Concepts and Practical Considerations of Platform-Independent Design of Mobile Music Environments
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
GLSL 4.50 Spec
The OpenGL® Shading Language Language Version: 4.50 Document Revision: 7 09-May-2017 Editor: John Kessenich, Google Version 1.1 Authors: John Kessenich, Dave Baldwin, Randi Rost Copyright (c) 2008-2017 The Khronos Group Inc. All Rights Reserved. This specification is protected by copyright laws and contains material proprietary to the Khronos Group, Inc. It or any components may not be reproduced, republished, distributed, transmitted, displayed, broadcast, or otherwise exploited in any manner without the express prior written permission of Khronos Group. You may use this specification for implementing the functionality therein, without altering or removing any trademark, copyright or other notice from the specification, but the receipt or possession of this specification does not convey any rights to reproduce, disclose, or distribute its contents, or to manufacture, use, or sell anything that it may describe, in whole or in part. Khronos Group grants express permission to any current Promoter, Contributor or Adopter member of Khronos to copy and redistribute UNMODIFIED versions of this specification in any fashion, provided that NO CHARGE is made for the specification and the latest available update of the specification for any version of the API is used whenever possible. Such distributed specification may be reformatted AS LONG AS the contents of the specification are not changed in any way. The specification may be incorporated into a product that is sold as long as such product includes significant independent work developed by the seller. A link to the current version of this specification on the Khronos Group website should be included whenever possible with specification distributions. -
An Empirical Analysis of Energy Consumption of Cross-Platform Frameworks for Mobile Development
An Empirical Analysis of Energy Consumption of Cross-platform Frameworks for Mobile Development Matteo Ciman1, Ombretta Gaggia aDepartment of Mathematics, University of Padua, Padua, Italy Abstract The increasing fragmentation of mobile devices market has created the problem of supporting all the possible mobile platforms to reach the highest number of potential users. One possible solution is to use cross-platform frameworks, that let develop only one application that is then deployed to all the supported target platforms. Currently available cross-platform frameworks follow different approaches to deploy the final application, and all of them has pros and cons. In this paper, we evaluate and compare together the current frameworks for cross-platform mobile development considering one of the most important aspect when dealing with mobile devices: energy consumption. Our analysis shows and measure how the adoption of cross-platform frameworks impacts energy consumption with respect to the native mobile development, identifies which are the most consuming tasks, and tries to define a final rank among all the different approaches. Moreover, we highlight future development necessary to improve performances of cross-platform frameworks to reach native development performances. Keywords: Energy consumption, mobile development, performance measurement, web technologies, cross-platform frameworks 1. Introduction Smartphones are rapidly becoming more and more present in everyday life of users. Thanks to their increasing computing capabilities and an ample set of different sensors, e.g., accelerometer, barometer, environmental thermometer, 5 etc., smartphones play both the role of mobile workstations and of augmented devices, able to sense the environment and monitor user activities. Smartphones can be used for context awareness [1], user activity recognition [2, 3], health monitoring [4], etc. -
Native Cross-Platform Mobile Application Development
Native Cross-platform Mobile Application Development by W. de Kraker (0815283) CMI-Program Informatics – Rotterdam University August 14, 2012 First supervisor Mr. Y. S. Tjang Second supervisor Mr. A. Chamani Abstract Nowadays mobile devices are vastly integrated into modern society. They bring us one step closer to satisfy our ever growing need to have information available anytime, anywhere. To help gain access to information on mobile devices we use software applications, so called apps. However, the fragmented nature of today’s mobile ecosystem poses a challenge for developers to develop apps which are suitable to run on all mobile devices, since there is no de facto standard in cross-platform app development. Currently there are several solutions available to solve the cross-platform challenge. Lunatech, having expressed its interest in mobile app development, would like to know which solution, if any, suits Lunatechs needs. A study has been set up in order to resolve this question, the results of which are laid out in this thesis. ii Versions Version Date Author Details 0.1 12/07/2012 W. de Kraker Intial draft 0.2 20/07/2012 W. de Kraker Improved main research structure 0.3 08/08/2012 W. de Kraker Changes based on feedback from Mr. Y.S. Tjang 0.4 12/08/2012 W. de Kraker Changes based on feedback from Mr. S. de Kaper 1.0 14/08/2012 W. de Kraker Final version Table 1: Version history iii Preface You are looking at the thesis for the graduation internship on the subject of "cross-platform mobile application development while retaining the native look and feel". -
Taxonomy of Cross-Platform Mobile Applications Development Approaches
Ain Shams Engineering Journal (2015) xxx, xxx–xxx Ain Shams University Ain Shams Engineering Journal www.elsevier.com/locate/asej www.sciencedirect.com ELECTRICAL ENGINEERING Taxonomy of Cross-Platform Mobile Applications Development Approaches Wafaa S. El-Kassas *, Bassem A. Abdullah, Ahmed H. Yousef, Ayman M. Wahba Department of Computer and Systems Engineering, Faculty of Engineering, Ain Shams University, Egypt Received 13 September 2014; revised 30 May 2015; accepted 3 August 2015 KEYWORDS Abstract The developers use the cross-platform mobile development solutions to develop the Cross-platform mobile mobile application once and run it on many platforms. Many of these cross-platform solutions development; are still under research and development. Also, these solutions are based on different approaches Interpretation approach; such as Cross-Compilation approach, Virtual Machine approach, and Web-Based approach. There Cloud computing; are many survey papers about the cross-platform mobile development solutions but they do not Compilation approach; include the most recent approaches, including Component-Based approach, Cloud-Based Component-Based approach, and Merged approach. The main aim of this paper is helping the researchers to know approach; the most recent approaches and the open research issues. This paper surveys the existing cross- Model-Driven Engineering platform mobile development approaches and attempts to provide a global view: it thoroughly introduces a comprehensive categorization to the cross-platform approaches, defines the pros and cons of each approach, explains sample solutions per approach, compares the cross-platform mobile development solutions, and ends with the open research areas. Ó 2015 Faculty of Engineering, Ain Shams University. Production and hosting by Elsevier B.V. -
Survey on Techniques for Cross Platform Mobile Application Development
International Journal of Advanced Research in Computer Engineering & Technology (IJARCET) Volume 3 Issue 10, October 2014 Survey on Techniques for Cross Platform Mobile Application Development Apurva P. Pawar, Vandana S. Jagtap, Mamta S. Bhamare Abstract— Smart phone is used by most of the population. Different internal architecture of Operating System Over thousands of applications are used daily and a new becomes a reason for redevelopment of application to make it application gets launched as per need. In order to do work on run on each Operating System which in turn incurs lot of cost phones itself many desktop applications are getting converted to mobile version by developers. And it’s real challenge to market in terms of time, money, efforts. Consider example of are these applications and reach to the maximum users. From document editor software like Adobe Reader and Kingsoft developer point of view for application to reach to most of the office. People are also doing work through their Smartphone end users it need to run on max platforms, this needs too. It‘s not necessary that everyone is using windows redevelopment of application, we can solve this problem to some operating system on their Smartphone. Each mobile operating extent by developing cross platform application without system uses different programming model, developer would additional investment. Several techniques are available which will help to make it happen. Survey of these techniques could require additional overhead and troubleshooting since help application developers to make a proper choice. developer might have good hands on particular single platform. Hence, making software as cross platform Index Terms— Cross Compiled Approach, Cross Platform application can be a good option. -
Khronos Data Format Specification
Khronos Data Format Specification Andrew Garrard Version 1.3.1 2020-04-03 1 / 281 Khronos Data Format Specification License Information Copyright (C) 2014-2019 The Khronos Group Inc. All Rights Reserved. This specification is protected by copyright laws and contains material proprietary to the Khronos Group, Inc. It or any components may not be reproduced, republished, distributed, transmitted, displayed, broadcast, or otherwise exploited in any manner without the express prior written permission of Khronos Group. You may use this specification for implementing the functionality therein, without altering or removing any trademark, copyright or other notice from the specification, but the receipt or possession of this specification does not convey any rights to reproduce, disclose, or distribute its contents, or to manufacture, use, or sell anything that it may describe, in whole or in part. This version of the Data Format Specification is published and copyrighted by Khronos, but is not a Khronos ratified specification. Accordingly, it does not fall within the scope of the Khronos IP policy, except to the extent that sections of it are normatively referenced in ratified Khronos specifications. Such references incorporate the referenced sections into the ratified specifications, and bring those sections into the scope of the policy for those specifications. Khronos Group grants express permission to any current Promoter, Contributor or Adopter member of Khronos to copy and redistribute UNMODIFIED versions of this specification in any fashion, provided that NO CHARGE is made for the specification and the latest available update of the specification for any version of the API is used whenever possible. -
Analysis of Multi-Platform Mobile Application Development Courtney B
University of North Dakota UND Scholarly Commons Theses and Dissertations Theses, Dissertations, and Senior Projects January 2014 Analysis Of Multi-Platform Mobile Application Development Courtney B. Thaden Follow this and additional works at: https://commons.und.edu/theses Recommended Citation Thaden, Courtney B., "Analysis Of Multi-Platform Mobile Application Development" (2014). Theses and Dissertations. 1598. https://commons.und.edu/theses/1598 This Thesis is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact [email protected]. ANALYSIS OF MULTI-PLATFORM MOBILE APPLICATION DEVELOPMENT by Courtney B. Thaden Bachelor of Science, University of North Dakota, 2010 A Thesis Submitted to the Graduate Faculty of the University of North Dakota in partial fulfillment of the requirements for the degree of Master of Science Grand Forks, North Dakota May 2014 Copyright 2014 Courtney B. Thaden ii iii Title Analysis of Multi-Platform Mobile Application Development Department Electrical Engineering Degree Master of Science In presenting this thesis in partial fulfillment of the requirements for a graduate degree from the University of North Dakota, I agree that the library of this University shall make it freely available for inspection. I further agree that permission for extensive copying for scholarly purposes may be granted by the professor who supervised my thesis work or, in her absence, by the Chairperson of the department or the dean of the School of Graduate Studies. -
모바일 그래픽스 라이브러리들: 크로노스 그룹의 표준을 중심으로 Mobile Graphics Libraries: Focusing on the Standards from Khronos Group
50 한국콘텐츠학회 제8권 제2호 모바일 그래픽스 라이브러리들: 크로노스 그룹의 표준을 중심으로 Mobile Graphics Libraries: focusing on the standards from Khronos Group 백낙훈 (경북대학교), 이환용 (㈜휴원 CTO, 경북대학교 박사과정) 차 례 1. 서론 2. OpenGL ES 3. OpenGL SC 4. OpenVG 5. 결론 1. 서론 전력 소모가 낮은 기기를 채택할 수 밖에 없는 것이다. 액정뿐만 아니라, 모든 컴퓨팅 자원들이 궁극적으로 전 컴퓨터는 그 출현 이후, 계속해서 그 크기를 줄여 왔고, 력 문제에 민감하여야 하고, 이 때문에, 제한된 기능만을 현재는 휴대폰, 네비게이터, 휴대용 게임기 등의 형태로 제공할 수 밖에 없는 상황이다. 모바일 컴퓨팅 환경을 제공하고 있다. 모바일 컴퓨팅 환 경의 대두와 함께, 이를 이용한 그래픽스 출력이 요구되 었고, 모바일 환경에서의 그래픽스 기능을 의미하는, 모 바일 그래픽스 환경이 구축되었다. 이 글에서는 현재의 모바일 그래픽스 환경 중에서도 특히 표준 라이브러리들 에 대해 이야기하고자 한다. 지난 10여년 사이에 모바일 그래픽스 분야는 눈부신 발전을 이루었다. 가장 대표적 인 기기인 휴대폰을 기준으로 본다면, 최초에 나온, 저해 상도에 흑백의 투박한 액정을 가진 모델이 불과 몇 년 사 이에 상당한 수준의 컬러 액정을 가진 제품으로 변했고, 3차원 그래픽스를 지원하는 특별한 하드웨어 칩들을 사 (a) 저해상도 2D (b) 3D 용하는 것도 이상하지 않은 상황이 되었다. 이에 따라, 소프트웨어 기술들도 눈부시게 발전하여, 그림 1에서 보 는 바와 같이, 2차원 저해상도에서 3차원 화면을 거쳐, 거의 PC 화면에 필적하는 수준의 고해상도 3차원 화면 이 급속히 사용되고 있다. 모바일 그래픽스 환경은 태생 상, 기존의 데스크 탑 또는 그 이상의 고급 기종들에 비 해, 상대적으로 열등한 하드웨어 환경을 제공할 수 밖에 없다. 가장 문제가 되는 것은 제한된 용량의 전원, 즉 배 터리의 수명을 고려해야 한다는 점이다. PC급의 고해상 (c) 하드웨어로 가속되는 3D 도 액정이 기술적으로 문제가 있는 것이 아니라, 채택하 ▶▶ 그림 1. -
Ricas Y Las Interfaces De Realidad Vir- De Los Atributos De Cada Tecnología
EXATAS E TECNOLÓGICAS ISSN IMPRESSO - 2359-4934 ISSN ELETRÔNICO - 2359-4942 http://dx.doi.org/10.17564/2359-4942.2018v3n2 REVISING FRAMEWORKS FOR DEVELOPING MOBILE VIRTUAL REALITY REVISANDO FRAMEWORKS PARA DESENVOLVIMENTO DE REALIDADE VIRTUAL MÓVEL REVISIÓN DE LOS ENTORNOS PARA EL DESARROLLO DE REALIDAD VIRTUAL MÓVIL Guillermo Horacio Rodriguez1 Fabio Gomes Rocha2 ABSTRACT The development of mobile virtual environments has categories so that it becomes easier to understand been enabled by recent advances in hardware and the state of art and to help identify new directions software for mobile computing. This new trend has of research. A comparison of attributes of each tech- resulted from the convergence of wear able comput- nology is also summarized. ing, wireless networking and mobile virtual reality interfaces. This work provides a survey of different mobile technologies that are useful to build virtual Keywords reality applications running through mobile devices. Our aim is to place those technologies into different Framework. Developing Mobile. Virtual Reality. Interfaces Científicas - Exatas e Tecnológicas • Aracaju • V.3 • N.2 • p. 35 - 48 • Outubro 2018 • 36 • RESUMO O desenvolvimento de ambientes virtuais móveis foi em diferentes categorias para que seja mais fácil en- possibilitado pelos recentes avanços em hardware e tender o estado da arte e ajudar a identificar novos software para computação móvel. Essa nova tendên- rumos da pesquisa. Uma comparação de atributos de cia resultou da convergência de interfaces de com- cada tecnologia também é resumida. putação portátil, redes sem fio e realidade virtual móvel. Este trabalho fornece uma pesquisa de dif- erentes tecnologias móveis úteis para criar aplicati- Palavra-chave vos de realidade virtual executados em dispositivos móveis. -
The Opengl ES Shading Language
The OpenGL ES® Shading Language Language Version: 3.20 Document Revision: 12 246 JuneAugust 2015 Editor: Robert J. Simpson, Qualcomm OpenGL GLSL editor: John Kessenich, LunarG GLSL version 1.1 Authors: John Kessenich, Dave Baldwin, Randi Rost 1 Copyright (c) 2013-2015 The Khronos Group Inc. All Rights Reserved. This specification is protected by copyright laws and contains material proprietary to the Khronos Group, Inc. It or any components may not be reproduced, republished, distributed, transmitted, displayed, broadcast, or otherwise exploited in any manner without the express prior written permission of Khronos Group. You may use this specification for implementing the functionality therein, without altering or removing any trademark, copyright or other notice from the specification, but the receipt or possession of this specification does not convey any rights to reproduce, disclose, or distribute its contents, or to manufacture, use, or sell anything that it may describe, in whole or in part. Khronos Group grants express permission to any current Promoter, Contributor or Adopter member of Khronos to copy and redistribute UNMODIFIED versions of this specification in any fashion, provided that NO CHARGE is made for the specification and the latest available update of the specification for any version of the API is used whenever possible. Such distributed specification may be reformatted AS LONG AS the contents of the specification are not changed in any way. The specification may be incorporated into a product that is sold as long as such product includes significant independent work developed by the seller. A link to the current version of this specification on the Khronos Group website should be included whenever possible with specification distributions. -
Prioritizing Pull Requests
Prioritizing pull requests Version of June 17, 2015 Erik van der Veen Prioritizing pull requests THESIS submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in COMPUTER SCIENCE by Erik van der Veen born in Voorburg, the Netherlands Software Engineering Research Group Q42 Department of Software Technology Waldorpstraat 17F Faculty EEMCS, Delft University of Technology 2521 CA Delft, the Netherlands The Hague, the Netherlands www.ewi.tudelft.nl www.q42.com c 2014 Erik van der Veen. Cover picture: Finding the pull request that needs the most attention. Prioritizing pull requests Author: Erik van der Veen Student id: 1509381 Email: [email protected] Abstract Previous work showed that in the pull-based development model integrators face challenges with regard to prioritizing work in the face of multiple concurrent pull requests. We identified the manual prioritization heuristics applied by integrators and ex- tracted features from these heuristics. The features are used to train a machine learning model, which is capable of predicting a pull request’s importance. The importance is then used to create a prioritized order of the pull requests. Our main contribution is the design and initial implementation of a prototype service, called PRioritizer, which automatically prioritizes pull requests. The service works like a priority inbox for pull requests, recommending the top pull requests the project owner should focus on. It keeps the pull request list up-to-date when pull requests are merged or closed. In addition, the service provides functionality that GitHub is currently lacking. We implemented pairwise pull request conflict detection and several new filter and sorting options e.g. -
The Opengl ES Shading Language
The OpenGL ES® Shading Language Language Version: 3.00 Document Revision: 6 29 January 2016 Editor: Robert J. Simpson, Qualcomm OpenGL GLSL editor: John Kessenich, LunarG GLSL version 1.1 Authors: John Kessenich, Dave Baldwin, Randi Rost Copyright © 2008-2016 The Khronos Group Inc. All Rights Reserved. This specification is protected by copyright laws and contains material proprietary to the Khronos Group, Inc. It or any components may not be reproduced, republished, distributed, transmitted, displayed, broadcast, or otherwise exploited in any manner without the express prior written permission of Khronos Group. You may use this specification for implementing the functionality therein, without altering or removing any trademark, copyright or other notice from the specification, but the receipt or possession of this specification does not convey any rights to reproduce, disclose, or distribute its contents, or to manufacture, use, or sell anything that it may describe, in whole or in part. Khronos Group grants express permission to any current Promoter, Contributor or Adopter member of Khronos to copy and redistribute UNMODIFIED versions of this specification in any fashion, provided that NO CHARGE is made for the specification and the latest available update of the specification for any version of the API is used whenever possible. Such distributed specification may be reformatted AS LONG AS the contents of the specification are not changed in any way. The specification may be incorporated into a product that is sold as long as such product includes significant independent work developed by the seller. A link to the current version of this specification on the Khronos Group website should be included whenever possible with specification distributions.