Optical Observatories

Total Page:16

File Type:pdf, Size:1020Kb

Optical Observatories NATIONAL OPTICAL ASTRONOMY OBSERVATORIES NATIONAL OPTICAL ASTRONOMY OBSERVATORIES Cerro Tololo Inter-American Observatory Kitt Peak National Observatory National Solar Observatory La Serena, Chile Tucson, Arizona 85726 Sunspot, New Mexico 88349 ANNUAL REPORT October 1993 - September 1994 November 10, 1994 TABLE OF CONTENTS I. INTRODUCTION n. AURA BOARD m. SCIENTIFIC PROGRAM Cerro Tololo Inter-American Observatory (CTIO) 1. A Hubble Diagram of Distant Type la Supernovae 2. The Stellar Populations of the Carina Dwarf Galaxy 3 3. Observations of the Collision ofComet Shoemaker-Levy 9 and Jupiter 4 B. Kitt Peak National Observatory (KPNO) 5 1. Faint Galaxy Halo Could Trace Dark Matter 5 2. Young Stellar Objects in Bok Globules 5 3. A New Tool for Stellar Population Studies 6 C. National Solar Observatory (NSO) 7 1. New Observations of IR Coronal Emission Lines 7 2. High Resolution Infrared Spectroscopy of the Carbon Monoxide Molecule 7 3. Subsurface Magnetic Flux Tubes 8 IV. DIVISION OPERATIONS 9 A. Cerro Tololo Inter-American Observatory 9 1. 4-m Telescope Image Quality Improvements 9 2. Infrared Instrumentation 10 3. Arcon CCD Controllers 10 4. Other Projects 11 B. Kitt Peak National Observatory 11 1. New KPNO Programs in FY 1994 11 2. KPNO Facilities Improvements in FY 1994 13 3. KPNO Instrumentation 14 C. National Solar Observatory 17 1. Image Quality Improvement Program for NSO Telescopes 17 2. Sac Peak Instrumentation 18 3. Tucson Instrumentation 20 D. US Gemini Program 21 E. NOAO Instrumentation Program 22 V. MAJOR PROJECTS 23 A. Global Oscillation Network Group Project 23 B. The Precision Solar Photometric Telescope Project (PSPT) 25 C. SWATH Mission 26 D. WIYN 26 E. Partnerships in Progress at CTIO 28 1. 2MASS Survey 28 2. Sao Paulo Telescope 29 3. Southern Spectroscopic Survey Telescope 29 4. SOAR 29 VI. CENTRAL COMPUTER SERVICES 29 VII. SCIENTIFIC STAFF 30 A. CTIO Scientific Staff Changes 30 B. KPNO Scientific Staff Changes 31 C. NSO Scientific Staff Changes 31 Vm. DIRECTOR'S OFFICE 32 IX. NOAO STATISTICS 33 A. CTIO Statistics 33 B. KPNO Statistics 33 C. NSO Statistics 34 D. NOAO Central Computer Services Statistics 34 E. NOAO Tucson Headquarters Building Statistics 34 APPENDICES Appendix A: NOAO Technical Reports List Appendix B: CTIO Publications List Appendix C: KPNO Publications List Appendix D: NSO Publications List n I. INTRODUCTION This report covers the period 1 July 1993 - 30 June 1994. The National Optical Astronomy Observatories (NOAO) are operated for the National Science Foundation by the Association of Universities for Research in Astronomy. The four divisions of the NOAO are: the Cerro Tololo Inter-American Observatory (CTIO), in northern Chile; the Kitt Peak National Observatory (KPNO), near Tucson; the National Solar Observatory (NSO), with facilities on Kitt Peak and at Sacramento Peak, New Mexico; and the US Gemini Program (USGP), based in Tucson. NOAO observing and data reduction facilities are available to the entire astronomical community. The NOAO Home Page contains on-line information about NOAO services, including telescope schedules and instrument availability, and information about how to apply for telescope time. The NOAO Home Page can be accessed through the World Wide Web at http://www.noao.edu/. II. AURA BOARD NOAO is managed by the Association of Universities for Research in Astronomy, Inc. (AURA). There are twenty-six AURA member universities, including three international institutions. Each member university appoints one individual to serve on the AURA Board, which also includes the President of the Corporation and twelve Directors-at-Large. AURA also operates the Space Telescope Science Institute under contract with the National Aeronautics and Space Administration, and the Gemini 8-m Telescopes Project for the NSF. III. SCIENTIFIC PROGRAM A. Cerro TololoInter-American Observatory (CTIO) 1. A Hubble Diagram ofDistant Type la Supernovae Since the discovery by Edwin Hubble in 1929 that the Universe is expanding, one of the outstanding problems in observational cosmology has been the determination of the Hubble constant, Ho, which measures the rate of expansion in the neighborhood of the Milky Way. Knowledge of Ho is of special importance since it provides a limit to the age of the Universe. In the 65 years since Hubble's discovery, debate has raged over the precise value of Ho, with astronomers currently dividing into two main camps: those who argue for a "short" distance scale with Ho -70-90 km s' Mpc"1, and those who favor a "long" distance scale with Ho -50 km s1 Mpc'1. The short distance scale is supported by several different techniques for measuring distances to galaxies, but a persistent thorn in the side has been the results based on Type la Supernovae (SNe la) which have consistently favored the long distance scale. Indeed, recent distance measurements to the host galaxies of two SNe la using Cepheid variable stars discovered with the Hubble Space Telescope have yielded values of Ho between 50-55 km s'1 Mpc"1. Since several of the distance indicators which support the short distance scale are also based on Cepheid distances for calibration, this disagreement is particularly perplexing. Recent work by a team of investigators at CTIO and the University of Chile at Cerro Calan led by Mario Hamuy (CTIO) and Jose Maza (U. of Chile) provides a possible resolution to this conflict. From 1990-1993, Hamuy and Maza carried out a supernova search using the Michigan Curtis Schmidt telescope at CTIO with the goal of discovering and observing a sample of distant SNe la which could then be used to study the Hubble diagram of these objects. The first Hubble diagram for SNe la, which was published by Charles Kowal in 1968, yielded a relatively small dispersion (0.6 mag) in the peak brightnesses of SNe la, revealing the potential utility of these objects as extragalactic distance indicators. More modern studies have found a scatter of 0.3-0.5 mag, but two major observational complications have hampered the determination of the intrinsic spread in the peak luminositiesof these objects: 1) These Hubble diagrams are based nearly entirely on nearby objects (z < 0.02). At such low redshifts, the peculiar motions of individual galaxies introduce significant scatter in the velocity field associated with the general expansion of the Universe. 2) Most historical SNe la light curves consist of fragmentary observations, more often than not obtained from photographic plates. With photographic plates, it is difficult to subtract accurately the bright galaxy background light on which the supernovae are often projected. The lack of a precise definition of the photographic band introduces an additional problem when comparing observations obtained from different observers and emulsions. Not surprisingly, even for bright supernovae with frequent observations, large discrepancies (-1 mag) often appear among photometry from different sources. Since supernovae aretransitory objects, visible typically foronly a few months, they cannot simply be re- observed to improve the data quality. Hence, Hamuy and Maza organized the Calan/Tololo search which led to the discovery of 50 new SNe during the three-year period that it was carried out. Follow-up spectroscopic observations obtained mostly with the CTIO 1.5-m and 4.0-m telescopes revealed that a significant fraction (-60%) of these objects were members of the Type la class, and thatnearly all were at redshifts between 0.02 and 0.1. Thanks to the generous collaboration of many visiting astronomers and CTIO staffmembers, BVRI photometry was secured with CCD detectors for most of these supernovae. So far, light curves have been completely reduced for 13 SNe la (i.e., roughly halfthe complete sample), and the analysis of these data forms the subject of a paper to be published by Hamuy et al. in the January 1995 issue of the Astronomical Journal. The Hubble diagrams in B and V for these 13 SNe la show clear evidence for a distance-dependent dispersion. Although some of the scatter could be due to the peculiar velocities of the host galaxies or to uncorrected dust absorption in the host galaxies,Hamuy and collaborators argue that the dominant source is an intrinsic dispersion in the peak absolute magnitudes of SNe la amounting to -0.8 mag in MB and -0.5 mag in Mv. The data also confirm, in general terms, the recent finding by Phillips from an independent sample of well-observed nearby SNela that the absolute B and V magnitudes are correlated with the initial decline rate of the B light curve. The sense of this correlation is that the most slowly declining events tend to be intrinsically the most luminous. In addition, Hamuy et al. find rather unexpectedly that galaxieshaving a youngerstellar populationappear to host the most luminous SNe la. It is these two effects-the dependence of the absolute luminosity on decline rate and host galaxy morphology-that provide the clues to understanding the small value of the Hubble constant derived by Sandage and collaborators from Cepheid distances to the host galaxies of SN 1937C and SN 1972E. As shown by Hamuy et al. from the published photometry of SN 1972E, this supernova was a slow- declining event and, therefore, probably more luminous than average. Using the peak luminosity-decline rate relations derived from either the Phillips or Calan/Tololo samples of SNe la, Hamuy et al. derive a Hubble constant in the range Ho = 62-67 km s' Mpc"1, which is -15% larger than the value that would be obtained if the peak luminosity-decline rate relation were to be ignored. Recent remeasurements by Pierce and Jacoby (KPNO) of the photographic plates obtained by Zwicky and Baade of SN 1937C indicate that this supernova was also an unusually slow-declining event, and so this supernova was probably also more luminous than average.
Recommended publications
  • An Atlas of Far-Ultraviolet Spectra of the Zeta Aurigae Binary 31 Cygni with Line Identifications
    The Astrophysical Journal Supplement Series, 211:27 (14pp), 2014 April doi:10.1088/0067-0049/211/2/27 C 2014. The American Astronomical Society. All rights reserved. Printed in the U.S.A. AN ATLAS OF FAR-ULTRAVIOLET SPECTRA OF THE ZETA AURIGAE BINARY 31 CYGNI WITH LINE IDENTIFICATIONS Wendy Hagen Bauer1 and Philip D. Bennett2,3 1 Whitin Observatory, Wellesley College, 106 Central Street, Wellesley, MA 02481, USA; [email protected] 2 Department of Astronomy & Physics, Saint Mary’s University, Halifax, NS B3H 3C3, Canada 3 Eureka Scientific, Inc., 2452 Delmer Street, Suite 100, Oakland, CA 94602-3017, USA Received 2013 March 29; accepted 2013 October 26; published 2014 April 2 ABSTRACT The ζ Aurigae system 31 Cygni (K4 Ib + B4 V) was observed by the FUSE satellite during total eclipse and at three phases during chromospheric eclipse. We present the coadded, calibrated spectra and atlases with line identifications. During total eclipse, emission from high ionization states (e.g., Fe iii and Cr iii) shows asymmetric profiles redshifted from the systemic velocity, while emission from lower ionization states (e.g., Fe ii and O i) appears more symmetric and is centered closer to the systemic velocity. Absorption from neutral and singly ionized elements is detected during chromospheric eclipse. Late in chromospheric eclipse, absorption from the K star wind is detected at a terminal velocity of ∼80 km s−1. These atlases will be useful for interpreting the far-UV spectra of other ζ Aur systems, as the observed FUSE spectra of 32 Cyg, KQ Pup, and VV Cep during chromospheric eclipse resemble that of 31 Cyg.
    [Show full text]
  • A Hot Subdwarf-White Dwarf Super-Chandrasekhar Candidate
    A hot subdwarf–white dwarf super-Chandrasekhar candidate supernova Ia progenitor Ingrid Pelisoli1,2*, P. Neunteufel3, S. Geier1, T. Kupfer4,5, U. Heber6, A. Irrgang6, D. Schneider6, A. Bastian1, J. van Roestel7, V. Schaffenroth1, and B. N. Barlow8 1Institut fur¨ Physik und Astronomie, Universitat¨ Potsdam, Haus 28, Karl-Liebknecht-Str. 24/25, D-14476 Potsdam-Golm, Germany 2Department of Physics, University of Warwick, Coventry, CV4 7AL, UK 3Max Planck Institut fur¨ Astrophysik, Karl-Schwarzschild-Straße 1, 85748 Garching bei Munchen¨ 4Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA 5Texas Tech University, Department of Physics & Astronomy, Box 41051, 79409, Lubbock, TX, USA 6Dr. Karl Remeis-Observatory & ECAP, Astronomical Institute, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Sternwartstr. 7, 96049 Bamberg, Germany 7Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA 91125, USA 8Department of Physics and Astronomy, High Point University, High Point, NC 27268, USA *[email protected] ABSTRACT Supernova Ia are bright explosive events that can be used to estimate cosmological distances, allowing us to study the expansion of the Universe. They are understood to result from a thermonuclear detonation in a white dwarf that formed from the exhausted core of a star more massive than the Sun. However, the possible progenitor channels leading to an explosion are a long-standing debate, limiting the precision and accuracy of supernova Ia as distance indicators. Here we present HD 265435, a binary system with an orbital period of less than a hundred minutes, consisting of a white dwarf and a hot subdwarf — a stripped core-helium burning star.
    [Show full text]
  • Správa O Činnosti Organizácie SAV Za Rok 2017
    Astronomický ústav SAV Správa o činnosti organizácie SAV za rok 2017 Tatranská Lomnica január 2018 Obsah osnovy Správy o činnosti organizácie SAV za rok 2017 1. Základné údaje o organizácii 2. Vedecká činnosť 3. Doktorandské štúdium, iná pedagogická činnosť a budovanie ľudských zdrojov pre vedu a techniku 4. Medzinárodná vedecká spolupráca 5. Vedná politika 6. Spolupráca s VŠ a inými subjektmi v oblasti vedy a techniky 7. Spolupráca s aplikačnou a hospodárskou sférou 8. Aktivity pre Národnú radu SR, vládu SR, ústredné orgány štátnej správy SR a iné organizácie 9. Vedecko-organizačné a popularizačné aktivity 10. Činnosť knižnično-informačného pracoviska 11. Aktivity v orgánoch SAV 12. Hospodárenie organizácie 13. Nadácie a fondy pri organizácii SAV 14. Iné významné činnosti organizácie SAV 15. Vyznamenania, ocenenia a ceny udelené organizácii a pracovníkom organizácie SAV 16. Poskytovanie informácií v súlade so zákonom o slobodnom prístupe k informáciám 17. Problémy a podnety pre činnosť SAV PRÍLOHY A Zoznam zamestnancov a doktorandov organizácie k 31.12.2017 B Projekty riešené v organizácii C Publikačná činnosť organizácie D Údaje o pedagogickej činnosti organizácie E Medzinárodná mobilita organizácie F Vedecko-popularizačná činnosť pracovníkov organizácie SAV Správa o činnosti organizácie SAV 1. Základné údaje o organizácii 1.1. Kontaktné údaje Názov: Astronomický ústav SAV Riaditeľ: Mgr. Martin Vaňko, PhD. Zástupca riaditeľa: Mgr. Peter Gömöry, PhD. Vedecký tajomník: Mgr. Marián Jakubík, PhD. Predseda vedeckej rady: RNDr. Luboš Neslušan, CSc. Člen snemu SAV: Mgr. Marián Jakubík, PhD. Adresa: Astronomický ústav SAV, 059 60 Tatranská Lomnica http://www.ta3.sk Tel.: 052/7879111 Fax: 052/4467656 E-mail: [email protected] Názvy a adresy detašovaných pracovísk: Astronomický ústav - Oddelenie medziplanetárnej hmoty Dúbravská cesta 9, 845 04 Bratislava Vedúci detašovaných pracovísk: Astronomický ústav - Oddelenie medziplanetárnej hmoty prof.
    [Show full text]
  • The Metallicity-Luminosity Relationship of Dwarf Irregular Galaxies
    A&A 399, 63–76 (2003) Astronomy DOI: 10.1051/0004-6361:20021748 & c ESO 2003 Astrophysics The metallicity-luminosity relationship of dwarf irregular galaxies II. A new approach A. M. Hidalgo-G´amez1,,F.J.S´anchez-Salcedo2, and K. Olofsson1 1 Astronomiska observatoriet, Box 515, 751 20 Uppsala, Sweden e-mail: [email protected], [email protected] 2 Instituto de Astronom´ıa-UNAM, Ciudad Universitaria, Apt. Postal 70 264, C.P. 04510, Mexico City, Mexico e-mail: [email protected] Received 21 June 2001 / Accepted 21 November 2002 Abstract. The nature of a possible correlation between metallicity and luminosity for dwarf irregular galaxies, including those with the highest luminosities, has been explored using simple chemical evolutionary models. Our models depend on a set of free parameters in order to include infall and outflows of gas and covering a broad variety of physical situations. Given a fixed set of parameters, a non-linear correlation between the oxygen abundance and the luminosity may be established. This would be the case if an effective self–regulating mechanism between the accretion of mass and the wind energized by the star formation could lead to the same parameters for all the dwarf irregular galaxies. In the case that these parameters were distributed in a random manner from galaxy to galaxy, a significant scatter in the metallicity–luminosity diagram is expected. Comparing with observations, we show that only variations of the stellar mass–to–light ratio are sufficient to explain the observed scattering and, therefore, the action of a mechanism of self–regulation cannot be ruled out.
    [Show full text]
  • 18.465, Revised Again December 6, 2012 Truncation, the Lynden-Bell Estimator, and Galaxy Data
    18.465, Revised again December 6, 2012 Truncation, the Lynden-Bell estimator, and galaxy data 1. Definitions Suppose there are i.i.d. pairs (Xk,Yk) of variables for k = 1, ..., N where N is unknown to the observer. Within each pair, Xk and Yk are independent positive real variables with distributions F and G respec- tively. In the “truncation” or “left truncation” model, the specific restric- tion is that the pair of values (Xk,Yk) is observed if and only if Yk Xk. Moreover, the index k is not observed. One wants to estimate F≤. Suppose then that we observe (xj, yj), j = 1, ..., n, so that we observe a value of n and know about N at first that N n. Recall the survival function corresponding to F , S(x) 1 F (x),≥ ≡ − 2. The Lynden-Bell estimator Let ξi for i = 1, ..., m be the distinct values of xj. What is called the Lynden-Bell estimator of S(x) is ri (1) Sn(x)= 1 µ − nCn(ξi)¶ ξYi≤x b where ri is the number of j n such that xj = ξi and ≤ n 1 C (s)= 1 . n n {yj <s≤xj } Xj=1 These formulas are as given by Woodroofe (1985, (8)) and Chen et al. (1995, (1)), originating with Lynden-Bell (1971). 3. Absolute and apparent magnitudes for astronomical objects Magnitudes were first assigned in ancient times to stars, with the brightest being assigned first magnitude, a next-brightest category sec- ond magnitude, and so on to the faintest stars visible to the naked eye under good conditions, 6th magnitude.
    [Show full text]
  • Jet-Induced Star Formation in 3C 285 and Minkowski's Object⋆
    A&A 574, A34 (2015) Astronomy DOI: 10.1051/0004-6361/201424932 & c ESO 2015 Astrophysics Jet-induced star formation in 3C 285 and Minkowski’s Object? Q. Salomé, P. Salomé, and F. Combes LERMA, Observatoire de Paris, CNRS UMR 8112, 61 avenue de l’Observatoire, 75014 Paris, France e-mail: [email protected] Received 5 September 2014 / Accepted 6 November 2014 ABSTRACT How efficiently star formation proceeds in galaxies is still an open question. Recent studies suggest that active galactic nucleus (AGN) can regulate the gas accretion and thus slow down star formation (negative feedback). However, evidence of AGN positive feedback has also been observed in a few radio galaxies (e.g. Centaurus A, Minkowski’s Object, 3C 285, and the higher redshift 4C 41.17). Here we present CO observations of 3C 285 and Minkowski’s Object, which are examples of jet-induced star formation. A spot (named 3C 285/09.6 in the present paper) aligned with the 3C 285 radio jet at a projected distance of ∼70 kpc from the galaxy centre shows star formation that is detected in optical emission. Minkowski’s Object is located along the jet of NGC 541 and also shows star formation. Knowing the distribution of molecular gas along the jets is a way to study the physical processes at play in the AGN interaction with the intergalactic medium. We observed CO lines in 3C 285, NGC 541, 3C 285/09.6, and Minkowski’s Object with the IRAM 30 m telescope. In the central galaxies, the spectra present a double-horn profile, typical of a rotation pattern, from which we are able to estimate the molecular gas density profile of the galaxy.
    [Show full text]
  • Abstracts Connecting to the Boston University Network
    20th Cambridge Workshop: Cool Stars, Stellar Systems, and the Sun July 29 - Aug 3, 2018 Boston / Cambridge, USA Abstracts Connecting to the Boston University Network 1. Select network ”BU Guest (unencrypted)” 2. Once connected, open a web browser and try to navigate to a website. You should be redirected to https://safeconnect.bu.edu:9443 for registration. If the page does not automatically redirect, go to bu.edu to be brought to the login page. 3. Enter the login information: Guest Username: CoolStars20 Password: CoolStars20 Click to accept the conditions then log in. ii Foreword Our story starts on January 31, 1980 when a small group of about 50 astronomers came to- gether, organized by Andrea Dupree, to discuss the results from the new high-energy satel- lites IUE and Einstein. Called “Cool Stars, Stellar Systems, and the Sun,” the meeting empha- sized the solar stellar connection and focused discussion on “several topics … in which the similarity is manifest: the structures of chromospheres and coronae, stellar activity, and the phenomena of mass loss,” according to the preface of the resulting, “Special Report of the Smithsonian Astrophysical Observatory.” We could easily have chosen the same topics for this meeting. Over the summer of 1980, the group met again in Bonas, France and then back in Cambridge in 1981. Nearly 40 years on, I am comfortable saying these workshops have evolved to be the premier conference series for cool star research. Cool Stars has been held largely biennially, alternating between North America and Europe. Over that time, the field of stellar astro- physics has been upended several times, first by results from Hubble, then ROSAT, then Keck and other large aperture ground-based adaptive optics telescopes.
    [Show full text]
  • Neutral Hydrogen in Dwarf Galaxies
    A&A 389, 29–41 (2002) Astronomy DOI: 10.1051/0004-6361:20020352 & c ESO 2002 Astrophysics Neutral hydrogen in dwarf galaxies I. The spatial distribution of HI J. M. Stil1,2 andF.P.Israel1 1 Sterrewacht Leiden, PO Box 9513, 2300 RA Leiden, The Netherlands 2 Physics Department, Queen’s University, Kingston ON K7L 4P1, Canada Received 13 December 2001 / Accepted 1 March 2002 Abstract. This paper is the first in a series presenting a sample of 30 late-type dwarf galaxies, observed with the Westerbork Synthesis Radio Telescope (WSRT) in the 21-cm line of neutral atomic hydrogen (HI). The sample itself, the HI content of and the HI distribution in the sample galaxies are briefly discussed. Four sample galaxies were also detected in the continuum. Key words. galaxies: irregular – galaxies: dwarf 1. Introduction those galaxies that are in the northern hemisphere, i.e. have declinations above 14◦ (soastobeobservablewith Galaxies come in a wide variety of shapes and sizes. The the WSRT). There is no single unambiguous definition larger galaxies are usually accompanied by a number of of a dwarf galaxy. Often, a galaxy is considered to be a smaller (dwarf) galaxies, although dwarf galaxies also oc- dwarf if its absolute luminosity corresponds to the light of cur by themselves. Late-type dwarf galaxies are generally no more than half a billion suns (M > −16), about one rich in neutral atomic hydrogen (HI) gas, usually more B per cent of the luminosity of a spiral galaxy such as the so than much larger late type spiral galaxies. Their opti- Milky Way or M 31.
    [Show full text]
  • 121012-AAS-221 Program-14-ALL, Page 253 @ Preflight
    221ST MEETING OF THE AMERICAN ASTRONOMICAL SOCIETY 6-10 January 2013 LONG BEACH, CALIFORNIA Scientific sessions will be held at the: Long Beach Convention Center 300 E. Ocean Blvd. COUNCIL.......................... 2 Long Beach, CA 90802 AAS Paper Sorters EXHIBITORS..................... 4 Aubra Anthony ATTENDEE Alan Boss SERVICES.......................... 9 Blaise Canzian Joanna Corby SCHEDULE.....................12 Rupert Croft Shantanu Desai SATURDAY.....................28 Rick Fienberg Bernhard Fleck SUNDAY..........................30 Erika Grundstrom Nimish P. Hathi MONDAY........................37 Ann Hornschemeier Suzanne H. Jacoby TUESDAY........................98 Bethany Johns Sebastien Lepine WEDNESDAY.............. 158 Katharina Lodders Kevin Marvel THURSDAY.................. 213 Karen Masters Bryan Miller AUTHOR INDEX ........ 245 Nancy Morrison Judit Ries Michael Rutkowski Allyn Smith Joe Tenn Session Numbering Key 100’s Monday 200’s Tuesday 300’s Wednesday 400’s Thursday Sessions are numbered in the Program Book by day and time. Changes after 27 November 2012 are included only in the online program materials. 1 AAS Officers & Councilors Officers Councilors President (2012-2014) (2009-2012) David J. Helfand Quest Univ. Canada Edward F. Guinan Villanova Univ. [email protected] [email protected] PAST President (2012-2013) Patricia Knezek NOAO/WIYN Observatory Debra Elmegreen Vassar College [email protected] [email protected] Robert Mathieu Univ. of Wisconsin Vice President (2009-2015) [email protected] Paula Szkody University of Washington [email protected] (2011-2014) Bruce Balick Univ. of Washington Vice-President (2010-2013) [email protected] Nicholas B. Suntzeff Texas A&M Univ. suntzeff@aas.org Eileen D. Friel Boston Univ. [email protected] Vice President (2011-2014) Edward B. Churchwell Univ. of Wisconsin Angela Speck Univ. of Missouri [email protected] [email protected] Treasurer (2011-2014) (2012-2015) Hervey (Peter) Stockman STScI Nancy S.
    [Show full text]
  • Runaways and Shells Around the Cma OB1 Association B
    Astronomy & Astrophysics manuscript no. cmashellpart1_rev c ESO 2019 June 4, 2019 Runaways and shells around the CMa OB1 association B. Fernandes1; 2, T. Montmerle1, T. Santos-Silva1; 2, and J. Gregorio-Hetem2 1 Institut d’Astrophysique de Paris, 75014, Paris, France 2 Universidade de São Paulo, IAG, Departamento de Astronomia, São Paulo, 05508-090, Brazil e-mail: [email protected] ABSTRACT Context. The origin of the arc-shaped Sh 2-296 nebula is still unclear. Mainly due to its morphology, the nebula has been suggested to be a 0.5 Myr-old supernova remnant (SNR) that could be inducing star formation in the CMa OB1 association. Therefore, this region can be an excellent laboratory for the investigation of the influence of massive stars on their surroundings. Aims. We aim to show, for the first time, that the nebula is part of a large, shell-like structure, which we have designated the “CMa shell”, enclosing a bubble created by successive supernova (SN) explosions. We identified three runaway stars, associated with bow- shock structures, in the direction of the CMa shell and we investigate the possibility that they have originated in the center of the shell. Methods. By analyzing images of the CMa OB1 association at several wavelengths, we clearly see that the Sh 2-296 nebula is in fact part of a large structure, which can be approximated by a large (with a diameter of ∼ 60 pc) elliptical shell. Using the recent Gaia-DR2 astrometric data, we trace back the path of the three runaway stars, in order to find their original position in the past, with relation to the CMa shell.
    [Show full text]
  • Statistics and Properties of Emission-Line Regions in the Local
    Mon. Not. R. Astron. Soc. 000, 000–000 (0000) Printed 27 April 2020 (MN LATEX style file v2.2) Statistics and Properties of Emission-Line Regions in the Local Volume Dwarf Galaxies I. D. Karachentsev1⋆, S.S.Kaisin1† 1Special Astrophysical Observatory of the Russian Academy of Sciences, Nizhnij Arkhyz, KChR, 369167, Russia 27 April 2020 ABSTRACT We used the Hα images from a large sample of nearby late-type dwarf galaxies to investigate properties of their emission structure. The sample consists of three hundred galaxies of the irregular (Irr), Magellanic irregular (Im), blue compact dwarf (BCD), and transition (Tr) types situated within a distance of 11 Mpc. In each galaxy, we indicated: the number of compact HII-regions, the presence of bubble-like or filament-like structures, the presence of a faint diffuse emission, and a sign of the global burst. The larger luminosity of a galaxy, the greater number of compact HII-sources in it. The integral and specific star-formation rates of the dwarf increase steeply with the increase of the number of HII-regions showing the evidence of the epidemic character of star-formation process. The dwarf galaxies with emission-line bubbles, or filaments, or signs of the global star-formation burst have approximately the same hydrogen-mass-to-luminosity ratio as that of the whole sample objects. arXiv:2004.11550v1 [astro-ph.GA] 24 Apr 2020 However, their mean star-formation rate is significantly higher than that of other galaxies in the sample. Emission bubble-like structures are found in the nearby dwarfs with a frequency of 1 case per 4-5 galaxies.
    [Show full text]
  • Resolving the Dusty Circumstellar Environment of the a [E] Supergiant HD 62623 with the VLTI/MIDI
    Astronomy & Astrophysics manuscript no. HD62623˙v17 c ESO 2018 November 4, 2018 Resolving the dusty circumstellar environment of the A[e] supergiant HD 62623 with the VLTI/MIDI⋆ A. Meilland1, S. Kanaan2, M. Borges Fernandes2, O. Chesneau2, F. Millour1, Ph. Stee2, and B. Lopez2 1 Max Planck Intitut f¨ur Radioastronomie, Auf dem Hugel 69, 53121 Bonn, Germany 2 UMR 6525 CNRS H. FIZEAU UNS, OCA, Campus Valrose, F-06108 Nice cedex 2, France, CNRS - Avenue Copernic, Grasse, France. Received; accepted ABSTRACT Context. B[e] stars are hot stars surrounded by circumstellar gas and dust responsible for the presence of emission lines and IR-excess in their spectra. How dust can be formed in this highly illuminated and diluted environment remains an open issue. Aims. HD 62623 is one of the very few A-type supergiants showing the B[e] phenomenon. We studied the geometry of its circum- stellar envelope in the mid-infrared using long-baseline interferometry, which is the only observing technique able to spatially resolve objects smaller than a few tens of milliarcseconds. Methods. We obtained nine calibrated visibility measurements between October 2006 and January 2008 using the VLTI/MIDI instru- ment in SCI-PHOT mode and PRISM spectral dispersion mode with projected baselines ranging from 13 to 71 m and with various position angles (PA). We used geometrical models and physical modeling with a radiative transfer code to analyze these data. Results. The dusty circumstellar environment of HD 62623 is partially resolved by the VLTI/MIDI even with the shortest baselines. The environment is flattened (a/b 1.3 0.1) and can be separated into two components: a compact one whose extension grows from 17 mas at 8µm to 30 mas at 9.6µm∼ and± stays almost constant up to 13µm, and a more extended one that is over-resolved even with the shortest baselines.
    [Show full text]