The Superb Lyrebird Menura Novaehollandiae As an Ecosystem Engineer

Total Page:16

File Type:pdf, Size:1020Kb

The Superb Lyrebird Menura Novaehollandiae As an Ecosystem Engineer The Superb Lyrebird Menura novaehollandiae as an Ecosystem Engineer Submitted by Alex C. Maisey Dip. Cons. Land Mgt., Dip. Sust., B. Env. Sc. (Hons) A thesis submitted in total fulfillment of the requirements for the degree of Doctor of Philosophy Research Centre for Future Landscapes Department of Ecology, Environment and Evolution College of Science, Health and Engineering La Trobe University Victoria, Australia August 2020 Preface ii Contents List of Plates ................................................................................................................................. viii List of Tables .................................................................................................................................. ix List of Figures ................................................................................................................................. xi List of Appendices ........................................................................................................................ xiv Abstract ...........................................................................................................................................xv Statement of Authorship ............................................................................................................... xvi Acknowledgements ....................................................................................................................... xix Chapter One ......................................................................................................................................1 1.1 INTRODUCTION ...................................................................................................... 2 1.1.1 Ecosystem engineers: a definition and introduction ............................................ 2 1.1.2 Autogenic and allogenic engineering .................................................................. 3 1.1.3 Engineer vs. keystone species.............................................................................. 3 1.1.4 Types of ecosystem engineers ............................................................................. 4 1.2 Structural changes by engineers affect ecological processes and function ................ 5 1.2.1 Fire ....................................................................................................................... 5 1.2.2. Climate .............................................................................................................. 11 1.2.3 Hydrology .......................................................................................................... 11 1.2.4 Nutrient cycling ................................................................................................. 12 1.3. Scale and pattern of ecosystem engineering ........................................................... 12 1.3.1 Geographic scale ................................................................................................ 12 1.3.2 Spatial pattern .................................................................................................... 13 1.3.3. Temporal span and pattern................................................................................ 13 1.3.4 Abiotic legacies ................................................................................................. 14 ii Preface iii 1.4. Regulatory forces on ecosystem engineers ............................................................. 14 1.4.1 Feedbacks .......................................................................................................... 14 1.4.2 Interacting engineers .......................................................................................... 15 1.5. Trophic interactions with engineering ..................................................................... 16 1.5.1 Herbivory interacts with engineering ................................................................ 16 1.5.2 Predation interacts with engineering ................................................................. 16 1.6. Effects of introduced engineers ............................................................................... 17 1.7. Challenges to research on ecosystem engineers ...................................................... 17 1.8. Ecosystem engineers: an Australian context ........................................................... 18 1.8.1 Current and future direction of research on ecosystem engineering in Australia .................................................................................................................................... 19 1.9. Study species - the superb lyrebird ......................................................................... 19 1.9.1 Distribution ........................................................................................................ 20 1.9.2 Habitat................................................................................................................ 21 1.9.3 Breeding ............................................................................................................. 22 1.9.4 Foraging ............................................................................................................. 25 1.10. The superb lyrebird as an ecosystem engineer ...................................................... 26 1.10.1 Nutrient cycling ............................................................................................... 26 1.10.2 Litter and soil habitats ..................................................................................... 27 1.10.3 Vegetation composition and structure ............................................................. 29 1.11 Thesis – aims and objectives .................................................................................. 31 1.11.1 Overview of thesis chapters and key questions ............................................... 31 Chapter Two ....................................................................................................................................34 Abstract .......................................................................................................................... 35 2.1 INTRODUCTION .................................................................................................... 36 2.2 MATERIALS AND METHODS ............................................................................. 37 iii Preface iv 2.2.1 Study area .......................................................................................................... 37 2.2.2 Study design ...................................................................................................... 40 2.2.3 Foraging simulation ........................................................................................... 41 2.2.4 Effect of fencing on litter and soil ..................................................................... 41 2.2.5 Litter and soil displaced by lyrebirds ................................................................ 41 2.2.6 Structural complexity of vegetation .................................................................. 42 2.2.7 Physical characteristics of the soil ..................................................................... 42 2.2.8 Soil nutrients ...................................................................................................... 42 2.2.9 Statistical analysis .............................................................................................. 43 2.3 RESULTS ................................................................................................................. 46 2.3.1 Effect of fencing on litter ................................................................................... 46 2.3.2 Litter and soil displacement by lyrebirds .......................................................... 47 2.3.3 Foraging activity ................................................................................................ 47 2.3.4 Physical characteristics of the soil ..................................................................... 50 2.3.5 Soil nutrients ...................................................................................................... 51 2.4 DISCUSSION .......................................................................................................... 57 2.4.1 Scale and pattern of engineering........................................................................ 57 2.4.2 Impacts on litter and soil.................................................................................... 58 2.4.3 Implications for ecosystem function .................................................................. 58 2.5 CONCLUSION ........................................................................................................ 60 Chapter Three ..................................................................................................................................61 Abstract .......................................................................................................................... 61 3.1 INTRODUCTION .................................................................................................... 63 3.2 METHODS ............................................................................................................... 65 3.2.1 Study area .......................................................................................................... 65 3.2.2 Experimental treatments
Recommended publications
  • A Little Flute Music: Mimicry, Memory, and Narrativity
    Environmental Humanities, vol. 3, 2013, pp. 43-70 www.environmentalhumanities.org ISSN: 2201-1919 A Little Flute Music: Mimicry, Memory, and Narrativity Vicki Powys, Hollis Taylor and Carol Probets Powys: Independent scholar, Capertee Valley, New South Wales, Australia Taylor: Arts and Social Sciences, University of Technology, Sydney, Australia. Probets: Independent scholar, Katoomba, New South Wales, Australia. ABSTRACT A lyrebird chick was raised in captivity in the 1920s in Australia’s New England Tablelands, or so the story goes. The bird mimicked the sounds of the household’s flute player, learning two tunes and an ascending scale. When released back into the wild, his flute-like songs and timbre spread throughout the local lyrebird population. We count ourselves among those who admire the sonic achievements of this bioregion’s “flute lyrebirds.” These Superb Lyrebirds (Menura novaehollandiae) do indeed deliver an unusual and extraordinarily complex, flute-like territorial song, although often with a musical competence exceeding what a human flutist could achieve. In this paper, we engage with both the living and the dead across a wide-ranging cast of characters, linking up in the here and now and grasping a hand across the span of many years. Memory and narrativity are pertinent to the at times conflicting stories and reminiscences from archival and contemporary sources. Ultimately, accounts of “flute lyrebirds” speak to how meaning evolves in the tensions, boundaries, and interplay between knowledge and imagination. We conclude that this story exceeds containment, dispersed as it is across several fields of inquiry and a number of individual memories that go in and out of sync.
    [Show full text]
  • Peziza and Pezizaceae Inferred from Multiple Nuclear Genes: RPB2, -Tubulin, and LSU Rdna
    Molecular Phylogenetics and Evolution 36 (2005) 1–23 www.elsevier.com/locate/ympev Evolutionary relationships of the cup-fungus genus Peziza and Pezizaceae inferred from multiple nuclear genes: RPB2, -tubulin, and LSU rDNA Karen Hansen ¤, Katherine F. LoBuglio, Donald H. PWster Harvard University Herbaria, Cambridge, MA 02138, USA Received 5 May 2004; revised 17 December 2004 Available online 22 April 2005 Abstract To provide a robust phylogeny of Pezizaceae, partial sequences from two nuclear protein-coding genes, RPB2 (encoding the sec- ond largest subunit of RNA polymerase II) and -tubulin, were obtained from 69 and 72 specimens, respectively, to analyze with nuclear ribosomal large subunit RNA gene sequences (LSU). The three-gene data set includes 32 species of Peziza, and 27 species from nine additional epigeous and six hypogeous (truZe) pezizaceous genera. Analyses of the combined LSU, RPB2, and -tubulin data set using parsimony, maximum likelihood, and Bayesian approaches identify 14 Wne-scale lineages within Pezizaceae. Species of Peziza occur in eight of the lineages, spread among other genera of the family, conWrming the non-monophyly of the genus. Although parsimony analyses of the three-gene data set produced a nearly completely resolved strict consensus tree, with increased conWdence, relationships between the lineages are still resolved with mostly weak bootstrap support. Bayesian analyses of the three- gene data, however, show support for several more inclusive clades, mostly congruent with Bayesian analyses of RPB2. No strongly supported incongruence was found among phylogenies derived from the separate LSU, RPB2, and -tubulin data sets. The RPB2 region appeared to be the most informative single gene region based on resolution and clade support, and accounts for the greatest number of potentially parsimony informative characters within the combined data set, followed by the LSU and the -tubulin region.
    [Show full text]
  • COMPETITIVE EXCLUSION, FORAGING INTERFERENCE, and HABITAT DEGRADATION REDUCE SALAMANDER DENSITY Julie L
    John Carroll University Carroll Collected Masters Theses Theses, Essays, and Senior Honors Projects Summer 2015 INVASIVE ASIAN EARTHWORMS NEGATIVELY IMPACT WOODLAND SALAMANDERS: COMPETITIVE EXCLUSION, FORAGING INTERFERENCE, AND HABITAT DEGRADATION REDUCE SALAMANDER DENSITY Julie L. Ziemba John Carroll University, [email protected] Follow this and additional works at: http://collected.jcu.edu/masterstheses Part of the Biology Commons Recommended Citation Ziemba, Julie L., "INVASIVE ASIAN EARTHWORMS NEGATIVELY IMPACT WOODLAND SALAMANDERS: COMPETITIVE EXCLUSION, FORAGING INTERFERENCE, AND HABITAT DEGRADATION REDUCE SALAMANDER DENSITY" (2015). Masters Theses. 13. http://collected.jcu.edu/masterstheses/13 This Thesis is brought to you for free and open access by the Theses, Essays, and Senior Honors Projects at Carroll Collected. It has been accepted for inclusion in Masters Theses by an authorized administrator of Carroll Collected. For more information, please contact [email protected]. INVASIVE ASIAN EARTHWORMS NEGATIVELY IMPACT WOODLAND SALAMANDERS: COMPETITIVE EXCLUSION, FORAGING INTERFERENCE, AND HABITAT DEGRADATION REDUCE SALAMANDER DENSITY A Thesis Submitted to the Office of Graduate Studies College of Arts & Sciences of John Carroll University in Partial Fulfillment of the Requirements for the Degree of Master of Science By Julie L. Ziemba 2015 Table of Contents Abstract ..........................................................................................................................1 1. Introduction ................................................................................................................3
    [Show full text]
  • Budbri Learns to Dance DREAMING STORIES
    D’harawal DREAMING STORIES Frances Bodkin Gawaian Bodkin-Andrews illustrated by Lorraine Robertson Budbri learns to Dance www.dharawalstories.com Budbri Learns to Dance Frances Bodkin Gawaian Bodkin-Andrews illustrated by Lorraine Robertson www.dharawalstories.com Foreword Throughout the past two hundred years, society has come to regard the Koori Dreaming stories as something akin to the fairy stories they were told as children. However, for thousands upon thousands of years, the stories in this book were used as a teaching tool to impart to the youngest members of the clans the laws which governed the cultural behaviour of clan members. The successive attempts to destroy the Koori culture and assimilate The People into the Euro-centric population were unsuccessful, and the Dreaming Stories were able to continue in their dis- guise as charming legends where animals became the heroes and the heroines. Historians and anthropologists have studied the Koori culture since they first arrived on this continent, and have come to the conclusion that the D’harawal culture is dead. Of, course, this has been done without reference to the descendants of that culture, and without even asking the proper questions. The D’harawal culture is not dead, it is a strong, living, vital culture of the Sydney and South Coast re- gions that just had to go underground for a while to be able to survive. Now that the right questions have been asked, we have the key to unlock a vast wealth of knowledge of this part of the country in which we live. It is difficult to explain to a society based on commerce fuelled by the profit motive, that D’harawal cul- ture is not based on the ownership of tangible things like land and dwellings and possessions, but it does have a very strong sense of ownership of information.
    [Show full text]
  • Phylogenetic and Phenetic Systematics of The
    195 PHYLOGENETICAND PHENETICSYSTEMATICS OF THE OPISTHOP0ROUSOLIGOCHAETA (ANNELIDA: CLITELLATA) B.G.M. Janieson Departnent of Zoology University of Queensland Brisbane, Australia 4067 Received September20, L977 ABSTMCT: The nethods of Hennig for deducing phylogeny have been adapted for computer and a phylogran has been constructed together with a stereo- phylogran utilizing principle coordinates, for alL farnilies of opisthopor- ous oligochaetes, that is, the Oligochaeta with the exception of the Lunbriculida and Tubificina. A phenogran based on the sane attributes conpares unfavourably with the phyLogralnsin establishing an acceptable classification., Hennigrs principle that sister-groups be given equal rank has not been followed for every group to avoid elevation of the more plesionorph, basal cLades to inacceptabl.y high ranks, the 0ligochaeta being retained as a Subclass of the class Clitellata. Three orders are recognized: the LumbricuLida and Tubificida, which were not conputed and the affinities of which require further investigation, and the Haplotaxida, computed. The Order Haplotaxida corresponds preciseLy with the Suborder Opisthopora of Michaelsen or the Sectio Diplotesticulata of Yanaguchi. Four suborders of the Haplotaxida are recognized, the Haplotaxina, Alluroidina, Monil.igastrina and Lunbricina. The Haplotaxina and Monili- gastrina retain each a single superfanily and fanily. The Alluroidina contains the superfamiJ.y All"uroidoidea with the fanilies Alluroididae and Syngenodrilidae. The Lurnbricina consists of five superfaniLies.
    [Show full text]
  • Download Listening Notes
    The Tall Forests of South-East Australia. Morning - Massive eucalypts rise from the forest floor, their crowns spreading high overhead. We begin our forest journey in the coolness of pre-dawn. The air is humid, heavy with Many are of imposing size and great age. The oldest trees may have been mature long the scents of the forest. A small mountain stream flows through the undergrowth, before European people settled this continent. When timber cutters first entered gurgling softly. these forests, they found and felled the tallest trees ever known. The Mountain Ash that remain today are still the tallest hardwood trees, and the tallest flowering plants, Track 1: The Forest Awakens 10.20 in the world. First light dimly filters into the recesses of the forest. Eastern Yellow Robins, usually Below them, forming a luxurious understorey bathed in pools of sunlight, are a tangle the first birds calling, greet the dawn with their loud “Chaf, Chaf” and piping calls of shrubs and ferns. Where conditions are suitable, and fire has not intervened, a true (0:00), and also a soft scolding chatter (especially around 1:44). The cascading trills rainforest has developed; a cool emerald world closing out the sky above. Here tree of a Grey Fantail (0:19, 0:34, 0:52...) and the “chew-ee, chew-ee, chew-ee” of a Satin ferns, some 15 metres high and hundreds of years old, shade an open and moist forest Flycatcher (0:44) join in. floor with fallen logs covered by mosses, liverworts and fungi. A group of Kookaburras, particularly vocal at dawn, make contact and affirm territory We are in an ancient realm.
    [Show full text]
  • Coprophilous Fungal Community of Wild Rabbit in a Park of a Hospital (Chile): a Taxonomic Approach
    Boletín Micológico Vol. 21 : 1 - 17 2006 COPROPHILOUS FUNGAL COMMUNITY OF WILD RABBIT IN A PARK OF A HOSPITAL (CHILE): A TAXONOMIC APPROACH (Comunidades fúngicas coprófilas de conejos silvestres en un parque de un Hospital (Chile): un enfoque taxonómico) Eduardo Piontelli, L, Rodrigo Cruz, C & M. Alicia Toro .S.M. Universidad de Valparaíso, Escuela de Medicina Cátedra de micología, Casilla 92 V Valparaíso, Chile. e-mail <eduardo.piontelli@ uv.cl > Key words: Coprophilous microfungi,wild rabbit, hospital zone, Chile. Palabras clave: Microhongos coprófilos, conejos silvestres, zona de hospital, Chile ABSTRACT RESUMEN During year 2005-through 2006 a study on copro- Durante los años 2005-2006 se efectuó un estudio philous fungal communities present in wild rabbit dung de las comunidades fúngicas coprófilos en excementos de was carried out in the park of a regional hospital (V conejos silvestres en un parque de un hospital regional Region, Chile), 21 samples in seven months under two (V Región, Chile), colectándose 21 muestras en 7 meses seasonable periods (cold and warm) being collected. en 2 períodos estacionales (fríos y cálidos). Un total de Sixty species and 44 genera as a total were recorded in 60 especies y 44 géneros fueron detectados en el período the sampling period, 46 species in warm periods and 39 de muestreo, 46 especies en los períodos cálidos y 39 en in the cold ones. Major groups were arranged as follows: los fríos. La distribución de los grandes grupos fue: Zygomycota (11,6 %), Ascomycota (50 %), associated Zygomycota(11,6 %), Ascomycota (50 %), géneros mitos- mitosporic genera (36,8 %) and Basidiomycota (1,6 %).
    [Show full text]
  • January 2015
    Supplement to Mycologia Vol. 66(1) January 2015 Newsletter of the Mycological Society of America — In This Issue — New MSA Award: Articles The Emory Simmons Research Award Emory Simmons Research Award NATS Student Award Recipient Spotlight The Emory Simmons Research Award is open to MSA Student Section MSA Student Award Recipient Spotlight members of the Mycological Post doc Spotlight Society of America for the Poster from the MSA Student Section study of classification of MSA Business dematiaceous anamorphs of Executive Vice President’s Report ascomycetes 2014 Annual Reports correction MSA Directory 2014-2015 Application deadline: Febru- ary 15, annually beginning in Mycological News Dr. Rubén Durán 2015 until no later than 2024 The 2nd International Workshop on Ascomycete Systematics Award Amount: approxi- MASMC 2015 mately $10,000 Fungal Genetics Stock Center moves Student Section Skill Share Apply to the Chair, Research Awards Committee Fungi in the News Fungal allies of whitebark pine Requirements: Flying Fungus 1. The applicant must be a current member of MSA. Truffles have a THC-like substance in them 2. A single pdf file must be submitted consisting of i) cover letter, ii) 5 page maximum proposal for the study, iii) budget, and iv) Mycological Classifieds Books for sale current curriculum vita, to the Chair, Research Awards Commit- Fungi Treasures tee, for distribution to the committee. Fifth Kingdom, The Outer Spores Biological control, biotechnology, 3. A detailed final report is due to the Chair, Research Awards and regulatory services Committee, within two years of receiving the award. 4. The proposal will be judged on originality and the possibility to Mycologist’s Bookshelf Books in need of reviewers advance the field.
    [Show full text]
  • Piptocephalis Formosana, a New Species from Taiwan
    Botanical Studies (2009) 50: 69-72. microbioloGY Piptocephalis formosana, a new species from Taiwan Hsiao-ManHO1,*andPaulM.KIRK2 1Department of Science Education, National Taipei University of Education, Taipei, 10671, Taiwan, ROC 2CABI Europe-UK, Bakeham Lane, Egham, Surrey TW20 9TY, UK (ReceivedFebruary15,2008;AcceptedJuly30,2008) ABSTRACT. Piptocephalis formosana,isolatedfromforestsoilinTaiwan,isdescribedasnew.Compared withsimilarspecies,P. formosanadiffersinhavingsmallerheadcellsthatare4-5lobed,cylindrical merosporangiacontaining(2-)3(-4)merospores,andsmallermerosporessurroundedbyawaterdropletwhen mature. Keywords:Piptocephalis formosana;Taiwan;Zygomycetes. INTRODUCTION dissectingmicroscope.SporophoresofPiptocephaliswere transferredalongwiththeirhosttofreshcornmealagar Speciesof PiptocephalisdeBary(Piptocephalidaceae, platesandincubatedat24°C.Afteroneweek,themature Zoopagales,Zygomycota)areobligateparasitesofother sporesofPiptocephalisweretransferredagainbytouching fungi,mainlyMucorales,andusuallycanbeisolated maturemerosporangiawithasterilizedneedletopre- fromherbivoredung,soilorleaflitter.Thesporophores markedspotsonfreshcornmealagarplates.Onedayafter aredichotomouslybranchedseveraltimesandterminate inoculationofPiptocephalismerospores,thesporesofthe in a usually sterile deciduous head cell. Many rod- hostwereinoculatedinthevicinityoftheparasite.After shapedmerosporangia, containingavariablenumberof 4-7days,thehostwasparasitizedbythePiptocephalis merospores,arebornontheheadcell.Thematurespores species. remaindryorareenclosedinaliquiddroplet(Kirk,1978).
    [Show full text]
  • Earthworm Ecology from DARWIN to VERMICUL TURE for 1882
    Earthworm Ecology FROM DARWIN TO VERMICUL TURE FOR 1882. MAN ·I~ ·BVT ·A·woR...JV\· Frontispiece Cartoon from Punch, December 6th, 1881 Earthworm Ecology FROM DARWIN TO VERMICUL TURE Edited by J. E. Satchell Institute of Terrestrial Ecology Merlewood Research Station Grange-over-Sands Cumbria, UK LONDON NEW YORK CHAPMAN AND HALL First published 1983 by Chapman and Hall Ltd I I New Fetter Lane, London EC4P 4EE Published in the USA by Chapman and Hall 733 Third Avenue, New York NY100I7 © 1983 Chapman and Hall Ltd Softcover reprint of the hardcover 1st edition 2007 University Press, Cambridge ISBN-13: 978-94-009-5967-5 e-ISBN-13: 978-94-009-5965-1 DOl: 10.1007/978-94-009-5965-1 All rights reserved. No part ofthis book may be reprinted, or reproduced or utilized in any form or by any electronic, mechanical or other means, now known or hereafter invented, including photocopying and record­ ing, or in any information storage and retrieval system, without permission in writing from the Publisher. British Library Cataloguing in Publication Data Earthworm ecology. I. Opisthopora I. Satchell, J. E. 595.I' 46 QL39 I. 04 Library of Congress Cataloging in Publication Data Main entry under title: Earthworm ecology. Bibliography: p. Includes index. I. Opisthopora-Ecology. 2. Earthworm culture. I. Satchell, John E. QL39I.A6E2 7 1983 Contents Preface Xl Contributors xiii DARWIN'S CONTRIBUTION TO EARTHWORM ECOLOGY I Darwin's Formation of Vegetable Mould- its philo­ sophical basis M. S. Ghilarov I 2 D~rwin on earthworms - the contemporary back­ ground and what the critics thought O.
    [Show full text]
  • Systematic Study of Fungi in the Genera Underwoodia and Gymnohydnotrya (Pezizales) with the Description of Three New South American Species
    Persoonia 44, 2020: 98–112 ISSN (Online) 1878-9080 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE https://doi.org/10.3767/persoonia.2020.44.04 Resurrecting the genus Geomorium: Systematic study of fungi in the genera Underwoodia and Gymnohydnotrya (Pezizales) with the description of three new South American species N. Kraisitudomsook1, R.A. Healy1, D.H. Pfister2, C. Truong3, E. Nouhra4, F. Kuhar4, A.B. Mujic1,5, J.M. Trappe6,7, M.E. Smith1,* Key words Abstract Molecular phylogenetic analyses have addressed the systematic position of several major Northern Hemisphere lineages of Pezizales but the taxa of the Southern Hemisphere remain understudied. This study focuses Geomoriaceae on the molecular systematics and taxonomy of Southern Hemisphere species currently treated in the genera Under­ Helvellaceae woodia and Gymnohydnotrya. Species in these genera have been identified as the monophyletic /gymnohydno trya Patagonia lineage, but no further research has been conducted to determine the evolutionary origin of this lineage or its relation- South American fungi ship with other Pezizales lineages. Here, we present a phylogenetic study of fungal species previously described truffle systematics in Underwoodia and Gymnohydnotrya, with sampling of all but one described species. We revise the taxonomy of Tuberaceae this lineage and describe three new species from the Patagonian region of South America. Our results show that none of these Southern Hemisphere species are closely related to Underwoodia columnaris, the type species of the genus Underwoodia. Accordingly, we recognize the genus Geomorium described by Spegazzini in 1922 for G. fuegianum. We propose the new family, Geomoriaceae fam. nov., to accommodate this phylogenetically and morphologically unique Southern Hemisphere lineage.
    [Show full text]
  • Duke University Dissertation Template
    Systematics, Phylogeography and Ecology of Elaphomycetaceae by Hannah Theresa Reynolds Department of Biology Duke University Date:_______________________ Approved: ___________________________ Rytas Vilgalys, Supervisor ___________________________ Marc Cubeta ___________________________ Katia Koelle ___________________________ François Lutzoni ___________________________ Paul Manos Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Biology in the Graduate School of Duke University 2011 iv ABSTRACTU Systematics, Phylogeography and Ecology of Elaphomycetaceae by Hannah Theresa Reynolds Department of Biology Duke University Date:_______________________ Approved: ___________________________ Rytas Vilgalys, Supervisor ___________________________ Marc Cubeta ___________________________ Katia Koelle ___________________________ François Lutzoni ___________________________ Paul Manos An abstract of a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Biology in the Graduate School of Duke University 2011 Copyright by Hannah Theresa Reynolds 2011 Abstract This dissertation is an investigation of the systematics, phylogeography, and ecology of a globally distributed fungal family, the Elaphomycetaceae. In Chapter 1, we assess the literature on fungal phylogeography, reviewing large-scale phylogenetics studies and performing a meta-data analysis of fungal population genetics. In particular, we examined
    [Show full text]