 2011] techniques (Freckleton & Pagel, 2006) and molecular phylog- Goebel K. 1898. Organography of plants: especially of the Archegoniata and Spermaphyta. Oxford, UK: Clarendon Press. enies provide huge opportunities for answering the multitude of Grime JP, Mason G, Curtis AV, Rodman J, Band SR. 1981. A comparative questions remaining on the evolution of seeds (Silvertown, 1999). study of germination characteristics in a local flora. Journal of Ecology 69: 1017–1059. Hansen TF. 1997. Stabilizing selection and the comparative analysis of Acknowledgements adaptation. Evolution 51: 1341–1351. Hansen TF, Orzack SH. 2005. Assessing current adaptation and phylogenetic We thank all institutions and individuals that provided seed inertia as explanations of trait evolution: the need for controlled comparisons. material for this research. We also thank Miguel Verdu´, Diethart Evolution 59: 2063–2072. Matthies and two anonymous referees for reading the manuscript Hansen TF, Pienaar J, Orzack SH. 2008. A comparative method for studying and for providing useful suggestions for its improvement. adaptation to a randomly evolving environment. Evolution 62: 1965–1977. Harmon L, Weir J, Brock C, Glor R, Challenger W, Gene H. 2009. Analysis of evolutionary diversification. R package Version 1.3-1 [WWW document] URL References http://cran.r-project.org/web/packages/geiger/index.html/ [accessed 14 September 2011]. Akaike H. 1973. Information theory and an extension of the maximum Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. 2005. Very high likelihood principle. In: Second International Symposium on Information Theory. resolution interpolated climate surfaces for global land areas. International Budapest, Hungary: Akademiai Kiado, 267–281. Journal of Climatology 25: 1965–1978. Baskin CC, Baskin JM. 1988. Germination ecophysiology of herbaceous Hijmans RJ, Guarino L, Cruz M, Rojas E. 2001. Computer tools for spatial plant species in a temperate region. American Journal of Botany 75: 286– analysis of plant genetic resources data: 1. DIVA-GIS. Plant Genetic Resources 305. Newsletter 127: 15–19. Baskin CC, Baskin JM. 1998. Seeds: ecology, biogeography, and evolution of Hodgson JG, Mackey JML. 1986. The ecological specialization of dormancy and germination. San Diego, CA, USA: Academic Press. dicotyledonous families within a local flora – some factors constraining Baskin CC, Baskin JM. 2007. Nymphaeaceae: a basal angiosperm family optimization of seed size and their possible evolutionary significance. New (ANITA grade) with a fully developed embryo. Seed Science Research 17: Phytologist 104: 497–515. 293–296. Housworth EA, Martins EP, Lynch M. 2004. The phylogenetic mixed model. Baskin JM, Baskin CC. 2004. A classification system for seed dormancy. Seed American Naturalist 163: 84–96. Science Research 14: 1–16. Janssens SB, Knox EB, Huysmans S, Smets EF, Merckx VSFT. 2009. Rapid Bremer K, Friss EM, Bremer B. 2004. Molecular phylogenetic dating of asterid radiation of Impatiens (Balsaminaceae) during Pliocene and Pleistocene: result flowering plants shows early Cretaceous diversification. Systematic Biology 53: of a global climate change. Molecular Phylogenetics and Evolution 52: 496–505. 806–824. Butler MA, King AA. 2004. Phylogenetic comparative analysis: a modeling Labra A, Pienaar J, Hansen TF. 2009. Evolution of thermal physiology in approach for adaptive evolution. American Naturalist 164: 683–695. Liolaemus lizards: adaptation, phylogenetic inertia, and niche tracking. Calvino CI, Martinez SG, Downie SR. 2008. Morphology and biogeography of American Naturalist 174: 204–220. Apiaceae subfamily Saniculoideae as inferred by phylogenetic analysis of Lynch M. 1991. Methods for the analysis of comparative data in evolutionary molecular data. American Journal of Botany 95: 196–214. biology. Evolution 45: 1065–1080. Calvino CI, Tilney PM, van Wyk B-E, Downie SR. 2006. A molecular Maddison DR, Maddison WP. 2002. MacClade 4.05. [WWW document] URL: phylogenetic study of southern African Apiaceae. American Journal of Botany http://macclade.org/. [accessed 22 August 2011] 93: 1828–1847. Maddison WP, Maddison DR. 2009. Mesquite: a modular system for evolutionary Chien C-T, Chen S-Y, Baskin JM, Baskin CC. 2011. Morphophysiological analysis. Version 2.72. [WWW document] URL http://mesquiteproject.org/. dormancy in seeds of the ANA grade angiosperm Schisandra arisanensis [accessed 29 August 2011] (Schisandraceae). Plant Species Biology 26: 99–104. Magee AR, Calvin˜o CI, Liu M, Downie SR, Tilney PM, van Wyk B-E. 2010. Corner EJH. 1976. The seeds of dicotyledons. Cambridge, UK: Cambridge New tribal delimitations for the early diverging lineages of Apiaceae subfamily University Press. Apioideae. Taxon 59: 567–580. Crocker WM. 1916. Mechanics of dormancy in seeds. American Journal of Botany Martin AC. 1946. The comparative internal morphology of seeds. American 3: 99–120. Midland Naturalist 36: 513–660.

New Phytologist (2012) 2012 The Authors www.newphytologist.com New Phytologist 2012 New Phytologist Trust New Phytologist Research 9

Martinez-Milla´n M. 2010. Fossil record and age of the Asteridae. Botanical Thompson K, Ceriani RM, Bakker JP, Bekker RM. 2003. Are seed dormancy Review 76: 83–135. and persistence in soil related? Seed Science Research 13: 97–100. Moles AT, Ackerly DD, Webb CO, Tweddle JC, Dickie JB, Pitman AJ, Vandelook F. 2009. Seed germination ecology of temperate woodland . PhD Westoby M. 2005. Factors that shape seed mass evolution. Proceedings of the Thesis, Katholieke Universiteit Leuven, Leuven, Belgium. National Academy of Sciences, USA 102: 10540–10544. Venable DL, Brown JS. 1988. The selective interactions of dispersal, dormancy, Nikolaeva MG. 2004. On criteria to use in studies on seed evolution. Seed Science and seed size as adaptations for reducing risk in variable environments. Research 14: 315–320. American Naturalist 131: 360–384. Pagel M. 1997. Inferring evolutionary processes from phylogenies. Zoologica Verdu´ M. 2006. Tempo, mode and phylogenetic associations of relative embryo Scripta 26: 331–348. size evolution in angiosperms. Journal of Evolutionary Biology 19: 625–634. Pagel M. 1999. Inferring the historical patterns of biological evolution. Nature Vivrette NJ. 1995. Distribution and ecological significance of seed-embryo types 401: 877–884. in Mediterranean climates in California, Chile, and . In: Arroyo Paradis E. 2006. Analysis of Phylogenetics and Evolution with R. New York, NY, MKT, Zedler PH, Fox MD, eds. Ecology and biogeography of Mediterranean USA: Springer. ecosystems in Chile, California and Australia. New York, NY, USA: Springer Pinheiro J, Bates D, DebRoy S, Sarkar D, the R Core team. 2009. nlme: Linear Verlag, 274–288. and nonlinear mixed effects models. R package version 3.1-96. [WWW Webb C, Ackerly D, Kembel S. 2009. Phylocom. Software for the analysis of document] URL http://cran.r-project.org/web/packages/nlme/index.html/. phylogenetic community structure and character evolution. [WWW document] [accessed 15 September 2011]. URL http://phylodiversity.net/phylocom/. [accessed 1 September 2011] Plunkett GM, Lowry PPII. 2001. Relationships among ‘ancient araliads’ and Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, their significance for the systematics of Apiales. Molecular Phylogenetics and Cavender-Bares J, Chapin FS, Cornelissen JHC, Diemer M et al. 2004. The Evolution 19: 259–276. world-wide economics spectrum. Nature 428: 821–827. R Development Core Team. 2009. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Rees M. 1993. Trade-offs among dispersal strategies in British plants. Nature Supporting Information 366: 150–152. Rees M. 1996. Evolutionary ecology of seed dormancy and seed size. Philosophical Additional supporting information may be found in the online Transactions: Biological Sciences 351: 1299–1308. version of this article. Revell LJ. 2010. Phylogenetic signal and linear regression on species data. Methods in Ecology and Evolution 1: 319–329. Fig. S1 Dated maximum likelihood phylogram based on nuclear Royal Botanic Gardens Kew. 2008. Seed Information Database (SID). Version 7.1. [WWW document] URL: http://data.kew.org/sid/. [accessed 31 July 2011] ribosomal internal transcribed spacer (ITS) sequences. Sanderson MJ. 2002. Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. Molecular Biology and Table S1 Detailed references for species included in the study Evolution 19: 101–109. Sanderson MJ. 2004. r8s, version 1.70, User’s Manual. [WWW document] URL: Table S2 Nuclear ribosomal DNA internal transcribed spacer http://loco.biosci.arizona.edu/r8s/. [accessed 22 August 2011] Silvertown J. 1999. Seed ecology, dormancy, and germination: a modern (nrDNA ITS) accessions of Apiaceae obtained from GenBank synthesis from Baskin and Baskin. Book review. American Journal of Botany 86: and references 903–905. Stamatakis A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic Table S3 Simple phylogenetic regressions between all variables analyses with thousands of taxa and mixed models. Bioinformatics 22: measured 2688–2690. Stamatakis A, Ludwig T, Meier H. 2005. Raxml-III: a fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics Please note: Wiley-Blackwell are not responsible for the content 21: 2456–2463. or functionality of any supporting information supplied by the Stebbins GL. 1974. Flowering plants. Evolution above the species level. Cambridge, authors. Any queries (other than missing material) should be UK: The Belknap Press of Harvard University Press. directed to the New Phytologist Central Office. Thompson K, Bakker JP, Bekker RM, Hodgson JG. 1998. Ecological correlates of seed persistence in the soil in the north-west European flora. Journal of Ecology 86: 163–169.

2012 The Authors New Phytologist (2012) New Phytologist 2012 New Phytologist Trust www.newphytologist.com Clade 1 Clade 2 Afrocarum imbricatum erecta Sium latifolium Sium suave Sium medium nodiflorum canadensis Cryptotaenia japonica Lereschia thomasii Bifora americana Daucosma laciniata Ptilimnium nuttallii Oenantha aquatica Oenantha sarmentosa Oenantha crocata Oenantha fistulosa Oenantha lachenalii Oenantha pimpinelloides Oenantha silaifolia douglasii Cicuta virosa Oxypolis rigidior bolanderi Perideridia lemmonii Perideridia oregana Perideridia gairdneri Perideridia parishii Perideridia howellii bulbosa Heptaptera anisoptera Physospermum cornubiense Pleurospermum uralense Diplolophium buchananii baldense Bupleurum exaltatum Bupleurum exaltatum Bupleurum ranunculoides Bupleurum scorzonerifolium Bupleurum longifolium Bupleurum semicompositum Bupleurum candollei Bupleurum praealtum Bupleurum stellatum Bupleurum gibraltarium cordifolia Anginon verticillatum Heteromorpha arborescens Astydamia latifolia major Eryngium agavifolium Eryngium eburneum Eryngium yuccifolium Eryngium pandanifolium Eryngium laevenworthii Eryngium tenue Eryngium alpinum Eryngium creticum Eryngium maritimum Eryngium planum Eryngium tricuspidatum Eryngium amethystinum Eryngium campestre Eryngium palmatum Eryngium giganteum Eryngium bourgatii Eryngium spinalba Hacquetia epipactis Sanicula arctopoides Sanicula crassicaulis Sanicula arguta Sanicula canadensis Sanicula odorata Sanicula graveolens Sanicula tuberosa Sanicula europaea Sanicula bipinnatifida Steganotaenia araliacea Molopospermum peloponnesiacum Hydrocotyle ranunculoides Trachymene incisa

60 50 40 30 20 10 0 Aciphylla glacialis Aciphylla simplicifolia Anisotome haastii Aciphylla scott-thompsonii Aciphylla subflabelllata Lecokia cretica Smyrnium connatum Smyrnium rotundifolium Ostericum grosseserratum Agrocharis incognita Daucus broteri Daucus glochidiatus Daucus involucratus Daucus guttatus Daucus aureus Daucus crinitus Pseudoralaya pumila Daucus muricatus Melanoselinum decipiens Laserpitium hispidum Laserpitium prutenicum Orlaya daucoides Orlaya daucorlaya Orlaya grandiflora Laserpitium siler Laser trilobum Thapsia garganica Clade 2 Artedia squamata Dorema ammoniacum Ferula penninervis Ferula soongarica Ferula communis Ferula galbaniflua caucalis Anthriscus lamprocarpa Anthriscus nitida Anthriscus cerefolium Myrrhis odorata brachypoda Osmorhiza occidentalis Scandix iberica Scandix pecten-veneris Scandix stellata aromaticum Chaerophyllum byzantinum Myrrhoides nodosa Chaerophyllum tainturieri Oreomyrrhis argentea Oreomyrrhis brevipes Oreomyrrhis ciliata Oreomyrrhis hookeri Oreomyrrhis eriopoda Oreomyrrhis involucrata Chaerophyllum villarsii Sphallerocarpus gracilis Athamanta turbith majus Tinguarra montana Astrodaucus littoralis Torilis arvensis Torilis leptophylla Torilis japonica Torilis scabra Torilis tenella Caucalis platycarpos Lisaea strigosa latifolia

50 40 30 20 10 0 Aegopodium podograria cavi Falcaria vulgaris Ammoides pusilla Astoma seselifolium paucifolium Pimpinella siifolia maritimum Lagoecia cuminoides Trachyspermum Scalgeria napiformis Aethusa cynapium Peucedanum carvifolia Peucedanum schottii ampla Angelica decurrens Angelica amurensis Angelica czernaevia Angelica dahurica Angelica sylvestris Angelica gigas Angelica arguta Angelica breweri Angelica lucida Sphenosciadium capitellatum Glehnia littoralis Cymopterus longipes ambiguum Cymopterus terebinthus Lomatium dissectum Lomatium bicolor Lomatium triternatum Lomatium californicum Lomatium dasycarpum Lomatium foeniculaceum Lomatium macrocarpum Lomatium nudicaule Cymopterus corrugatus Cymopterus nivalis Polytaenia nuttallii Zizia aptera Zizia aurea Harbouria trachypleura Lomatium lucidum Tauschia arguta Taenidia integerrima Tauschia texana Arracacia purpusii Cyclospermum leptophyllum Spermolepis inermis Cortia wallichiana Selinum candollei Saposhnikovia divaricata Trinia glauca Seseli gouanii Seseli rigidum Seseli gummiferum Seseli libanotis Cymopterus bulbosus Endressia pyrenaica Peucedanum austriacum Peucedanum rablense Peucedanum coriaceum Peucedanum gallicum Peucedanum morisonii Peucedanum officinale Peucedanum oreoselinum Seseli hippomarathrum Cnidium silaifolium Selinum carvifolia Bifora radians Afroligusticum aculeolatum Dasispermum suffruticosum Lefebvrea grantii Heracleum alpinum Heracleum austriacum Heracleum lanatum Heracleum lehnmannianum ssp. montanum Heracleum sphondylium Malabaila secacul Pastinaca sativa Tordylium aegypticum Tordylium apulum Heracleum candicans Tordylium carmeli Tordylium maximum Cachrys sicula Ferulago campestris Prangos uloptera Magydaris pastinacea Stefanoffia daucoides Clade 1 Peucedanum palustre Silaum silaus tataricum Levisticum officinale Ammi majus Deverra burchellii Deverra denudata segetum Frommia ceratophylloides Pimpinella corymbosa Pimpinella peregrina Pimpinella saxifraga Pimpinella tragium Pimpinella cretica Meum athamanticum Ligusticum mutellina

50 40 30 20 10 0 Table S1a. Detailed references for species included in the study.

Seed Seed Adult Habitat Habitat Geographical Species name1 source2 mass3 longevity4 moisture5 shade6 MTG7 Coordinates8 Aciphylla glacialis F.Muell. ex Benth. 2 1 3 2 1 - 1 Aciphylla scott-thomsonii Cockayne & Allan 3 1 3 2 1 - 2 Aciphylla simplicifolia (F.Muell.) Benth. 2 1 3 2 1 - 1 Aciphylla subflabellata W.R.B.Oliv. 5 1 3 1 1 5 3 L. 1 2 3 2 2 5 - Aethusa cynapium L. 1 2 2 2 1 - - Afrocarum imbricatum (Schinz) Rauschert 2 2 3 3 1 15 - Afroligusticum aculeolatum (Engl.) P.J.D.Winter 2 2 3 2 1 15 - Agrocharis incognita (C.Norman) Heywood & Jury 2 2 2 2 2 15 4 Alepidea cordifolia B.-E.van Wyk 2 2 3 2 1 15 - Ammi majus L. 9 2 1 2 1 5, 15 - Ammoides pusilla (Brot.) Breistr. 2 2 1 1 1 - - Angelica ampla A.Nelson 2 2 3 3 1 5 - Angelica amurensis Schischk. 6 1 3 2 2 - - Angelica archangelica L. 7 2 3 2 2 - - Angelica arguta Nutt. ex Torr. & A.Gray 2 2 3 2 3 5 - Angelica breweri A.Gray 2 2 3 2 3 5 - Angelica czernaevia (Fisch. & Mey.) Kitag. 4 1 2 3 2 - - Angelica dahurica (Hoffm.) Benth. & Hook.f. ex Franch. & Sav. 4 1 3 2 2 - - Angelica decurrens B.Fedtsch. 8 1 3 3 3 - - Angelica gigas Nakai 4 1 3 2 3 - - Angelica lucida L. 2 2 3 1 1 15 - Angelica sylvestris L. 1 2 3 3 2 5 - Anginon verticillatum (Sond.) B.L.Burtt 2 2 3 1 2 - - Anisotome haastii Cockayne & Laing 2 2 3 2 1 - - Anthriscus caucalis M.Bieb. 2 2 1 1 1 5 - Anthriscus cerefolium Hoffm. 7 2 1 1 1 - 5 Anthriscus lamprocarpa Boiss. 2 2 2 2 2 - - Anthriscus nitida Garcke 6 1 2 2 3 - - Anthriscus sylvestris (L.) Hoffm. 1 2 2 2 2 - - (L.) Lag. 2 1 3 3 1 15 6 Apium prostratum Labill. 10 2 2 2 1 15 - Arracacia purpusii Rose 11 1 3 2 1 - 7 Artedia squamata L. 2 2 1 2 1 - - Astoma seselifolium DC. 2 1 3 2 1 15 - L. 12 2 3 2 2 5 8 Astrantia minor L. 28 1 3 1 2 - 3 Astrodaucus littoralis Drude 4 2 3 1 1 - - Astydamia latifolia Baill. 13 1 2 1 1 - - Athamanta turbith Brot. 3 1 3 2 1 - 9 (Huds.) Coville 1 1 3 3 1 15 - Bifora americana Benth. & Hook.f. ex S.Watson 4 2 1 1 1 - - Bifora radians M.Bieb. 4 2 1 2 1 - - Bunium bulbocastanum L. 1 2 3 1 1 5 - Bunium paucifolium DC. 14 1 3 2 1 15 10 Turr. 10 2 1 1 1 15 - Bupleurum barcelloi Coss. ex Willk. 3 1 3 2 1 - 11 Bupleurum candollei Wall. 2 2 3 2 2 15 - Bupleurum exaltatum Schur 15 2 3 1 1 - - Bupleurum falcatum L. 1 2 3 1 1 5 - Bupleurum fruticosum L. 3 2 3 2 2 - 12 Bupleurum gibraltaricum Lam. 16 1 3 1 1 - 21 Bupleurum lancifolium Hornem. 2 2 1 1 1 - - Bupleurum longifolium L. 17 1 3 2 2 - 5 Bupleurum praealtum L. 3 2 1 1 1 - 3 Bupleurum ranunculoides L. 6 2 3 1 1 - - Bupleurum rotundifolium L. 3 2 1 1 1 - 12 Bupleurum scorzonerifolium Willd. 8 1 3 1 1 - 13 Bupleurum semicompositum L. 13 1 1 1 1 - - Bupleurum stellatum L. 18 1 3 1 1 - - Cachrys sicula L. 19 1 3 1 1 - 10 Carum carvi L. 16 2 3 2 2 15 6 Caucalis platycarpos L. 4 2 1 2 1 - - L. 13 2 3 2 3 - - Chaerophyllum aureum L. 20 2 3 2 2 - - Chaerophyllum bulbosum L. 21 1 2 2 3 - 5 Chaerophyllum byzantinum Boiss. 13 1 3 2 3 - - Chaerophyllum hirsutum L. 27 1 3 2 2 - 4 Chaerophyllum tainturieri Hook. 4 2 1 1 1 15 - Chaerophyllum temulum L. 1 2 2 2 2 5 - Chaerophyllum villarsii W.D.J.Koch 20 1 3 2 2 - - Cicuta douglasii J.M.Coult. & Rose 2 2 3 3 1 - - Cicuta virosa L. 4 2 3 3 1 - - Cnidium silaifolium Fiori & Paol. 6 2 3 2 2 - - Hoffm. 4 1 3 2 3 - - Conium maculatum L. 9 2 2 2 2 5 - (Gouan) Loret 9 2 3 2 3 - - Cortia wallichiana (DC.) Leute 13 1 3 2 2 - - Crithmum maritimum L. 3 2 3 1 1 15 12 Cryptotaenia canadensis DC. 17 2 3 1 3 - 14 Cryptotaenia japonica Hassk. 17 2 3 3 3 - 15 Cyclospermum leptophyllum (Pers.) Sprague 4 1 1 2 1 15 - Cymopterus bulbosus A.Nelson 2 1 3 1 1 5 - Cymopterus corrugatus M.E.Jones 4 2 3 1 1 5 - Cymopterus longipes S.Watson 4 2 3 1 2 5 - Cymopterus nivalis S. Watson 4 2 3 1 1 5 - Cymopterus terebinthinus (Hook.) Torr. & A.Gray 4 2 3 1 1 - - Dasispermum suffruticosum (P.J.Bergius) B.L.Burtt 2 2 3 1 1 15 - Daucosma laciniata Engelm. & A.Gray 2 2 1 2 2 - - Daucus aureus Desf. 4 2 2 2 1 15 - Daucus broteri Ten. 4 2 1 1 1 15 - Daucus crinitus Desf. 4 2 3 1 1 15 - Daucus glochidiatus (Labill.) Fisch., C.A.Mey. & Avé-Lall. 2 2 1 2 2 - - Daucus guttatus Sibth. & Sm. 4 2 1 1 1 - - Daucus involucratus Sibth. & Sm. 4 1 1 1 1 - - Daucus muricatus L. 4 1 1 1 1 - - Daucus pusillus Michx. 2 2 1 1 1 15 - Deverra burchellii Eckl. & Zeyh. 2 2 3 1 2 15 - Deverra denudata (Viv.) R.Pfisterer & Podlech 2 2 3 1 1 - - Diplolophium buchananii C.Norman 2 2 3 2 2 - - Dorema ammoniacum D.Don 9 1 3 1 1 - - Endressia pyrenaica J.Gay 18 1 3 2 1 - 16 Erigenia bulbosa Nutt. 2 2 1 2 3 - - Eryngium agavifolium Griseb. 9 2 3 2 1 - - Eryngium alpinum L. 3 1 3 2 1 - 17 Eryngium amethystinum L. 22 1 3 1 1 - 18 Eryngium bourgatii Gouan 16 2 3 1 1 - 10 Eryngium campestre L. 16 2 3 1 1 - - Eryngium creticum Lam. 23 2 3 1 1 5, 15 19 Eryngium eburneum Decne. 11 1 3 1 1 - 4 Eryngium giganteum M.Bieb. 9 2 2 1 1 - 4 Eryngium leavenworthii Torr. & A.Gray 2 2 1 1 1 15 - Eryngium maritimum L. 2 2 3 1 1 - - Eryngium palmatum Pančić & Vis. 22 1 3 1 2 - - Eryngium pandanifolium Cham. & Schltdl. 23 1 3 3 1 - 4 Eryngium planum L. 4 2 3 2 1 - - Eryngium spinalba Vill. 19 1 3 1 1 - 20 Eryngium tenue Hook. & Arn. 4 1 1 1 1 - - Eryngium tricuspidatum L. 18 2 3 1 1 - 21 Eryngium yuccifolium Michx. 4 2 3 2 1 - - Falcaria vulgaris Bernh. 3 2 2 2 2 15 3 Ferula glauca L. 16 1 3 1 1 15 18 Ferula galbaniflua Boiss. & Buhse 3 1 3 1 1 - - Ferula penninervis Regel & Schmalh. 2 2 3 1 1 - - Ferula soongarica Pall. ex Schult. 8 1 3 2 1 - - Ferula ferulago L. 3 1 3 1 1 - - Frommia ceratophylloides H.Wolff 2 2 3 1 1 15 - Glehnia littoralis F.Schmidt 4 2 3 1 1 - - Hacquetia epipactis DC. 15 1 3 2 3 - 3 Harbouria trachypleura J.M.Coult. & Rose 4 2 3 1 1 5 - Heptaptera anisoptera (DC.) Tutin 2 2 3 1 2 15 - Heracleum alpinum L. 16 1 3 2 2 - 17 Heracleum austriacum L. 18 1 3 2 1 - - Heracleum candicans Wall. ex DC. 13 2 3 2 2 - - Heracleum lanatum Michx. 24 2 3 2 1 5, 15 22 Heracleum lehmannianum Bunge 13 1 3 2 2 - - Heracleum mantegazzianum Sommier & Levier 1 2 2 2 2 5 - Heracleum sphondylium L. 1 2 2 2 2 5 - Heracleum montanum Schleich. 24 2 2 2 2 - 9 Heteromorpha arborescens Cham. & Schltdl. 2 2 3 2 2 15 - Hydrocotyle ranunculoides L.f. 14 1 3 3 1 - 3 Lagoecia cuminoides L. 2 2 1 2 1 15 - Laser trilobum Borkh. ex Gaertn. 3 2 3 2 2 15 5 Laserpitium hispidum M.Bieb. 2 2 3 1 1 - - Laserpitium prutenicum L. 3 1 2 2 2 - 5 Laserpitium siler L. 16 1 3 2 3 - 17 Lecokia cretica DC. 2 2 3 2 1 - - Lefebvrea grantii (Kingston ex Oliver) S.Droop 2 2 3 1 1 15 - Lereschia thomasii Boiss. 2 1 3 3 1 - 3 Levisticum officinale W.D.J.Koch 1 2 3 2 1 5 - Ligusticum mutellina (L.) Crantz 9 1 3 2 1 5 - Ligusticum scoticum subsp. hultenii (Fernald) Calder & Roy 4 2 3 1 1 - - Lisaea strigosa (Banks & Sol.) Eig 14 1 1 2 1 - - Lomatium ambiguum J.M.Coult. & Rose 4 2 3 1 1 5 - Lomatium bicolor J.M.Coult. & Rose 4 2 3 1 1 5 - Lomatium californicum (Nutt. ex Torr. & A.Gray) Mathias & Constance 4 2 3 2 3 5 - Lomatium dasycarpum (Torr. & 24 2 3 1 1 5 23 A.Gray) J.M.Coult. & Rose Lomatium dissectum (Nutt. ex Torr. & A.Gray) Mathias & Constance 4 2 3 2 2 5 - Lomatium foeniculaceum (Nutt.) J.M.Coult. & Rose 4 2 3 2 2 - - Lomatium lucidum Jeps. 24 2 3 1 1 - 22 Lomatium macrocarpum (Nutt. ex Torr. & A.Gray) J.M.Coult. & Rose 4 2 3 1 2 - - Lomatium nudicaule J.M.Coult. & Rose 4 2 3 1 2 5 - Lomatium triternatum J.M.Coult. & Rose 4 2 3 2 2 5, 15 - Magydaris pastinacea Fiori & Paol. 2 2 3 2 1 15 - Malabaila sekakul Boiss. 2 2 3 1 1 15 - Melanoselinum decipiens (Schrad. & J.C.Wendl.) Hoffm. 13 1 2 2 1 - - Meum athamanticum Jacq. 5 2 3 2 1 - 17 Molopospermum peloponnesiacum W.D.J.Koch 17 1 3 2 2 - 17 Myrrhis odorata Scop. 1 2 3 2 1 5 - Myrrhoides nodosa (L.) Cannon 14 1 1 2 3 - 3 aquatica (L.) Poir. 1 2 2 3 1 - - Oenanthe crocata L. 2 2 3 3 1 15 - Oenanthe fistulosa L. 3 2 3 3 1 - 12 Oenanthe lachenalii C.C.Gmel. 3 2 3 3 1 - - Oenanthe pimpinelloides L. 7 2 3 3 1 5 - Oenanthe sarmentosa Presl ex DC. 2 2 3 3 1 5, 15 - Oenanthe silaifolia M.Bieb. 3 1 3 3 1 - 12 Oreomyrrhis argentea Hook.f. 25 2 3 2 1 - 1 Oreomyrrhis brevipes Mathias & Constance 2 2 3 1 1 - - Oreomyrrhis ciliata Hook.f. 10 2 3 3 1 - - Oreomyrrhis eriopoda (DC.) Hook.f. 25 2 3 2 2 - - Oreomyrrhis hookeri Mathias & Constance 2 1 3 2 1 - - Oreomyrrhis involucrata Hayata 26 1 1 3 2 - - Orlaya daucoides (L.) Greuter 4 2 1 2 1 - - Orlaya daucorlaya Murb. 4 1 1 1 2 - - Orlaya grandiflora (L.) Hoffm. 3 2 1 1 2 - - Osmorhiza brachypoda Torr. ex Durand 24 2 3 2 3 - 4 Osmorhiza occidentalis Torr. 4 2 3 2 3 5 - Ostericum grosseserratum (Maxim.) Kitag. 2 2 3 2 1 15 - Oxypolis rigidior (L.) J.M.Coult. & Rose 2 2 3 3 1 - - Pastinaca sativa L. 1 2 2 2 1 5 - Perideridia bolanderi (A.Gray) A.Nelson & J.F.Macbr. 4 2 3 2 1 5 - Perideridia gairdneri (Hook. & 4 2 3 2 2 5 - Arn.) Mathias Perideridia howellii (J.M.Coult. & Rose) Mathias 4 2 3 2 1 - - Perideridia lemmonii (J.M.Coult. & Rose) T.I.Chuang & Constance 2 2 3 2 2 5 - Perideridia oregana (Nutt. ex Torr. & A.Gray) Mathias 4 2 3 2 2 - - Perideridia parishii subsp. latifolia (A.Gray) T.I.Chuang & Constance 4 2 3 3 2 5 - Peucedanum austriacum W.D.J.Koch 18 1 3 2 2 - 4 Peucedanum carvifolia Vill. 18 1 3 1 2 - 5 Peucedanum coriaceum Rchb. 16 1 3 2 1 - - Peucedanum gallicum Latour. 16 1 3 1 2 - - Peucedanum morisonii Besser ex Schult. 8 1 3 2 2 - - Peucedanum officinale L. 15 1 3 2 1 - 24 Peucedanum oreoselinum Moench 18 2 3 1 1 5, 15 - Peucedanum ostruthium W.D.J.Koch 9 1 3 2 2 - 6 Peucedanum palustre (L.) Moench 1 2 2 3 1 - - Peucedanum rablense W.D.J.Koch 13 1 3 2 2 - 9 Peucedanum schottii Besser ex DC. 15 1 3 1 1 - 17 Physospermum cornubiense DC. 2 2 3 2 1 - - Pimpinella corymbosa Boiss. 2 2 3 1 1 15 - Pimpinella cretica Poir. 2 2 1 1 1 15 - Pimpinella peregrina L. 2 2 2 1 1 15 - Pimpinella saxifraga L. 1 2 3 1 1 - - Pimpinella siifolia Leresche 4 1 3 2 1 - - Pimpinella tragium Vill. 4 2 3 1 1 - - Pleurospermum uralense Hoffm. 8 1 3 3 2 - 25 Polytaenia nuttallii DC. 2 2 3 1 1 5, 15 - Prangos uloptera DC. 19 1 3 1 1 - - Pseudorlaya pumila Grande 14 1 1 1 1 - 26 Ptilimnium nuttallii Britton 2 2 1 3 1 15 - Ridolfia segetum Moris 4 2 1 2 1 - - Sanicula arctopoides Hook. & Arn. 4 2 3 1 1 5, 15 - Sanicula arguta Greene ex J.M.Coult. & Rose 24 2 2 1 1 - 14 Sanicula bipinnatifida Douglas 24 2 3 2 1 - 4 Sanicula canadensis L. 2 1 2 2 3 5 - Sanicula crassicaulis Poepp. ex DC. 2 2 3 2 2 5, 15 - Sanicula europaea L. 1 2 3 2 3 5 - Sanicula graveolens Poepp. ex DC. 2 2 3 2 3 5 - Sanicula odorata (Raf.) K.M.Pryer & L.R.Phillippe 2 2 3 2 3 - - Sanicula tuberosa Torr. 24 1 2 2 2 - 27 Saposhnikovia divaricata (Turcz.) Schischk. 4 1 3 2 2 - - Scaligeria napiformis Grande 2 2 3 2 2 15 - Scandix iberica M.Bieb. 2 1 1 2 1 15 - Scandix pecten-veneris L. 9 2 1 2 1 5 6 Scandix stellata Banks & Soland. 2 2 1 2 1 5, 15 - Selinum candollei Edgew. 2 2 3 2 2 15 - Selinum carvifolia (L.) L. 1 2 3 3 1 5 - Seseli gouanii W.D.J.Koch 15 1 2 1 1 - 28 Seseli gummiferum Pall. ex Sm. 13 2 3 1 1 - - Seseli hippomarathrum Jacq. 19 1 3 1 1 - 29 Seseli libanotis W.D.J.Koch 1 2 2 1 1 - - Seseli rigidum Waldst. & Kit. 13 1 3 2 1 - - Silaum silaus Schinz & Thell. 9 2 3 3 1 - 6 Sium latifolium L. 3 1 3 3 1 - 12 Sium medium Fisch. & C.A.Mey. 2 2 3 3 1 5 - Sium sisarum L. 4 2 3 3 1 - - Sium suave Walter 4 2 3 3 1 - - Smyrnium connatum Boiss. & Kotschy 2 2 3 1 1 5, 15 - Smyrnium olusatrum L. 1 2 2 1 1 5, 15 - Smyrnium rotundifolium Mill. 3 2 2 2 1 - 30 Spermolepis inermis (Nutt. ex DC.) Mathias & Constance 2 2 1 1 1 - - Sphallerocarpus gracilis Koso-Pol. 4 1 3 2 1 - - Sphenosciadium capitellatum A.Gray 4 2 3 3 2 - - Stefanoffia daucoides H.Wolff 2 2 3 1 1 - - Steganotaenia araliacea Hochst. 2 2 3 2 2 15 - Taenidia integerrima (L.) Drude 2 2 3 1 2 5 - Tauschia arguta (Torr. & A.Gray) J.F.Macbr. 24 1 3 1 1 - 3 Tauschia texana A.Gray 2 1 3 2 3 - - Thapsia garganica L. 2 2 3 2 2 - - Tinguarra montana Benth. & Hook.f. 13 1 3 2 2 - - Tordylium aegyptiacum (L.) Poir. 4 2 1 1 1 - - Tordylium apulum L. 27 1 1 2 1 - - Tordylium carmeli (Labill.) Al- Eisawi & Jury 2 2 3 2 2 - - Tordylium maximum L. 3 2 1 1 1 - 17 Torilis arvensis Link 20 2 1 1 1 15 17 Torilis japonica DC. 1 2 2 2 2 5 - Torilis leptophylla Rchb.f. 2 2 1 2 1 5, 15 - Torilis scabra DC. 2 2 1 2 2 5 - Torilis tenella Rchb.f. 2 2 1 1 1 15 - Trachymene incisa Rudge 25 2 3 1 2 - 2 Trachyspermum ammi Sprague 4 1 1 1 1 - - Trinia glauca Rchb. 19 2 3 1 1 15 17 Turgenia latifolia hoffm. 3 2 1 2 1 5 - Zizia aptera (A.Gray) Fernald 2 2 3 2 1 5 - Zizia aurea W.D.J.Koch 4 2 3 2 1 5 -

1 Species names based on the International Plant Names Index (http://www.ipni.org/). 2 Person or institute from which seeds were obtained. Numbers refer to references in appendix 1b. 3 Seed weights obtained from (1) the Seed Information Database (http://data.kew.org/sid/) or (2) by weighing seeds ourselves. 4 Value of life-cycle duration assigned to the species: (1) annual, (2) biennial or (3) perennial 5 Value of habitat moisture assigned to the species: (1) dry, (2) moist or (3) wet 6 Value of habitat light assigned to the species: (1) open, (2) semi-shaded or (3) shaded 7 Temperatures at which seeds were tested to determine the Mean Time to Germinate (MTG) 8 Geographical coordinates of species were either provided by the institutes that provided seeds (-) or were accessed through the GBIF data portal (http://data.gbif.org/). Numbers refer to references in appendix 1c.

Table S1b. References of persons or institutes that provided seeds.

1. Field Sampling by Filip Vandelook, Belgium; 2. Royal Botanic Gardens, Kew, UK; 3. Warwick Crop Centre, UK; 4. National Center for Genetic Resources Preservation, Fort Collins, USA; 5. Stavanger Botanic Garden, ; 6. Hortus Botanicus, Universitatis Masarykianae, Brno, Czech Republic; 7. Unit of Tropical Crop Husbandry and Horticulture, Gembloux, Belgium; 8. Hortus Botanicus Austro-Sibiricus, Universitatis Altaijensis, Barnaul, Russia; 9. National Botanic Garden of Belgium, Meise; 10. Station Alpine Joseph Fourier, Grenoble, ; 11. Jardin Botanique Alpin " Daniella ", Limoges, France; 12. Botanischer Garten, Ruhr Universität Bochum, Germany; 13. Botanischer Garten und Botanisches Museum Berlin-Dahlem, Germany; 14 .Israel Plant Gene Bank ; 15 .University Botanic Gardens Ljubljana, Slovenia; 16. Jardin Botanique de la Ville de Lyon, France; 17. Botanical Garden of the University of Tartu, Estonia; 18 .Giardino Botanica Alpino Rezia, Italy; 19. Botanischer Garten der Universität Leipzig, Germany; 20. Botanischer Garten der Georg- August-Universität Göttingen, Germany; 21. Botanischer Garten der Universität Hohenheim, Germany; 22. Jardin Botanique de Saint-Triphon, Suisse; 23. Chelsea Physic Garden, UK; 24. Rancho Santa Ana Botanic Garden, California, USA; 25. NSW Seed Bank, New South Wales, Australia; 26. Field sampling by Kuo-Fang Chung, Taiwan; 27. Botanical Garden of the University of Zagreb, Croatia; 28. Conservatoire et Jardin Botaniques Ville de Genève.

Table S1c. References of databases accessed through the GBIF data portal to obtain geographical coordinates.

1. Australian National (CANB) ; 2. National Herbarium of New South Wales (NSW); 3. Royal Botanic Garden Edinburgh; 4. Missouri Botanical Garden; 5. Bundesamt für Naturschutz / Netzwerk Phytodiversität Deutschland ; 6. BeBIF Provider; 7. Department of Botany, Research and Collections Information System, NMNH, Smithsonian Institution; 8. Sistema de información de las plantas de España. Real Jardín Botánico, CSIC Fundación Biodiversidad; 9. Scientific Research Centre of the Slovenian Academy of Sciences and Arts, Institute of Biology, FloVegSI; 10. Herbario de la Universidad de Salamanca: SALA; 11. Jardín Botánico de Córdoba: Herbarium (COA); 12. UK National Biodiversity Network; 13. National Museum of Nature and Science, Japan; 14. The New York Botanical Garden, Herbarium of The New York Botanical Garden; 15. National Museum of Nature and Science, Japan, Specimen Database of Kanagawa Prefectural Museum of Natural History; 16. Sistema de Información de la vegetación Ibérica y Macaronésica; 17. Service du Patrimoine naturel, Muséum national d'Histoire naturelle, Paris; 18. Lund Botanical Museum (LD); 19. Israel Nature and Parks Authority; 20. Staatliches Museum für Naturkunde Stuttgart, Herbarium; 21. GBIF-Spain, Real Jardin Botanico (Madrid), Vascular Plant Herbarium (MA); 22. Consortium of California Herbaria; 23. USDA Plants; 24. Bioversity International; 25. Botanic Garden and Botanical Museum Berlin-Dahlem; 26. US National Plant Germplasm System; 27. Oregon State University Herbarium (OSC); 28. Karl Franzens University of Graz, Insitute for Botany - Herbarium GZU; 29. University of Vienna, Institute for Botany - Herbarium WU; 30. SysTax, SysTax Table S2a. nrDNA ITS accessions of Apiaceae obtained from GenBank

Aciphylla glacialis F.Muell. ex Benth., AF324356, AF324383, Radford et al. 2001; Aciphylla scott-thomsonii Cockayne & Allan, AF324364, AF324391, Radford et al. 2001; Aciphylla simplicifolia (F.Muell.) Benth., AF324367, AF324394, Radford et al. 2001; Aciphylla subflabellata W.R.B.Oliv., AF008646, AF009125, Katz-Downie et al. 1999; Aegopodium podagraria L., U30536, U30537, Downie and Katz-Downie 1996; Aethusa cynapium L., U30582, U30583, Downie and Katz-Downie 1996; Afrocarum imbricatum (Schinz) Rauschert, AY360228, Hardway et al. 2004; Afroligusticum elliotii (Engl.) C.Norman, DQ516377, Spalik and Downie 2007; Agrocharis incognita (C.Norman) Heywood & Jury, AF077793, Lee and Downie 1999; Steud. ex A.Rich. , EU168963, Kadereit et al. 2008; Ammi majus L., U78386, U78446, Downie et al. 1998; Ammoides pusilla (Brot.) Breistr., DQ516360, Spalik and Downie 2007; Anethum graveolens L., U30550, U30551, Downie and Katz-Downie 1996; Angelica ampla A.Nelson, U79597, U79598, Downie et al. 1998; Angelica amurensis Schischk., DQ263581, Xue et al. 2007; Angelica archangelica L., U30576, U30577, Downie and Katz-Downie 1996; Angelica arguta Nutt. ex Torr. & A.Gray, U79599, U79600, Downie et al. 1998; Angelica breweri A.Gray, U78396, U78456, Downie et al. 1998; Angelica czernaevia (Fisch. & Mey.) Kitag., DQ270197, Xue et al. 2007; Angelica dahurica (Hoffm.) Benth. & Hook.f. ex Franch. & Sav., DQ278167, Xue et al. 2007; Angelica decurrens B.Fedtsch., AF008599, AF009078, Katz-Downie et al. 1999; Angelica gigas Nakai, DQ263575, Xue et al. 2007; Angelica lucida L., DQ270196, Xue et al. 2007; Angelica sylvestris L., U78414, U78474, Downie et al. 1998; Anginon verticillatum (Sond.) B.L.Burtt, DQ368828, Calvino et al. 2006; Anisosciadium orientale DC., EU169245, Ajani et al. 2008; Anisotome deltoidea (Cheeseman) Cheeseman, U72376, Mitchell et al. 1998; Anthriscus caucalis M.Bieb., U79601, U79602, Downie et al. 1998; Anthriscus cerefolium Hoffm., AF073571, Downie et al. 2000; Anthriscus lamprocarpa Boiss., AF073581, Downie et al. 2000; Anthriscus nitida Garcke, AF073595, Downie et al. 2000; Anthriscus sylvestris (L.) Hoffm., AF073575, Downie et al. 2000; Apium nodiflorum (L.) Lag., AF164823, Downie et al. 2000b; Apium prostratum Labill., GQ148790, Reduron et al. 2009; Aralia apioides Hand.-Mazz., U66704, Wen et al. 1999; Aralia armata Seem. , AY233310, Pandey et al. 2003; Aralia leschenaultii (DC.) J.Wen , AY233318, Pandey et al. 2003; Arracacia brandegei M.E. Jones, U30570, U30571, Downie and Katz-Downie 1996; Artedia squamata L., AF077799, AF077114, Lee and Downie 1999; Arthrophyllum ahernianum Merr., DQ007359, Wen et al. 2008; Astoma seselifolium DC., EU169246, Ajani et al. 2008; Astrantia major L., AF077876, Valiejo-Roman et al. 1998; Astrantia minor L., AF337191, Valiejo-Roman et al. 2002; Astrodaucus littoralis Drude, AF077807, AF077122, Lee and Downie 1999; ledifolia DC., U63190, Mitchell and Wagstaff 2007; Astydamia latifolia Baill., DQ368836, Calvino et al. 2006; Asyneuma campanuloides Bornm. , DQ304586, Park et al. 2006; Athamanta turbith Brot., AF073687, Downie et al. 2000; Auranticarpa papyracea L.W.Cayzer, Crisp & I.Telford , AY829015, Chandler et al. 2004; Bentleya spinescens E.M.Benn. , AY829016, Chandler et al. 2004; Berula erecta (Huds.) Coville, U79605, Downie et al. 1998; Bifora americana Benth. & Hook.f. ex S.Watson, AY360232, Hardway et al. 2004; Bifora radians M.Bieb., U78408, U78468, Downie et al. 1998; cymosa F.Muell., AY829017, Chandler et al. 2004; Brassaia actinophylla Endl. , AF242245, Wen et al. 2001; ciliata Dunn , AF551723, Wen et al. 2001; Brighamia insignis A.Gray , EU219385, Antonelli 2009; Bunium bulbocastanum L., DQ435209, DQ435248, Degtjareva et al. 2009; Bunium paucifolium DC., DQ435229, DQ435268, Degtjareva et al. 2009; Fisch. ex Hoffm. , EF101158, Yang et al. 2007; Bupleurum baldense Turr., AF469682, Neves and Watson 2004; Bupleurum barcelloi Coss. ex Willk., AF477023, Neves and Watson 2004; Bupleurum candollei Wall., DQ285471, Xie et al. 2006; Bupleurum canescens Schousb. , AF477027, Neves and Watson 2004; Bupleurum exaltatum Schur, EU220923, Wang et al. 2008b; Bupleurum falcatum L., AF479290, Neves and Watson 2004; Bupleurum fruticosum L., AF479298, Neves and Watson 2004; Bupleurum gibraltaricum Lam., AF479851, Neves and Watson 2004; Bupleurum handiense (Bolle) G.Kunkel , AF477028, Neves and Watson 2004; Bupleurum lancifolium Hornem., AF479853, Neves and Watson 2004; Bupleurum longifolium L., AF479856, Neves and Watson 2004; Bupleurum praealtum L., AF480939, Neves and Watson 2004; Bupleurum ranunculoides L., AF481395, Neves and Watson 2004; Bupleurum rotundifolium L., AF481400, Neves and Watson 2004; Bupleurum scorzonerifolium Willd., EU001347, Wang et al. 2008; Bupleurum semicompositum L., AF481929, Neves and Watson 2004; Bupleurum stellatum L., AF481930, Neves and Watson 2004; spinosa Cav., AY829024, Chandler et al. 2004; Cachrys sicula L., EU169249, Ajani et al. 2008; Campanula acarnanica Damboldt, DQ304598, Park et al. 2006; africanum (L.) Gaertn. , FM201530, Magee et al. 2009; Carum carvi L., U78377, U78437, Downie et al. 1998; Caucalis platycarpos L., U78364, U78424, Downie et al. 1998; Cephalaralia cephalobotrys (F.Muell.) Harms , AF229762, Plunkett and Lowry 2001; Chaerophyllum aromaticum L., AF077880, Valiejo-Roman et al. 1998; Chaerophyllum aureum L., AF073655, Downie et al. 2000; Chaerophyllum bulbosum L., AF073659, Downie et al. 2000; Chaerophyllum byzantinum Boiss., AF073635, Downie et al. 2000; Chaerophyllum hirsutum L., AM284415, Chung 2007; Chaerophyllum libanoticum Boiss. & Kotschy, AF073637, Downie et al. 2000; Chaerophyllum tainturieri Hook., AF073647, Downie et al. 2000; Chaerophyllum temulum L., AF073641, Downie et al. 2000; Chaerophyllum villarsii W.D.J.Koch, AF073667, Downie et al. 2000; linearis A.Cunn. ex Lindl., AY829025, Chandler et al. 2004; Cheirodendron platyphyllum Seem., AF229764, Plunkett and Lowry 2001; Chengiopanax sciadophylloides (Franch. & Sav.) C.B.Shang & J.Y.Huang , AM400882, Artiukova et al. 2005; Cicuta douglasii J.M.Coult. & Rose, AY524716, Lee and Downie 2006; Cicuta virosa L., AY524766, Lee and Downie 2006; Cnidium silaifolium Fiori & Paol., AF008614, AF009093, Katz-Downie et al. 1999; Conioselinum tataricum Hoffm., AF008623, AF009102, Katz-Downie et al. 1999; Conium maculatum L., U30588, U30589, Downie and Katz-Downie 1996; Conopodium majus (Gouan) Loret, AF336374, Spalik et al. 2001; Coriandrum sativum L., U30586, U30587, Downie and Katz-Downie 1996; Cortia depressa (D.Don) C.Norman, AF008607, AF009086, Katz-Downie et al. 1999; Crithmum maritimum L., U30540, U30541, Downie and Katz-Downie 1996; Cryptotaenia canadensis DC., U79613, Downie et al. 1998; Cryptotaenia japonica Hassk., U78367, Downie et al. 1998; Cuphocarpus aculeatus Decne. & Planch. , AF229737, Plunkett et al. 2001; Cyclospermum leptophyllum (Pers.) Sprague, AF358471, AF358538, Downie et al. 2002; Cymopterus bulbosus A.Nelson, AF358477, AF358544, Downie et al. 2002; Cymopterus corrugatus M.E.Jones, AY146834, AY146900, Sun et al. 2004; Cymopterus longipes S.Watson, AF358483, AF358550, Downie et al. 2002; Cymopterus nivalis S. Watson, AF358486, AF358553, Downie et al. 2002; Cymopterus terebinthinus (Hook.) Torr. & A.Gray, AY146872, AY146938, Sun et al. 2004; Dasispermum suffruticosum (P.J.Bergius) B.L.Burtt, AM408870, Winter et al. 2008; Daucosma laciniata Engelm. & A.Gray, AY360238, Hardway et al. 2004; Daucus aureus Desf., AF077784, AF077099, Lee and Downie 1999; Daucus broteri Ten., AF077783, AF077098, Lee and Downie 1999; Daucus crinitus Desf., AF077786, AF077101, Lee and Downie 1999; Daucus glochidiatus (Labill.) Fisch., C.A.Mey. & Avé-Lall., EU331132, Gardner et al. 2007; Daucus gracilis Steinh., AY065322, AY065323, Lee and Park 2001; Daucus guttatus Sibth. & Sm., AY065336, AY065337, Lee and Park 2001; Daucus involucratus Sibth. & Sm., AY065334, AY065335, Lee and Park 2001; Daucus muricatus L., AF077785, AF077100, Lee and Downie 1999; Daucus pusillus Michx., AF077788, AF077103, Lee and Downie 1999; Dendropanax arboreus (L.) Decne. & Planch., AY389033, Plunkett et al. 2004; Deverra burchellii Eckl. & Zeyh., AM408887, Winter et al. 2008; Deverra denudata (Viv.) R.Pfisterer & Podlech, AM408888, Winter et al. 2008; Diplolophium somaliense Verdc., DQ368843, Calvino et al. 2006; Dorema ammoniacum D.Don, EF560690, Kurzyna-Mlynik et al. 2008; Eleutherococcus koreanus Nakai , AF152111, Han et al. 1999; Eleutherococcus trifoliatus (L.) S.Y.Hu, AY725119, Pandey et al. 2003; Endressia castellana Coincy, U30584, U30585, Downie and Katz-Downie 1996; Erigenia bulbosa Nutt., AF008636, AF009115, Katz- Downie et al. 1999; Eryngium agavifolium Griseb., EU070600, Calvino et al. 2008; Eryngium alpinum L., EU070602, Calvino et al. 2008; Eryngium amethystinum L., EU168967, Kadereit et al. 2008; Eryngium bourgatii Gouan, EU070610, Calvino et al. 2008; Eryngium caeruleum Gilib., EU070615, Calvino et al. 2008; Eryngium campestre L., EU070617, Calvino et al. 2008; Eryngium creticum Lam., EU070631, Calvino et al. 2008; Eryngium eburneum Decne., EU070637, Calvino et al. 2008; Eryngium giganteum M.Bieb., EU070650, Calvino et al. 2008; Eryngium leavenworthii Torr. & A.Gray, EU070669, Calvino et al. 2008; Eryngium maritimum L., EU070674, Calvino et al. 2008; Eryngium palmatum Pančić & Vis., EU070689, Calvino et al. 2008; Eryngium pandanifolium Cham. & Schltdl., EU070692, Calvino et al. 2008; Eryngium planum L., EU070696, Calvino et al. 2008; Eryngium sanguisorba Cham. & Schltdl., EU070712, Calvino et al. 2008; Eryngium spinalba Vill., EU169006, Kadereit et al. 2008; Eryngium tenue Hook. & Arn., EU070725, Calvino et al. 2008; Eryngium tricuspidatum L., EU169009, Kadereit et al. 2008; Eryngium variifolium Coss., EU070728, Calvino et al. 2008; Eryngium yuccifolium Michx., EU070735, Calvino et al. 2008; Euaraliopsis palmata (Roxb.) Hutch. , AF242250, Wen et al. 2001; Falcaria vulgaris Bernh., AF077888, Valiejo-Roman et al. 1998; Fatsia japonica Decne. & Planch., AJ131215, Vargas et al. 1999b; Ferula communis L., GQ165515, Marchi et al. 2003; Ferula galbaniflua Boiss. & Buhse, DQ379407, Kurzyna-Mlynik et al. 2008; Ferula glauca L., DQ379406, Kurzyna-Mlynik et al. 2008; Ferula penninervis Regel & Schmalh., DQ379439, Kurzyna-Mlynik et al. 2008; Ferula soongarica Pall. ex Schult., DQ379448, Kurzyna-Mlynik et al. 2008; Ferulago confusa Velen., AJ972895, Maras et al. 2006; Foeniculum vulgare Mill., AY581806, Tabanca et al. 2005; Frommia ceratophylloides H.Wolff, DQ647630, Spalik and Downie 2007; Gamblea malayana (M.R.Hend.) C.B.Shang, Lowry & Frodin , DQ007374, Wen et al. 2008; Gastonia cutispongia Lam., AF229722, Plunkett et al. 2001; Glehnia littoralis F.Schmidt, FJ593179, Daniel and Knoes 2008; Glia prolifera (Burm.f.) B.L.Burtt , DQ368846, Calvino et al. 2006; Griselinia littoralis Raoul , AJ536581, Clokie et al. 2003; Grushvitzkya stellata Skvortsova & Aver., AF551728, Wen et al. 2003; Hacquetia epipactis DC., AF077892, Valiejo-Roman et al. 1998; Haplocarpha scaposa Harv. , DQ444736, McKenzie et al. 2006; Harbouria trachypleura J.M.Coult. & Rose, AF358493, AF358560, Downie et al. 2002; Harmsiopanax aculeatus K.Schum., DQ007376, Wen et al. 2008; Hedera algeriensis Hibberd , AJ131217, Vargas et al. 1999b; Heptaptera anisoptera (DC.) Tutin, AY941273, AY941301, Valiejo-Roman et al. 1996; Heracleum alpinum L., EU169274, Ajani et al. 2008; Heracleum austriacum L., EU185657, Paik and Watson 2007; Heracleum candicans Wall. ex DC., DQ516378, Spalik and Downie 2007; Heracleum lanatum Michx., EU594922, Zych 2008; Heracleum lehmannianum Bunge, DQ427048, Logacheva et al. 2008; Heracleum mantegazzianum Sommier & Levier, DQ468080, Logacheva et al. 2008; Heracleum montanum Schleich., EU594907, Zych 2008; Heracleum platytaenium Boiss., DQ468078, Logacheva et al. 2008; Heracleum sphondylium L., EU185663, Paik and Watson 2007; Heracleum steveni Manden. , EU594917, Zych 2008; Heteromorpha arborescens Cham. & Schltdl., U27578, Downie and Katz-Downie 1996; Heteropanax fragrans Seem. , AF242242, Wen et al. 2001; Hydrocotyle bonariensis Lam., AF077894, Valiejo-Roman et al. 1998; Hydrocotyle mexicana Cham. & Schltdl., AF077893, Plunkett et al. 2004; Hydrocotyle sibthorpioides Lam., GU447309, Karuppusamy et al. 2010; Hymenosporum flavum (Hook.) F.Muell., AY829026, Chandler et al. 2004; Johrenia aromatica Rech.f. , EU169288, Ajani et al. 2008; Kalopanax septemlobus Koidz. , EF152175, Wen et al. 2007; Lagoecia cuminoides L., AF337179, AF337187, Valiejo-Roman et al. 2002; Laser trilobum Borkh. ex Gaertn., AF008644, AF009123, Katz-Downie et al. 1999; Laserpitium hispidum M.Bieb., AF077898, Valiejo-Roman et al. 1998; Laserpitium prutenicum L., AF336374, Spalik et al. 2001; Laserpitium siler L., U30528, Downie and Katz-Downie 1996; Lecokia cretica DC., U78358, Downie et al. 1998; Lefebvrea grantii (Kingston ex Oliver) S.Droop, AM408878, Winter et al. 2008; Lereschia thomasii Boiss., AM421463, AM421462, De Castro et al. 2009; Levisticum officinale W.D.J.Koch, AF077899, Valiejo-Roman et al. 1998; Libanotis sibirica W.D.J.Koch, FJ385046, Zhou et al. 2009; Ligusticum mutellina (L.) Crantz, AY328934, AY330500, Valiejo-Roman et al. 2006; Ligusticum scoticum subsp. hultenii (Fernald) Calder & Roy , U79591, U79592, Downie et al. 1998; Lisaea strigosa (Banks & Sol.) Eig, AF077811, AF077126, Lee and Downie 1999; Lomatium ambiguum J.M.Coult. & Rose, AY146851, AY146917, Sun et al. 2004; Lomatium bicolor J.M.Coult. & Rose, AF35849, AF358561, Downie et al. 2002; Lomatium californicum (Nutt. ex Torr. & A.Gray) Mathias & Constance, AF011796, AF011813, Hardig and Soltis 1999; Lomatium dasycarpum (Torr. & A.Gray) J.M.Coult. & Rose, U30580, U30581, Downie and Katz-Downie 1996; Lomatium dissectum (Nutt. ex Torr. & A.Gray) Mathias & Constance, AF011809, AF011826, Hardig and Soltis 1999; Lomatium foeniculaceum (Nutt.) J.M.Coult. & Rose, AF358496, AF358563, Downie et al. 2002; Lomatium lucidum Jeps., AF011799, AF011816, Hardig and Soltis 1999; Lomatium macrocarpum (Nutt. ex Torr. & A.Gray) J.M.Coult. & Rose, AF358568, AF358568, Downie et al. 2002; Lomatium nudicaule J.M.Coult. & Rose, AF358502, AF358569, Downie et al. 2002; Lomatium triternatum J.M.Coult. & Rose, AF358505, AF358572, Downie et al. 2002; Macropanax dispermus Kuntze, AY725140, Pandey et al. 2003; Magydaris panacifolia Lange, EU169295, Ajani et al. 2008; Malabaila sekakul Boiss., AF008627, AF009106, Katz-Downie et al. 1999; Marianthus bicolor (Putt.) F.Muell., AY829028, Chandler et al. 2004; Melanoselinum decipiens (Schrad. & J.C.Wendl.) Hoffm., EF016755, Spalik and Downie 2007; Merrilliopanax chinensis H.L.Li , AY389040, Plunkett et al. 2004; Meryta balansae Baill. , AY746556, Tronchet et al. 2005; Metapanax delavayi (Franch.) J.Wen & Frodin , AF242232, Wen et al. 2001; Meum athamanticum Jacq., AF077900, Valiejo-Roman et al. 1998; Molopospermum peloponnesiacum W.D.J.Koch, AF074335, Downie et al. 2000; Motherwellia haplosciadea F.Muell. , AY389042, Plunkett et al. 2004; Munroidendron racemosum (C.N.Forbes) Sherff , AF229738, Plunkett et al. 2001; Myodocarpus fraxinifolius Brongn. & Gris , AY389026, Plunkett et al. 2004; Myrrhis odorata Scop., AF077901, Valiejo-Roman et al. 1998; Myrrhoides nodosa (L.) Cannon, AF073675, Downie et al. 2000; Neopanax arboreus (Murr.) Allan, AY746566, Tronchet et al. 2005; Oenanthe aquatica (L.) Poir., AY691924, Kadereit and Kadereit 2005; Oenanthe crocata L., AY691933, Kadereit and Kadereit 2005; Oenanthe fistulosa L., AY360249, Hardway et al. 2004; Oenanthe lachenalii C.C.Gmel., AY691939, Kadereit and Kadereit 2005; Oenanthe montis-khortiati Soldano, AY691934, Kadereit and Kadereit 2005; Oenanthe pimpinelloides L., AY691935, Kadereit and Kadereit 2005; Oenanthe sarmentosa Presl ex DC., EU233942, Spalik et al. 2009; Oenanthe silaifolia M.Bieb., AY691937, Kadereit and Kadereit 2005; Oplopanax elatus Nakai , AY389043, Plunkett et al. 2004; Oreomyrrhis argentea Hook.f., AJ854310, Chung et al. 2005; Oreomyrrhis brevipes Mathias & Constance, AJ854313, Chung et al. 2005; Oreomyrrhis ciliata Hook.f., AJ854314, Chung et al. 2005; Oreomyrrhis eriopoda (DC.) Hook.f., AM284404, Chung 2007; Oreomyrrhis hookeri Mathias & Constance, AJ854328, Chung et al. 2005; Oreomyrrhis involucrata Hayata, AM284406, Chung 2007; Orlaya daucoides (L.) Greuter, AF077797, Lee and Downie 1999; Orlaya daucorlaya Murb., AF077113, Lee and Downie 1999; Orlaya grandiflora (L.) Hoffm., U30524, Downie and Katz-Downie 1996; Osmorhiza brachypoda Torr. ex Durand, AF453966, Wen et al. 2002; Osmorhiza occidentalis Torr., AF453992, Wen et al. 2002; Osmoxylon geelvinkianum Becc., AF229727, Plunkett et al. 2001; Ostericum grosseserratum (Maxim.) Kitag., DQ270199, Xue et al. 2007; Oxypolis rigidior (L.) J.M.Coult. & Rose, AY360255, Hardway et al. 2004; Panax assamicus R.N.Banerjee, AY725135, Pandey et al. 2003; Pastinaca sativa L., EU185666, Paik and Watson 2007; Pennantia endlicheri Reissek , EF635469, Rotherham et al. 2007; Pentapanax plumosus (Li) C.B.Shang , AF242255, Wen et al. 2001; Perideridia bolanderi (A.Gray) A.Nelson & J.F.Macbr., AY246938, Downie et al. 2004; Perideridia gairdneri (Hook. & Arn.) Mathias, AY246958, Downie et al. 2004; Perideridia howellii (J.M.Coult. & Rose) Mathias, AY246960, Downie et al. 2004; Perideridia lemmonii (J.M.Coult. & Rose) T.I.Chuang & Constance, AY246978, Downie et al. 2004; Perideridia oregana (Nutt. ex Torr. & A.Gray) Mathias, AY246987, Downie et al. 2004; Perideridia parishii subsp. latifolia (A.Gray) T.I.Chuang & Constance, AY246969, Downie et al. 2004; Peucedanum austriacum W.D.J.Koch, AF495842, AF495843, Spalik et al. 2004; Peucedanum carvifolia Vill., AF495828, AF495829, Spalik et al. 2004; Peucedanum coriaceum Rchb., AF495824, AF495825, Spalik et al. 2004; Peucedanum gallicum Latour., AF495816, AF495817, Spalik et al. 2004; Peucedanum morisonii Besser ex Schult., AF077903, Valiejo-Roman et al. 1998; Peucedanum officinale L., AF495820, AF495821, Spalik et al. 2004; Peucedanum oreoselinum Moench, AF495836, AF495837, Spalik et al. 2004; Peucedanum ostruthium W.D.J.Koch, AF077896, Valiejo-Roman et al. 1998; Peucedanum palustre (L.) Moench, AF009100, Katz-Downie et al. 1999; Peucedanum rablense W.D.J.Koch, AF495840, AF495841, Spalik et al. 2004; Peucedanum schottii Besser ex DC., AF495830, AF495831, Spalik et al. 2004; Physospermum cornubiense DC., AF077904, Valiejo-Roman et al. 1998; Pimpinella anisum L. , AY581782, Tabanca et al. 2005; Pimpinella corymbosa Boiss., AY581787, Tabanca et al. 2005; Pimpinella cretica Poir., AY581789, Tabanca et al. 2005; Pimpinella peregrina L., U30592, U30593, Downie and Katz-Downie 1996Pimpinella saxifraga L., U30590, U30591, Downie and Katz-Downie 1996; Pimpinella siifolia Leresche, DQ516363, Spalik and Downie 2007; Pimpinella tragium Vill., AY581803, Tabanca et al. 2005; dallii Cheeseman, U63196, Mitchell and Wagstaff 2007; Pittosporum yunckeri A.C.Sm., AF302028, Gemmill et al. 2002; Plerandra insolita A.C.Sm. , AY389047, Plunkett et al. 2004; Pleurospermum uralense Hoffm., AF008638, AF009117, Katz-Downie et al. 1999; Polyscias abrahamiana Lowry, AF229686, Plunkett et al. 2001; Polytaenia nuttallii DC., AF358516, AF358583, Downie et al. 2002; Prangos ferulacea Lindl., EU169310, Ajani et al. 2008; Prangos uloptera DC., EU169312, Ajani et al. 2008; Pseudopanax simplex K.Koch , U63180, Mitchell and Wagstaff 2007; Pseudorlaya pumila Grande, U30522, Downie and Katz-Downie 1996; Ptilimnium nuttallii Britton, EF177757, Downie et al. 2008; Reynoldsia sandwicensis A.Gray , AF229739, Plunkett et al. 2001; Rhytidosporum alpinum McGill., AY829045, Chandler et al. 2004; Ridolfia segetum Moris, U78384, U78444, Downie et al. 1998; Sanicula arctopoides Hook. & Arn., AF031972, Vargas et al. 1998; Sanicula arguta Greene ex J.M.Coult. & Rose, AF031976, Vargas et al. 1998; Sanicula bipinnatifida Douglas, EU070745, Calvino et al. 2008; Sanicula canadensis L., EU070746, Calvino et al. 2008; Sanicula crassicaulis Poepp. ex DC., AJ012694, Vargas et al. 1999; Sanicula europaea L., AF031964, Vargas et al. 1998; Sanicula graveolens Poepp. ex DC., EU070748, Calvino et al. 2008; Sanicula odorata (Raf.) K.M.Pryer & L.R.Phillippe, EU070750, Calvino et al. 2008; Sanicula tuberosa Torr., EU070753, Calvino et al. 2008; Saposhnikovia divaricata (Turcz.) Schischk., FJ609730, Daniel and Knoess 2009; Scaligeria napiformis Grande, DQ422830, DQ422849, Degtjareva et al. 2009; Scandia rosifolia (Hook.f.) J.W.Dawson, U72371, Mitchell et al. 1998; Scandix balansae Reut. , U79621, U79622, Downie et al. 1998; Scandix iberica M.Bieb., AF073627, Downie et al. 2000; Scandix pecten-veneris L., U30538, U30539, Downie and Katz-Downie 1996; Scandix stellata Banks & Soland., AF073629, Downie et al. 2000; Schefflera elegantissima (Veitch ex Masters) Lowry & Frodin , AF242240, Wen et al. 2001; Schefflera macrophylla R.Vig., AF229733, Plunkett et al. 2001; Sciadodendron excelsum Griseb. , AF242231, Wen et al. 2001; Seemannaralia gerrardii (Seem.) R.Vig. , AY389062, Plunkett et al. 2004; Selinum candollei Edgew., U30564, U30565, Downie and Katz-Downie 1996; Selinum carvifolia (L.) L., AY179028, Spalik et al. 2004; Seseli gouanii W.D.J.Koch, U79623, U79624, Downie et al. 1998; Seseli gummiferum Pall. ex Sm., AY179023, Spalik et al. 2004; Seseli hippomarathrum Jacq., AY179033, Spalik et al. 2004; Seseli libanotis W.D.J.Koch, AF008603, AF00908, Katz-Downie et al. 1999; Seseli rigidum Waldst. & Kit., EU169316, Ajani et al. 2008; Silaum silaus Schinz & Thell., EF560689, Kurzyna-Mlynik et al. 2008; Sinopanax formosanus (Hayata) H.L.Li , AF229768, Plunkett and Lowry 2001; Sium latifolium L., AY360258, Hardway et al. 2004; Sium medium Fisch. & C.A.Mey., DQ005674, Spalik and Downie 2006; Sium sisarum L., AY360262, Hardway et al. 2004; Sium suave Walter, AY360263, Hardway et al. 2004; Smyrnium connatum Boiss. & Kotschy, EU169319, Ajani et al. 2008; Smyrnium olusatrum L., U30594, Downie and Katz-Downie 1996; Smyrnium rotundifolium Mill., EU169326, Ajani et al. 2008; Spermolepis inermis (Nutt. ex DC.) Mathias & Constance, AF008602, AF009081, Katz-Downie et al. 1999; Sphallerocarpus gracilis Koso-Pol., AF073677, AF073678, Downie et al. 2000; Sphenosciadium capitellatum A.Gray, AF008600, AF009079, Katz-Downie et al. 1999; Stefanoffia daucoides H.Wolff, DQ422832, DQ422851, Degtjareva et al. 2009; Steganotaenia araliacea Hochst., EU169016, Kadereit et al. 2008; Taenidia integerrima (L.) Drude, U78399, U78459, Downie et al. 1998; Tauschia arguta (Torr. & A.Gray) J.F.Macbr., AY146881, AY146947, Sun et al. 2004; Tauschia texana A.Gray, AF358525, AF358592, Downie et al. 2002; Tetrapanax papyrifer (Hook.) K.Koch , AY304821, Mitchell and Wen 2005; Tetraplasandra flynnii Lowry & K.R.Wood , EF032619, Costello and Motley 2005; Thapsia garganica L., AJ007930, Rasmussen and Avato 1998; Tinguarra montana Benth. & Hook.f., AF073679, Downie et al. 2000; Todaroa aurea Parl., AF336372, Spalik et al. 2001; Tordylium aegyptiacum (L.) Poir., U78392, U78452, Downie et al. 1998; Tordylium apulum L., EU185679, Paik and Watson 2007; Tordylium carmeli (Labill.) Al-Eisawi & Jury, EU169327, Ajani et al. 2008; Tordylium maximum L., DQ996585, Logacheva et al. 2008; Torilis arvensis Link, AF164844, AF164869, Downie et al. 2000b; Torilis japonica DC., AY548223, Choi et al. 2004; Torilis leptophylla Rchb.f., AF077804, AF077119, Lee and Downie 1999; Torilis nodosa (L.) Gaertn., U30534, U30535, Downie and Katz-Downie 1996; Torilis scabra DC., AF077805, AF077120, Lee and Downie 1999; Torilis tenella Rchb.f., AF077803, AF077118, Lee and Downie 1999; Trachymene incisa Rudge, AF272355, Plunkett and Lowry 2001; Trachyspermum ammi Sprague, U78380, U78440, Downie et al. 1998; Trevesia baviensis J. Wen, Q. H. Nguyen & T. H. Nguyen, AY304822, Mitchell and Wen 2005; Trinia hispida Hoffm., EU169330, Ajani et al. 2008; Tupidanthus calyptratus Hook.f. & Thomson , AF229769, Plunkett and Lowry 2001; Turgenia latifolia hoffm., AF077810, AF077125, Lee and Downie 1999; Zizia aptera (A.Gray) Fernald, AF358527, AF358594, Downie et al. 2002; Zizia aurea W.D.J.Koch, U30574, U30575, Downie and Katz-Downie 1996.

Table S2b. References of nrDNA ITS accessions obtained from GenBank.

Ajani Y, Ajani A, Cordes JM, Watson MF, Downie SR. 2008. Phylogenetic analysis of nrDNA ITS sequences reveals relationships within five groups of Iranian Apiaceae subfamily Apioideae. Taxon 57: 383-401. Antonelli A. 2009. Have giant lobelias evolved several times independently? Life form shifts and historical biogeography of the cosmopolitan and highly diverse subfamily Lobelioideae (Campanulaceae). BMC Biology 7: 82 Artiukova EV, Goncharov AA, Kozyrenko MM, Reunova GD, Zhuravlev YN. 2005. Phylogenetic relationships of the Far Eastern Araliaceae inferred from ITS sequences of nuclear rDNA Genetica 41: 800-810. Calvino CI, Tilney PM, van Wyk B-E, Downie SR. 2006. A molecular phylogenetic study of southern African Apiaceae. American Journal of Botany 93: 1828-1847. Chandler GT, Pinney SM, Cayzer LW, Plunkett GM. 2004. Unpublished results. Choi HY, Choi YJ, Jung ES. 2004. Unpublished results. Chung KF, Peng CI, Downie SR, Spalik K, Schaal BA. 2005. Molecular systematics of the trans-Pacific alpine genus Oreomyrrhis (Apiaceae): phylogenetic affinities and biogeographic implications. American Journal of Botany 92: 2054-2071. Chung KF. 2007. Inclusion of the South Pacific alpine genus Oreomyrrhis (Apiaceae) in Chaerophyllum based on nuclear and chloroplast DNA sequences. Systematic Botany 32: 671-681. Clokie MRJ, Ferris C, Gornall RJ. 2003. Unpublished results. Costello A, Motley TJ. 2007. Phylogenetics of the Tetraplasandra Group (Araliaceae) Inferred from ITS, 5S-NTS, and Morphology. Systematic Botany 32: 464-477. Daniel C, Knoess W. 2009. Unpublished results. De Castro O, Cennamo P, De Luca P. 2009. Analysis of the genus Petagnaea Caruel (Apiaceae), using new molecular and literature data. Plant Systematics and Evolution 278: 239-249. Degtjareva GV, Kluykov EV, Samigullin TH, Valiejo-Roman CM, Pimenov MG. 2009. Molecular appraisal of Bunium and some related arid and subarid geophilic Apiaceae– Apioideae taxa of the Ancient Mediterranean. Botanical Journal of the Linnean Society 160: 149-170. Downie SR, Hartman RL, Sun F-J, Katz-Downie DS. 2002. Polyphyly of the spring-parsleys (Cymopterus): molecular and morphological evidence suggests complex relationships among the perennial endemic genera of western North American Apiaceae Canadian Journal of Botany 80: 1295-1324. Downie SR, Katz-Downie DS, Spalik K. 2000. A phylogeny of apiaceae tribe Scandiceae: Evidence from nuclear ribosomal DNA internal transcribed spacer sequences. American Journal of Botany 87: 76-95. Downie SR, Katz-Downie DS, Sun, F-J, Lee C-S. 2008. Phylogeny and biogeography of Apiaceae tribe Oenantheae inferred from nuclear rDNA ITS and cpDNA psbI-5 ' trnK((UUU)) sequences, with emphasis on the North American Endemics clade." Botany- Botanique 86: 1039-1064. Downie SR, Katz-Downie DS. 1996. A molecular phylogeny of Apiaceae subfamily Apioideae: Evidence from nuclear ribosomal DNA internal transcribed spacer sequences. American Journal of Botany 83: 234-251. Downie SR, Ramanath S, Katz-Downie DS, Llanas E. 1998. Molecular systematics of Apiaceae subfamily Apioideae: Phylogenetic analyses of nuclear ribosomal DNA internal transcribed spacer and plastid Rpoc1 intron sequences. American Journal of Botany 85: 563- 591. Downie SR, Sun F-J, Katz-Downie DS, Colletti GJ. 2004. A phylogenetic study of Perideridia (Apiaceae) based on nuclear ribosomal DNA ITS sequences Systematic Botany 29: 737-751. Downie SR, Watson MF, Spalik K, Katz-Downie DS. 2000. Molecular systematics of Old World Apioideae (Apiaceae): relationships among some members of tribe Peucedaneae sensu lato, the placement of several island-endemic species, and resolution within the apioid superclade. Canadian Journal of Botany 78: 506-528. Gardner RC, Keeling J, de Lange PJ, Wright SD, Cameron EK. 2007. Unpublished results. Gemmill CE, Allan GJ, Wagner WL, Zimmer EA. 2002. Evolution of insular Pacific Pittosporum (Pittosporaceae): origin of the Hawaiian radiation. Molecular Phylogenetics and Evolution 22: 31-42. Han SH, Jung YH, Ko MH, Oh YS, Oh MY. 1999. Unpublished results. Hardig TM, Soltis PS. 1999. An ITS-based phylogenetic analysis of the Euryptera species group in Lomatium (Apiaceae). Plant Systematics and Evolution. 219: 65-78. Hardway TM, Spalik K, Watson MF, Katz-Downie DS, Downie SR. 2004. Circumscription of Apiaceae tribe Oenantheae. South African Journal of Botany 70: 393-406. Kadereit G, Kadereit JW. 2005. Phylogenetic relationships, evolutionary origin, taxonomic status, and genetic structure of the endangered local Lower Elbe river (Germany) endemic Oenanthe conioides (Nolte ex Rchb.f.) Lange (Apiaceae): ITS and AFLP evidence. Flora 200: 15-29. Kadereit JW, Repplinger M, Schmalz N, Uhink CH, Wörz A. 2008. The phylogeny and biogeography of Apiaceae subf. Saniculoideae tribe Saniculeae: from south to north and south again. Taxon 57: 365-382. Karuppusamy S, Ajmal A, Muthuraja G, Rajasekaran K, Kim S-Y, Pandey A, Lee J. 2010. Unpublished results. Katz-Downie DS, Valiejo-Roman CM, Terentieva EI, Troitsky AV, Pimenov MG, Lee B, Downie SR. 1999. Towards a molecular phylogeny of Apiaceae subfamily Apioideae: Additional information from nuclear ribosomal DNA ITS sequences. Plant Systematics and Evolution 216: 167-195. Kurzyna-Mlynik R, Oskolski AA, Downie SR, Kopacz R, Wojewodzka A, Spalik K. 2008. Phylogenetic position of the genus Ferula (Apiaceae) and its placement in tribe Scandiceae as inferred from nrDNA ITS sequence variation Plant Systematics and Evolution 274: 47-66. Lee B-Y, Downie SR. 1999. A molecular phylogeny of Apiaceae Tribe Caucalideae and related taxa: Inferences based on ITS Sequence data. Systematic Botany 24: 461-479. Lee B-Y, Park C-W. 2001. Unpublished results. Lee CS, Downie SR. 2006. Phylogenetic relationships within Cicuta (Apiaceae tribe Oenantheae) inferred from nuclear rDNA ITS and cpDNA sequence data. Canadian Journal of Botany 84: 453-468. Logacheva MD, Valiejo-Roman CM, Pimenov MG. 2008. ITS phylogeny of West Asian Heracleum species and related taxa of Umbelliferae-Tordylieae W.D.J.Koch, with notes on evolution of their psbA-trnH sequences Plant Systematics and Evolution 270: 139-157. Magee AR, van Wyk BE, Tilney PM, Downie SR. 2009. Generic delimitations and relationships of the Cape genera Capnophyllum, Dasispermum, and Sonderina, the North African genera, Krubera and Stoibrax, and a new monotypic genus of the subfamily Apioideae (Apiaceae). Systematic Botany 34: 580-594. Maras M, Aksoz E, Menemen Y 2006 The structural features and phylogenetic utility of the ITS in Ferulago W. Koch (Umbelliferae) Genus International Journal of Botany 2: 17-22. Marchi A, Pili E, Sanna G, Loi MC. 2003. Genetic differentiation of two distinct chemotypes of Ferula communis (Apiaceae) in Sardinia (Italy). Biochemical Systematics and Ecology 31: 1397-1408. McKenzie RJ, Muller EM, Skinner AK, Karis PO, Barker NP. 2006. Phylogenetic relationships and generic delimitation in subtribe Arctotidinae (Asteraceae: Arctotideae) inferred by DNA sequence data from ITS and five chloroplast regions. American Journal of Botany 93: 1222-1235. Mitchell A, Wen J. 2005. Phylogeny of Brassaiopsis (Araliaceae) in Asia Based on Nuclear ITS and 5S-NTS DNA Sequences. Systematic Botany 30: 872-886. Mitchell AD, Wagstaff SJ. 1997. Phylogenetic relationships of Pseudopanax species (Araliaceae) inferred from parsimony analysis of rDNA sequence data and morphology. Plant Systematics and Evolution 208: 121-138. Mitchell AD, Webb CJ, Wagstaff SJ. 1998. Phylogenetic relationships of species of Gingidia and related genera (Apiaceae, subfamily Apioideae). New Zealand Journal of Botany 36: 417- 424. Neves SS, Watson MF. 2004. Phylogenetic relationships in Bupleurum (Apiaceae) based on nuclear ribosomal DNA its sequence data Annals of Botany 93: 379-398. Paik J-H, Watson M. 2007. Unpublished results. Pandey AK, Lee C, Wen J. 2003. A molecular systematic study of Aralia and Panax (Araliaceae) in India, and its taxonomic implications. Rheedea 12: 1-11. Park J-M, Kovacic S, Liber Z, Eddie WMM, Schneeweiss GM. 2006. Phylogeny and Biogeography of Isophyllous Species of Campanula (Campanulaceae) in the Mediterranean Area. Systematic Botany 31: 862-880. Plunkett GM, Lowry PP, Burke MK. 2001. The phylogenetic status of Polyscias (Araliaceae) based on nuclear its sequence data. Annals of the Missouri Botanical Garden 88: 213-230. Plunkett GM, Lowry PPII. 2001. Relationships among 'ancient araliads' and their significance for the systematics of Apiales. Molecular Phylogenetics and Evolution 19: 259-276. Plunkett GM, Wen J, Lowry PPII. 2004. Infrafamilial classifications and characters in Araliaceae: Insights from the phylogenetic analysis of nuclear (ITS) and plastid (trnL-trnF) sequence data. Plant Systematics and Evolution 245: 1-39. Radford EA, Watson MF, Preston J. 2001. Phylogenetic relationships of species of Aciphylla (Apiaceae, subfamily Apioideae) and related genera using molecular, morphological, and combined data sets. New Zealand Journal of Botany 39: 183-208. Rasmussen SK, Avato P. 1998. Characterization of chromosomes and genome organization of Thapsia garganica L. by localizations of rRNA genes using fluorescent in situ hybridization. Hereditas 129: 231-239. Reduron J-P, Mathez J, Downie SR, Danderson CA, Ostroumova T. 2009. Pseudoridolfia, nouveau genre d'Apiaceae découvert au Maroc. Acta Botanica Gallica 156: 487-500. Rotherham DT, de Lange PJ, Wright SD. 2007. Unpublished results. Spalik K, Downie SR, Watson MF. 2009. Generic delimitations within the Sium alliance (Apiaceae tribe Oenantheae) inferred from cpDNA rps16-5 ' trnK((UUU)) and nrDNA ITS sequences. Taxon 58: 735-748. Spalik K, Downie SR. 2006. The evolutionary history of Sium sensu lato (Apiaceae): Dispersal, vicariance, and domestication as inferred from ITS rDNA phylogeny. American Journal of Botany 93: 747-761. Spalik K, Downie SR. 2007. Intercontinental disjunctions in Cryptotaenia (Apiaceae, Oenantheae): an appraisal using molecular data. Journal of Biogeography 34: 2039-2054. Spalik K, Reduron JP, Downie SR. 2004. The phylogenetic position of Peucedanum sensu lato and allied genera and their placement in tribe Selineae (Apiaceae, Subfamily Apioideae). Plant Systematics and Evolution 243: 189-210. Spalik K, Wojewódzka A, Downie SR. 2001. The evolution of in Scandiceae subtribe Scandicinae (Apiaceae). Canadian Journal of Botany 79: 1358-1374. Sun F-J, Downie SR, Hartman RL. 2004. An ITS-based phylogenetic analysis of the perennial, endemic Apiaceae subfamily Apioideae of western . Systematic Botany 29: 419-431. Tabanca N, Douglas AW, Bedir E, Dayan FE, Kirimer N, Baser KHC, Aytac Z, Khan IA, Scheffler BE. 2005. Patterns of essential oil relationships in Pimpinella (Umbeliferae) based on phylogenetic relationships using nuclear and chloroplast sequences Plant Genetic Resources 3: 149-169. Tronchet F, Plunkett GM, Jeremie J, Lowry PPII. 2005 Monophyly and Major Clades of Meryta (Araliaceae). Systematic Botany 30: 657-670. Valiejo-Roman CM, Pimenov MG, Terentieva EI, Downie SR, Katz-Downie DS, Troitsky AV. 1998. Molecular systematics of Umbelliferae: using nuclear rDNA internal transcribed spacer sequences to resolve issues of evolutionary. Botanicheskii Zhurnal 83: 1-22. Valiejo-Roman CM, Shneyer VS, Samigullin TH, Terentieva EI, Pimenov MG 2006. An attempt to clarify taxonomic relationships in ``Verwandtschaftskreis der Gattung Ligusticum'' (Umbelliferae-Apioideae) by molecular analysis. Plant Systematics and Evolution 257: 25-43. Valiejo-Roman CM, Terentieva EI, Samigullin TH, Pimenov MC. 2002. Relationships among genera in Saniculoideae and selected Apioideae (Umbelliferae) inferred from nrITS sequences. Taxon 51: 91-101. Valiejo-Roman CM, Terentieva EI, Samigullin TH, Pimenov MG, Ghahremani-Nejad F, Mozaffarian V. 2006. Molecular data (nrITS-sequencing) reveal relationships among Iranian endemic taxa of the Umbelliferae. Feddes Repertorium 117: 367-388. Vargas P, Baldwin BG, Constance L. 1998. Nuclear ribosomal DNA evidence for a western North American origin of Hawaiian and South American species of Sanicula (Apiaceae). Proceedings of the National Academy of Sciences 95: 235-240. Vargas P, Baldwin BG, Constance L. 1999. A phylogenetic study of Sanicula sect. Sanicoria and S. sect. Sandwicenses (Apiaceae) based on nuclear rDNA and morphological data. Systematic Botany 24: 228-48. Vargas P, McAllister HA, Morton C, Jury SL, Wilkinson MJ. 1999b. Polyploid speciation in Hedera (Araliaceae): Phylogenetic and biogeographic insights based on chromosome counts and ITS sequences. Plant Systematics and Evolution 219: 165-179. Wang Q-Z, He X-J, Zhou S-D, Wu Y-K, Yu Y, Pang Y-L. 2008. Phylogenetic inference of the genus Bupleurum (Apiaceae) in Hengduan Mountains based on chromosome counts and nuclear ribosomal DNA ITS sequences. Journal of Systematics and Evolution 46: 142-154. Wang Q-Z, Zhou S-D, Liu T-Y, Pang Y-L, Wu Y-K, He X-J. 2008. Phylogeny and classification of Chinese Bupleurum based on nuclear ribosomal DNA internal transcribed spacer and rps16. Acta Biologica Cracoviensa 50: 105-116. Wen J, Zhu Y -P, Lee C-H, Widjaja E, Saw LG. 2008. Evolutionary Relationships of Araliaceae in the Malesian Region : a Preliminary Analysis. Materials and Methods. Acta Botanica Yunnanica 30: 391-399. Wen J, Lee C, Lowry PP II, Hiep NT. 2003. Inclusion of the Vietnamese endemic genus Grushvitzkya in Brassaiopsis (Araliaceae): evidence from nuclear ribosomal ITS and chloroplast ndhF sequences. Botanical Journal of the Linnean Society 142: 455-463. Wen J, Loc PK, Hiep NT, Regalado J Jr., Averyanov LV, Lee C. 2007. An unusual new species of Trevesia from Vietnam and its implications on generic delimitation in Araliaceae. Taxon 56: 1261-1268. Wen J, Lowry PP II, Walck JL, Yoo K-O. 2002. Phylogenetic and biogeographic diversifications in Osmorhiza (Apiaceae) Annals of the Missouri Botanical Garden 89: 414- 428. Wen J, Plunkett GM, Mitchell AD, Wagstaff SJ. 2001. The evolution of Araliaceae: A phylogenetic analysis based on ITS sequences of nuclear ribosomal DNA. Systematic Botany 26: 144-167. Wen J, Shi S, Jansen RK, Zimmer EA. 1998. Phylogeny and biogeography of Aralia sect. Aralia (Araliaceae) American Journal of Botany 85: 866-875. Winter PJD, Magee AR, Phephu N, Tilney PM, Downie SR, van Wyk BE. 2008. A new generic classification for African peucedanoid species (Apiaceae). Taxon 57: 347-364. Xie H, Chao Z, Huo KK, Wu BY, Pan SL. 2006. ITS sequence of 9 Bupleurum species and its application in identification of chaihui (Radix Buplurei). Journal South Medical University 26: 1460–1463. Xue HJ, Yan MH, Lu CM, Wang NH, Wu GR .2007. Taxonomic study of Angelica from East Asia: inferences from ITS sequences of nuclear ribosomal DNA. Acta Phytotaxon Sinica 45:783–795. Yang ZY, Chao Z, Huo KK, Xie H, Tian ZP, Pan SL. 2007. ITS sequence analysis used for molecular identification of the Bupleurum species from northwestern . Phytomedicine. 14:416-423. Zhou J, Gong X, Downie SR, Peng H. 2009. Towards a more robust molecular phylogeny of Chinese Apiaceae subfamily Apioideae: additional evidence from nrDNA ITS and cpDNA intron (rpl16 and rps16) sequences. Molecular Phylogenetics and Evolution 53: 56-68. Zych M. 2008. Unpublished results.

Table S3. Simple phylogenetic regression fit by maximum likelihood between all variables measured. Phylogenetic generalized least squares regression was based on a model whereby λ was estimated simultaneously. λ varied between 0.19 and 0.90. t-values followed by results of significance tests. ns p > 0.05; * p < 0.05; *** p < 0.001; NA parameters could not be estimated. df = 273. Dependent\Independent 1 2 3 4 5 6 7 8 9 10 11 12 Log[Relative embryo length] 1 - -6.05 *** -3.39 *** NA -0.77 ns NA -0.70 ns 0.68 ns NA -0.3 ns 0.20 ns -2.21 * Log[Seed mass] (mg) 2 -6.13 *** - 4.09 *** NA -0.95 ns 1.54 ns 0.05 ns 0.35 ns NA 0.78 ns 0.40 ns -0.89 ns Life cycle 3 -3.67 *** 4.06 *** - NA 2.00 * 2.27 * 3.00 ** NA -3.99 *** -3.66 *** 0.50 ns 0.34 ns Log[Plant height] (cm) 4 -1.50 ns 2.94 ** 2.66 ** - 4.55 *** 3.10 *** -0.76 ns -1.4 ns NA -0.71 ns -2.48 * 0.88 ns Habitat moisture 5 -0.63 ns -0.77 ns 1.69 ns NA - 4.56 *** -1.28 ns -2.73 ** -2.75 ** -2.36 * -1.27 ns 1.8 * Habitat shade 6 -3.89 *** 1.53 ns 2.12 * NA 4.50 *** - 1.20 ns -2.70 *** NA -3.44 *** 0.78 ns 1.26 ns Altitude (m) 7 -0.95 ns 0.23 ns 2.89 ** NA 0.96 ns 1.37 ns - -5.22*** -5.22 *** -6.04*** 8.09 *** 0.75 ns Mean temperature (°C) 8 0.15 ns 0.57 ns -3.36 *** NA -2.47 * -2.17 * -5.91 *** - 17.09 *** 27.51 *** 1.14 ns -1.45 ns Max. Temperature (°C) 9 1.30 ns 0.45 ns -2.99 ** NA -2.61 ** -0.63 ns NA 17.07 *** - 5.48 *** 10.65 *** -7.94 *** Min. Temperature (°C) 10 -0.81 ns 1.15 ns -2.35 * NA -2.07 * -3.13 ** NA NA 5.54 *** - -4.38 *** NA Temperature fluctuation (°C) 11 0.20 ns 0.36 ns 1.03 ns NA -1.45 ns 0.74 ns NA 1.21 ns NA -4.27 *** - -9.06 *** Log[Annual precipitation] (mm) 12 -1.98 * -0.55 ns 0.09 ns NA 0.24 ns 1.10 ns 0.27 ns -1.48 ns NA 2.83 ** -9.03 *** -