Flare Stars in the Solar Vicinity: a Search for Young Stars

Total Page:16

File Type:pdf, Size:1020Kb

Flare Stars in the Solar Vicinity: a Search for Young Stars Flare Stars In The Solar Vicinity A Search For Young Stars Dissertation der Fakultat¨ fur¨ Physik der Ludwig-Maximilians-Universitat¨ Munchen¨ vorgelegt am 08.09.2003 von Brigitte Konig¨ aus Starnberg Erstgutachter: Prof. Dr. Dr. h.c Gregor Morfill Zweitgutachter: Prof. Dr. Ralph Neuh¨auser Tag der m¨undlichen Pr¨ufung:22.12.2003 Contents Contents iii List of Figures vii Kurzzusammenfassung 1 Abstract 3 1 Introduction 5 1.1 The model developed in the 1960’s . 5 1.1.1 From a gas and dust cloud to a protostar . 5 1.1.2 What can we observe at this phase? . 6 1.1.3 The phase of slow contraction . 6 1.1.4 Collapse under selfgravitation . 7 1.2 Improved models . 7 1.2.1 Centrally concentrated clouds . 7 1.2.2 Inhomogeneous gas clouds . 7 1.2.3 Rotation of the cloud . 8 1.2.4 Magnetic field in protostars and young stars . 9 1.3 Observed evolution stages . 9 1.4 Stars on the main sequence . 11 1.5 Post-main sequence stars . 12 1.6 What do we know about local young stars . 12 1.7 Details of flare stars . 14 1.7.1 Definition of flare stars . 15 1.7.2 The nature of other types of flare stars . 17 2 The sample 21 2.1 Revising the catalogs . 21 2.2 The flare stars in the H-R diagram . 22 2.3 Space velocity of the sample stars . 23 2.4 Observation and Data Reduction . 24 2.4.1 Low resolution spectroscopy . 25 2.4.2 High resolution spectroscopy . 26 3 Stellar atmospheres models 29 3.1 Assumptions . 29 3.2 Energy transport . 31 3.2.1 Radiative energy transport . 31 3.2.2 Convective energy transport . 31 iv CONTENTS 3.2.3 Heat transport . 33 3.3 Interaction between radiation and material . 33 3.3.1 Atomic excitation and ionisation in TE . 33 3.3.2 Radiative interaction . 34 3.4 Hydrostatic equilibrium . 35 3.5 Sources of opacities . 35 3.5.1 Continuous opacity sources . 35 3.5.2 Line opacities . 36 3.6 Computed spectral lines . 37 3.6.1 Dependence on the element abundance . 37 3.6.2 Dependency on other stellar parameters . 37 3.7 How to derive abundances . 40 4 Flare stars in stellar associations 41 4.1 The Ursa Major association . 41 4.1.1 χ1 Orionis B . 42 4.1.2 [GKL 99] 104, HIP 18512 A, HD 24916 A . 54 4.1.3 [GKL 99] 109, HIP 19855, HD 26913 . 54 4.1.4 [GKL 99] 231, HIP 53985 . 55 4.1.5 [GKL 99] 239 and [GKL 99] 240, or HIP 55454 A & B . 55 4.2 Local association . 55 4.3 The region of TW Hydrae Association . 55 4.3.1 The sample in TWA . 57 4.3.2 Kinematics and multiplicity . 59 4.3.3 Hertzsprung-Russell diagram . 60 4.3.4 X-ray emission . 61 4.3.5 Near-infrared imaging of HIP 57269 . 61 4.3.6 Spectroscopic follow up of companion candidates . 62 4.3.7 Summary and Discussion . 65 4.4 The flare stars in the region of Tuc and HorA . 66 4.5 The Tucana Association . 66 4.6 The Horologium Association . 68 4.6.1 The Tucana - Horologium association . 69 4.6.2 [GKL 99] 428, HIP 111766 . 69 4.6.3 [GKL 99] 414, HIP 108405 . 70 4.6.4 [GKL 99] 72 . 71 4.7 Stars with space motion consistent with AnA . 71 4.7.1 [GKL 99] 423, HIP 110526 . 71 4.8 Stars in the Pleiades . 71 4.8.1 [GKL 99] 74, HIP 12351 . 72 4.8.2 [GKL 99] 312, HIP 73555 . 73 4.8.3 [GKL 99] 306, EK Dra, HIP 71631, HD 129333 . 75 4.8.4 [GKL 99] 210, GJ 3562 . 77 4.8.5 Summary . 77 4.9 Hercules-Lyra association . 77 4.9.1 [GKL 99] 410, HN Peg, HIP 107350, HD 206860 . 78 4.9.2 HIP 114385, and [GKL 99] 440, HIP 114379 . 80 4.10 β Pictoris moving group . 81 4.10.1 [GKL 99] 82, HIP 13402, HD 17925 . 82 4.10.2 [GKL 99] 145, HIP 26779 . 82 CONTENTS v 4.10.3 [GKL 99] 132, HIP 23200 . 82 4.10.4 [GKL 99] 137 and [GKL 99] 136, or GJ 3331 A & B . 82 4.10.5 [GKL 99] 146, GJ 1083 A & B . 83 4.10.6 [GKL 99] 387 and [GKL 99] 388, or HIP 102141 A & B . 83 4.10.7 [GKL 99] 394, HIP 102409 . 83 4.11 The translucent cloud MBM 12 . 83 4.12 Stars belonging to the Hyades Cluster . 83 4.12.1 [GKL 99] 15, HIP 1803, HD 1835, HR 88 . 84 4.13 Summary . 84 4.14 Discussion - Why not use Photometry? . 86 4.14.1 The colors of a star . 87 4.14.2 Narrow band photometry . 87 4.14.3 Low resolution spectroscopy . 90 5 Radial velocity monitoring 91 5.1 Observations . 92 5.2 Data analysis . 93 5.3 Error sources . 94 5.3.1 Stellar spots . 94 5.3.2 Plage regions . 95 5.3.3 Solution . 97 5.4 Results . 98 6 R´esum´e 105 6.1 The Sample . 105 6.2 Evaluation of the sample . 106 6.3 Results . 107 Bibliography 111 Revised data of the input catalog 123 Space velocity of the flare stars 129 Observation logfile 135 Danksagung 139 Lebenslauf 141 List of Figures 1.1 Classification scheme of young stellar objects according to their infrared emis- sion. Taken from Feigelson & Montmerle (1999). 10 2.1 D’Antona & Mazzitelli (1994) tracks and isochrones underlaying the sample stars. The sample stars are plotted using the revised input data and the spectral type with temperature conversion taken from Kenyon & Hartmann (1995) and Luhman (1999). The corrections for binary stars and the distance show that the stars are quite homogeneously spread on the lower part of the main sequence. Only the stars with an available distance are shown with a distance from 2.5 pc to 100 pc. Masses are in units of a solar mass and ages are given as log t/yr. 23 2.2 Space velocities in the UV-plane of the sample stars compared to the mean space velocity of known local young associations of stars. The flare stars of the Gershberg sample are marked with gray dots and the big black crosses mark the mean space velocity of the young associations. 24 3.1 A schematic view of the different layer in the sun. For the modeling of the star only the atmosphere is important. The atmosphere includes the photosphere and the chromosphere. ..
Recommended publications
  • Lurking in the Shadows: Wide-Separation Gas Giants As Tracers of Planet Formation
    Lurking in the Shadows: Wide-Separation Gas Giants as Tracers of Planet Formation Thesis by Marta Levesque Bryan In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2018 Defended May 1, 2018 ii © 2018 Marta Levesque Bryan ORCID: [0000-0002-6076-5967] All rights reserved iii ACKNOWLEDGEMENTS First and foremost I would like to thank Heather Knutson, who I had the great privilege of working with as my thesis advisor. Her encouragement, guidance, and perspective helped me navigate many a challenging problem, and my conversations with her were a consistent source of positivity and learning throughout my time at Caltech. I leave graduate school a better scientist and person for having her as a role model. Heather fostered a wonderfully positive and supportive environment for her students, giving us the space to explore and grow - I could not have asked for a better advisor or research experience. I would also like to thank Konstantin Batygin for enthusiastic and illuminating discussions that always left me more excited to explore the result at hand. Thank you as well to Dimitri Mawet for providing both expertise and contagious optimism for some of my latest direct imaging endeavors. Thank you to the rest of my thesis committee, namely Geoff Blake, Evan Kirby, and Chuck Steidel for their support, helpful conversations, and insightful questions. I am grateful to have had the opportunity to collaborate with Brendan Bowler. His talk at Caltech my second year of graduate school introduced me to an unexpected population of massive wide-separation planetary-mass companions, and lead to a long-running collaboration from which several of my thesis projects were born.
    [Show full text]
  • Characterisation of Young Nearby Stars – the Ursa Major Group
    FRIEDRICH-SCHILLER-UNIVERSITAT¨ JENA Physikalisch-Astronomische Fakult¨at Characterisation of young nearby stars – The Ursa Major group Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) vorgelegt dem Rat der Physikalischen-Astronomischen Fakult¨at der Friedrich-Schiller-Universit¨at Jena von Dipl.-Phys. Matthias Ammler geboren am 10.01.1977 in Neuburg a. d. Donau Gutachter 1. Prof. Dr. Ralph Neuh¨auser 2. Dr. habil. Matthias H¨unsch 3. Prof. Dr. Artie P. Hatzes Tag der letzten Rigorosumspr¨ufung: 26. Juni 2006 Tag der ¨offentlichen Verteidigung: 11. Juli 2006 Meinen Eltern Contents List of Figures vii List of Tables ix Abstract xi Zusammenfassung xiii Remarks and Acknowledgements xv 1 Introduction 1 1.1 WhatistheUrsaMajorgroup? . 1 1.1.1 Co-movingstarsin the BigDipper constellation . .... 1 1.1.2 Stellarmotionandmovinggroups . 1 1.1.3 Formation and evolution of open clusters and associations ... 6 1.1.4 The nature of the UMa group – cluster or association, or some- thingelse? ............................ 8 1.2 WhyistheUMagroupinteresting?. 8 1.2.1 Asnapshotinstellarevolution . 8 1.2.2 Alaboratoryinfrontofthedoor . 9 1.2.3 Thecensusofthesolarneighbourhood . 10 1.3 ConstrainingtheUMagroup–previousapproaches . ..... 11 1.3.1 Spatialclustering . 11 1.3.2 Kinematic criteria – derived from a “canonical” memberlist . 12 1.3.3 Kinematic parameters – derived from kinematic clustering ... 15 1.3.4 Stellarparametersandabundances . 17 1.3.5 TheageoftheUMagroup–photometriccriteria . 19 1.3.6 Spectroscopicindicatorsforageandactivity . .... 19 1.3.7 Combining kinematic, spectroscopic, and photometric criteria . 21 1.4 Anewhomogeneousspectroscopicstudy . 21 1.4.1 Definingthesample ....................... 22 1.4.2 Howtoobtainprecisestellarparameters? . .. 23 2 Observations,reductionandcalibration 25 2.1 Requireddata ............................... 25 2.2 Instruments ...............................
    [Show full text]
  • Antony Hewish
    PULSARS AND HIGH DENSITY PHYSICS Nobel Lecture, December 12, 1974 by A NTONY H E W I S H University of Cambridge, Cavendish Laboratory, Cambridge, England D ISCOVERY OF P U L S A R S The trail which ultimately led to the first pulsar began in 1948 when I joined Ryle’s small research team and became interested in the general problem of the propagation of radiation through irregular transparent media. We are all familiar with the twinkling of visible stars and my task was to understand why radio stars also twinkled. I was fortunate to have been taught by Ratcliffe, who first showed me the power of Fourier techniques in dealing with such diffraction phenomena. By a modest extension of existing theory I was able to show that our radio stars twinkled because of plasma clouds in the ionosphere at heights around 300 km, and I was also able to measure the speed of ionospheric winds in this region (1) . My fascination in using extra-terrestrial radio sources for studying the intervening plasma next brought me to the solar corona. From observations of the angular scattering of radiation passing through the corona, using simple radio interferometers, I was eventually able to trace the solar atmo- sphere out to one half the radius of the Earth’s orbit (2). In my notebook for 1954 there is a comment that, if radio sources were of small enough angular size, they would illuminate the solar atmosphere with sufficient coherence to produce interference patterns at the Earth which would be detectable as a very rapid fluctuation of intensity.
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • Arxiv:0809.1275V2
    How eccentric orbital solutions can hide planetary systems in 2:1 resonant orbits Guillem Anglada-Escud´e1, Mercedes L´opez-Morales1,2, John E. Chambers1 [email protected], [email protected], [email protected] ABSTRACT The Doppler technique measures the reflex radial motion of a star induced by the presence of companions and is the most successful method to detect ex- oplanets. If several planets are present, their signals will appear combined in the radial motion of the star, leading to potential misinterpretations of the data. Specifically, two planets in 2:1 resonant orbits can mimic the signal of a sin- gle planet in an eccentric orbit. We quantify the implications of this statistical degeneracy for a representative sample of the reported single exoplanets with available datasets, finding that 1) around 35% percent of the published eccentric one-planet solutions are statistically indistinguishible from planetary systems in 2:1 orbital resonance, 2) another 40% cannot be statistically distinguished from a circular orbital solution and 3) planets with masses comparable to Earth could be hidden in known orbital solutions of eccentric super-Earths and Neptune mass planets. Subject headings: Exoplanets – Orbital dynamics – Planet detection – Doppler method arXiv:0809.1275v2 [astro-ph] 25 Nov 2009 Introduction Most of the +300 exoplanets found to date have been discovered using the Doppler tech- nique, which measures the reflex motion of the host star induced by the planets (Mayor & Queloz 1995; Marcy & Butler 1996). The diverse characteristics of these exoplanets are somewhat surprising. Many of them are similar in mass to Jupiter, but orbit much closer to their 1Carnegie Institution of Washington, Department of Terrestrial Magnetism, 5241 Broad Branch Rd.
    [Show full text]
  • On the Detection of Exoplanets Via Radial Velocity Doppler Spectroscopy
    The Downtown Review Volume 1 Issue 1 Article 6 January 2015 On the Detection of Exoplanets via Radial Velocity Doppler Spectroscopy Joseph P. Glaser Cleveland State University Follow this and additional works at: https://engagedscholarship.csuohio.edu/tdr Part of the Astrophysics and Astronomy Commons How does access to this work benefit ou?y Let us know! Recommended Citation Glaser, Joseph P.. "On the Detection of Exoplanets via Radial Velocity Doppler Spectroscopy." The Downtown Review. Vol. 1. Iss. 1 (2015) . Available at: https://engagedscholarship.csuohio.edu/tdr/vol1/iss1/6 This Article is brought to you for free and open access by the Student Scholarship at EngagedScholarship@CSU. It has been accepted for inclusion in The Downtown Review by an authorized editor of EngagedScholarship@CSU. For more information, please contact [email protected]. Glaser: Detection of Exoplanets 1 Introduction to Exoplanets For centuries, some of humanity’s greatest minds have pondered over the possibility of other worlds orbiting the uncountable number of stars that exist in the visible universe. The seeds for eventual scientific speculation on the possibility of these "exoplanets" began with the works of a 16th century philosopher, Giordano Bruno. In his modernly celebrated work, On the Infinite Universe & Worlds, Bruno states: "This space we declare to be infinite (...) In it are an infinity of worlds of the same kind as our own." By the time of the European Scientific Revolution, Isaac Newton grew fond of the idea and wrote in his Principia: "If the fixed stars are the centers of similar systems [when compared to the solar system], they will all be constructed according to a similar design and subject to the dominion of One." Due to limitations on observational equipment, the field of exoplanetary systems existed primarily in theory until the late 1980s.
    [Show full text]
  • Flares on Active M-Type Stars Observed with XMM-Newton and Chandra
    Flares on active M-type stars observed with XMM-Newton and Chandra Urmila Mitra Kraev Mullard Space Science Laboratory Department of Space and Climate Physics University College London A thesis submitted to the University of London for the degree of Doctor of Philosophy I, Urmila Mitra Kraev, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. Abstract M-type red dwarfs are among the most active stars. Their light curves display random variability of rapid increase and gradual decrease in emission. It is believed that these large energy events, or flares, are the manifestation of the permanently reforming magnetic field of the stellar atmosphere. Stellar coronal flares are observed in the radio, optical, ultraviolet and X-rays. With the new generation of X-ray telescopes, XMM-Newton and Chandra , it has become possible to study these flares in much greater detail than ever before. This thesis focuses on three core issues about flares: (i) how their X-ray emission is correlated with the ultraviolet, (ii) using an oscillation to determine the loop length and the magnetic field strength of a particular flare, and (iii) investigating the change of density sensitive lines during flares using high-resolution X-ray spectra. (i) It is known that flare emission in different wavebands often correlate in time. However, here is the first time where data is presented which shows a correlation between emission from two different wavebands (soft X-rays and ultraviolet) over various sized flares and from five stars, which supports that the flare process is governed by common physical parameters scaling over a large range.
    [Show full text]
  • Publications Year: 2012 1. Auriere, M
    Publications year: 2012 1. Auriere, M., Konstantinova-Antova, R., Petit, P., Charbonnel, C., Van Eck, S., Donati, J.-F., Lignieres, F., Roudier, T., 14 Ceti: a probable Ap-star-descendant entering the Hertzsprung gap, 2012, A&A, 543, A118 2. Bachev, R., Rapid optical variability of QSO GB6 J1604+5714, 2012, ATel, 4184, 1 3. Bachev, R., Semkov, E., Strigachev, A., Gupta, A. C., Gaur, H., Mihov, B., Boeva, S., Slavcheva- Mihova, L., The nature of the intra-night optical variability in blazars, 2012, MNRAS, 424, 2625– 2634 4. Bachev, R., Peneva, S., Recent optical activity of flaring blazars, 2012, ATel, 4437, 1 5. Bachev, R., Spassov, B., Ibryamov, S., Boeva, S., Stoyanov, K., Semkov, E., Peneva, S., Strigachev, A., No evidence for enhanced optical emission from BL Lacertae, 2012, ATel, 4568, 1 6. Boeva, S., Bachev, R., Antov, A., Tsvetkova, S., Stoyanov, K. A., Low State of KR Aurigae (2008 - 2010), 2012, Publ. Astron. Society R. Boskovic, 11, 369-373, ISBN 978-86-89035-01-8 7. Borisov, G., Bonev, T., Iliev, I., Stateva, I., Low and high resolution spectroscopy of the comet C/ 2009 R1 (McNaught), 2012, Bulgarian Astronomical Journal, 18(1), 47-55, 8. Borisov, G.; Stanchev, O., Assigning WCS Standards to Rozhen Fits Archive. Preliminary Tests, 2012, Publ. Astron. Society R. Boskovic, 11, 253-257 9. Borisova, A. P., Hambaryan, V. V., Innis, J. L., Bayesian approach to the cyclic activity of CF Oct, 2012, MNRAS, 420, 2539-2545 10. Borisova, A., Hambaryan, V., Laskov, L., Bayesian Probability Theory in Astronomy: Looking for Stellar Activity Cycles in Photometric Data-Series, 2012, Publ.
    [Show full text]
  • Stars and Their Spectra: an Introduction to the Spectral Sequence Second Edition James B
    Cambridge University Press 978-0-521-89954-3 - Stars and Their Spectra: An Introduction to the Spectral Sequence Second Edition James B. Kaler Index More information Star index Stars are arranged by the Latin genitive of their constellation of residence, with other star names interspersed alphabetically. Within a constellation, Bayer Greek letters are given first, followed by Roman letters, Flamsteed numbers, variable stars arranged in traditional order (see Section 1.11), and then other names that take on genitive form. Stellar spectra are indicated by an asterisk. The best-known proper names have priority over their Greek-letter names. Spectra of the Sun and of nebulae are included as well. Abell 21 nucleus, see a Aurigae, see Capella Abell 78 nucleus, 327* ε Aurigae, 178, 186 Achernar, 9, 243, 264, 274 z Aurigae, 177, 186 Acrux, see Alpha Crucis Z Aurigae, 186, 269* Adhara, see Epsilon Canis Majoris AB Aurigae, 255 Albireo, 26 Alcor, 26, 177, 241, 243, 272* Barnard’s Star, 129–130, 131 Aldebaran, 9, 27, 80*, 163, 165 Betelgeuse, 2, 9, 16, 18, 20, 73, 74*, 79, Algol, 20, 26, 176–177, 271*, 333, 366 80*, 88, 104–105, 106*, 110*, 113, Altair, 9, 236, 241, 250 115, 118, 122, 187, 216, 264 a Andromedae, 273, 273* image of, 114 b Andromedae, 164 BDþ284211, 285* g Andromedae, 26 Bl 253* u Andromedae A, 218* a Boo¨tis, see Arcturus u Andromedae B, 109* g Boo¨tis, 243 Z Andromedae, 337 Z Boo¨tis, 185 Antares, 10, 73, 104–105, 113, 115, 118, l Boo¨tis, 254, 280, 314 122, 174* s Boo¨tis, 218* 53 Aquarii A, 195 53 Aquarii B, 195 T Camelopardalis,
    [Show full text]
  • ESO Annual Report 2004 ESO Annual Report 2004 Presented to the Council by the Director General Dr
    ESO Annual Report 2004 ESO Annual Report 2004 presented to the Council by the Director General Dr. Catherine Cesarsky View of La Silla from the 3.6-m telescope. ESO is the foremost intergovernmental European Science and Technology organi- sation in the field of ground-based as- trophysics. It is supported by eleven coun- tries: Belgium, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Sweden, Switzerland and the United Kingdom. Created in 1962, ESO provides state-of- the-art research facilities to European astronomers and astrophysicists. In pur- suit of this task, ESO’s activities cover a wide spectrum including the design and construction of world-class ground-based observational facilities for the member- state scientists, large telescope projects, design of innovative scientific instruments, developing new and advanced techno- logies, furthering European co-operation and carrying out European educational programmes. ESO operates at three sites in the Ataca- ma desert region of Chile. The first site The VLT is a most unusual telescope, is at La Silla, a mountain 600 km north of based on the latest technology. It is not Santiago de Chile, at 2 400 m altitude. just one, but an array of 4 telescopes, It is equipped with several optical tele- each with a main mirror of 8.2-m diame- scopes with mirror diameters of up to ter. With one such telescope, images 3.6-metres. The 3.5-m New Technology of celestial objects as faint as magnitude Telescope (NTT) was the first in the 30 have been obtained in a one-hour ex- world to have a computer-controlled main posure.
    [Show full text]
  • Is It a Planet, Asteroid Or a Planetoid? on March 14, 2004 Astronomers at the Palomar Observatory Site Discovered the Most Distant Object in the Solar System
    Vol. 35, No. 4 April 2004 Is it a planet, asteroid or a planetoid? On March 14, 2004 astronomers at the Palomar observatory site discovered the most distant object in the solar system. It is 90 AU from the sun, twice as far as anything discovered to date, and three times further than Pluto. It has a highly elliptical orbit that will take it 1000 AU from the sun in the next 5000 years. Its size is estimated to be up to 1800 km, somewhere between the 1250 km of the largest known Kuiper belt object, Quaoar, and the size of Pluto at 2390 km. (Largest asteroid is Ceres at 933 km.) It seems to have a rotational period of 40 days, and appears to be the reddest object in the solar system. Currently known as 2003 VB12, it has been suggested that because of its frigid temperatures it be named Sedna, after the Inuit goddess of the sea. There is much debate on what to call it. It is further than the objects discovered in the Kuiper belt, the zone of large objects discovered around and beyond Pluto, but nearer than the hypothesized Oort cloud zone believed to be the source of comets. It has rekindled the debate over whether Pluto is a planet. If Pluto is a planet then this, and many other large objects, should also be called planets. If this can’t be a planet then maybe Pluto should be declassified. Some have suggested a new category called planetoids. At magnitude 20.5 amateur astronomers won’t have much opportunity to do direct observations of this new object, but we can contribute to the discussion of what the definition of a planet should be.
    [Show full text]
  • Arxiv:0908.2624V1 [Astro-Ph.SR] 18 Aug 2009
    Astronomy & Astrophysics Review manuscript No. (will be inserted by the editor) Accurate masses and radii of normal stars: Modern results and applications G. Torres · J. Andersen · A. Gim´enez Received: date / Accepted: date Abstract This paper presents and discusses a critical compilation of accurate, fun- damental determinations of stellar masses and radii. We have identified 95 detached binary systems containing 190 stars (94 eclipsing systems, and α Centauri) that satisfy our criterion that the mass and radius of both stars be known to ±3% or better. All are non-interacting systems, so the stars should have evolved as if they were single. This sample more than doubles that of the earlier similar review by Andersen (1991), extends the mass range at both ends and, for the first time, includes an extragalactic binary. In every case, we have examined the original data and recomputed the stellar parameters with a consistent set of assumptions and physical constants. To these we add interstellar reddening, effective temperature, metal abundance, rotational velocity and apsidal motion determinations when available, and we compute a number of other physical parameters, notably luminosity and distance. These accurate physical parameters reveal the effects of stellar evolution with un- precedented clarity, and we discuss the use of the data in observational tests of stellar evolution models in some detail. Earlier findings of significant structural differences between moderately fast-rotating, mildly active stars and single stars, ascribed to the presence of strong magnetic and spot activity, are confirmed beyond doubt. We also show how the best data can be used to test prescriptions for the subtle interplay be- tween convection, diffusion, and other non-classical effects in stellar models.
    [Show full text]