Chevelon Canyon Watershed – Arizona Rapid Watershed Assessment April 2007

Total Page:16

File Type:pdf, Size:1020Kb

Chevelon Canyon Watershed – Arizona Rapid Watershed Assessment April 2007 NEMO Watershed Based Plan Little Colorado Watershed Item Type text; Report Authors Parra, Ivan; Reed, Mickey; vanderLeeuw, Elisabeth; Guertin, D. Phillip; Levick, Lainie R.; Uhlman, Kristine Download date 29/09/2021 18:05:50 Link to Item http://hdl.handle.net/10150/187320 Chevelon Canyon Watershed – Arizona Rapid Watershed Assessment April 2007 Prepared by: USDA Natural Resource Conservation Service – Arizona University of Arizona, Water Resources Research Center In cooperation with: Arizona Association of Conservation Districts Arizona Department of Agriculture Arizona Department of Environmental Quality Arizona Department of Water Resources Arizona Game & Fish Department Arizona State Land Department USDA Forest Service USDI Bureau of Land Management Released by: Sharon Megdal David McKay Director State Conservationist University of Arizona U.S. Department of Agriculture Water Resources Research Center Natural Resources Conservation Service Principle Investigators: Dino DeSimone – Natural Resources Conservation Service, Phoenix, Arizona Keith Larson – Natural Resources Conservation Service, Phoenix, Arizona Kristine Uhlman – Water Resources Research Center, University of Arizona D. Phil Guertin – School of Natural Resources, University of Arizona Deborah Young – Associate Director, Cooperative Extension, University of Arizona The United States Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, gender, religion, age, disability, political beliefs, sexual orientation, and marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at 202-720-2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326W, Whitten Building, 14th and Independence Avenue, SW, Washington, D.C., 20250-9410 or call (202) 720-5964 (voice or TDD). USDA is an equal employment opportunity provider and employer. Chevelon Canyon Watershed – An RWA can be used as a 15020010 communication tool between the Natural 8-Digit Hydrologic Unit Resources Conservation Service Rapid Watershed Assessment (NRCS) and partners for describing and prioritizing conservation work in selected watersheds. RWAs provide initial Section 1: Introduction estimates of conservation investments needed to address the identified Overview of Rapid Watershed resource concerns in the watershed. Assessments RWAs serve as a platform for conservation program delivery, provide A Rapid Watershed Assessment (RWA) useful information for development of is a concise report containing NRCS and Conservation District information on natural resource business plans, and lay a foundation for conditions and concerns within a future cooperative watershed planning. designated watershed. The "rapid" part refers to a relatively short time period to General Description of the Chevelon develop the report as compared to a Canyon Watershed more comprehensive watershed planning effort. The “assessment” part The Chevelon Canyon watershed is an refers to a report containing maps, eight-digit HUC subbasin located in the tables and other information sufficient to east-central portion of the state of give an overview of the watershed and Arizona, southeast of the town of for use as a building block for future Winslow and southwest of Holbrook planning. RWAs look at physical and (Figure 1-1). The basin comprises socioeconomic characteristics and 529,935 acres (828 square miles) and is trends, as well as current and future located in Navajo and Coconino conservation work. Counties. Sixty-four percent of the land is managed by the Forest Service, 28% The assessments involve the collection is private land, and 7% is state land. of readily available quantitative and The remaining 2% of the land is qualitative information to develop a managed by Bureau of Land watershed profile, and sufficient analysis Management (BLM) or Arizona Game & of that information to generate an Fish. appraisal of the conservation needs of the watershed. These assessments are Major towns in the watershed include conducted by conservation planners, Heber and Overgaard. The NRCS Field using Geographic Information System Offices for the area are located in (GIS) technology, assessing current Holbrook and Flagstaff. levels of resource management, identifying priority resource concerns, Conservation assistance is provided and making estimates of future through the Coconino and Navajo conservation work. Conservation County Natural Resource Conservation Districts and other local leaders, along Districts. with public land management agencies, are involved in the assessment process. Chevelon Canyon Watershed Rapid Watershed Assessment Section 1 - Introduction page 1- 1 The area ranges in elevation from 5,400 to 7,200 feet. Rainfall amounts in this area range from 10 to 20 inches per year. The area in lower elevations is made up of undulating plains and low hills, with an occasionally deeply incised, steep sided drainage way. Some buttes and mesas rise abruptly above the level of the plains. At higher elevation the landscape is generally made up of level plains with hills and low mountains. This area supports a mixture of forest and grassland plant communities. The majority of this watershed is used for cattle and sheep grazing. Rangeland and grazable forestland comprise over 90 percent of the area, while about 3 percent is used for cropland. The crops produced are corn, alfalfa, small grains and vegetable crops which are usually grown for local consumption. Scattered acreage of dry cropland occurs at the higher elevations. Resource concerns in the watershed include soil erosion, rangeland site stability, rangeland hydrologic cycle, excessive runoff (causing flooding or ponding), water quality concerns for ground water (pesticides, nutrients and organics) and surface water (pesticides, nutrients, organics, suspended sediment and turbidity), plant condition – productivity, health and vigor, noxious and invasive plants, wildfire hazard, fish and domestic animals – inadequate quantities and quality of feed, forage, and stock water. Chevelon Canyon Watershed Rapid Watershed Assessment Section 1 - Introduction page 1- 2 Section 2: Physical Description mostly level, horizontally stratified sedimentary rocks that have been Watershed Size eroded into canyons and plateaus, and by some high volcanic mountains. The Chevelon Canyon Watershed covers approximately 828 square miles, The edge of the Mogollon Rim exposes representing less than 1% of the state of a sequence, nearly 3,000 feet thick, of Arizona. The watershed has a Paleozoic sedimentary rocks (Parker maximum width of about 27 miles east- and Flynn, 2000). The overall vertical west, and a length of about 44 miles displacement of the Rim varies, but in north-south. some multiple fault zones near the Verde River it is estimated at The Chevelon Canyon Watershed was approximately 6,000 feet (Feth, et al. delineated by the U.S. Geological 1954). Continued subsidence along Survey and has been subdivided by the several fault zones eventually formed NRCS into smaller watersheds or the Chevelon Canyon Watershed, with drainage areas. Each drainage area the headwaters of Chevelon Canyon has a unique hydrologic unit code entrenched within one of the numerous (HUC) number and a name based on northwest – southeast trending vertical the primary surface water feature within faults forming the Rim escarpment. the HUC. These drainage areas can be further subdivided into even smaller Compared with the rest of Arizona watersheds as needed. The Chevelon geology, the Plateau Uplands seems Canyon Watershed has an 8-digit HUC easy to understand, the rocks are flat- of 15020010 and contains the following lying sedimentary strata set in 10-digit HUCs: sequences of oldest (bottom) to youngest (top). The Chevelon Canyon • 1502001001 (Upper Chevelon (formed by both vertical faulting and Canyon); creek down cutting) exposes the layered Paleozoic (245 million years old and • 1502001002 (Black Canyon); older) sedimentary rocks (rocks formed and, by sediment, e.g., rock fragments or particles of various sizes), which • 1502001003 (Lower Chevelon include: sandstone, shale, and Canyon) (Figure 1-2). limestone. These rocks are visible as orange to reddish ledgy outcrops cliffs Geology across the watershed. The Chevelon Canyon Watershed is on Shaly siltstones, mudstone, the down-dropped edge of the Mogollon conglomerates, and the Kaibab Rim escarpment, the southern boundary limestone overlay the Permian age of the Colorado Plateau Uplands Coconino Sandstone, and the older red physiographic province in the siltstone and fine sandstone rocks of the northeastern corner of the state. This Supai Formation are exposed in the province covers the northern 2/5 of the deep canyon. Ancient marine and state of Arizona and is characterized by coastal deposits include a wide range of Chevelon Canyon Watershed Rapid Watershed Assessment Section 2 – Physical Description page 2-1 rock types – limestone, claystone, are similar (NRCS 2006). It is mudstone, sandstone, and considered a subdivision of an existing conglomerate. Major Land Resource Area (MLRA). Landscape conditions, soil, climate, The 240 million year-old Moenkopi human considerations, and other natural formation can be traced from New resource information are used to Mexico,
Recommended publications
  • Arizona Fishing Regulations 3 Fishing License Fees Getting Started
    2019 & 2020 Fishing Regulations for your boat for your boat See how much you could savegeico.com on boat | 1-800-865-4846insurance. | Local Offi ce geico.com | 1-800-865-4846 | Local Offi ce See how much you could save on boat insurance. Some discounts, coverages, payment plans and features are not available in all states or all GEICO companies. Boat and PWC coverages are underwritten by GEICO Marine Insurance Company. GEICO is a registered service mark of Government Employees Insurance Company, Washington, D.C. 20076; a Berkshire Hathaway Inc. subsidiary. TowBoatU.S. is the preferred towing service provider for GEICO Marine Insurance. The GEICO Gecko Image © 1999-2017. © 2017 GEICO AdPages2019.indd 2 12/4/2018 1:14:48 PM AdPages2019.indd 3 12/4/2018 1:17:19 PM Table of Contents Getting Started License Information and Fees ..........................................3 Douglas A. Ducey Governor Regulation Changes ...........................................................4 ARIZONA GAME AND FISH COMMISSION How to Use This Booklet ...................................................5 JAMES S. ZIELER, CHAIR — St. Johns ERIC S. SPARKS — Tucson General Statewide Fishing Regulations KURT R. DAVIS — Phoenix LELAND S. “BILL” BRAKE — Elgin Bag and Possession Limits ................................................6 JAMES R. AMMONS — Yuma Statewide Fishing Regulations ..........................................7 ARIZONA GAME AND FISH DEPARTMENT Common Violations ...........................................................8 5000 W. Carefree Highway Live Baitfish
    [Show full text]
  • Journal of Arizona History Index, M
    Index to the Journal of Arizona History, M Arizona Historical Society, [email protected] 480-387-5355 NOTE: the index includes two citation formats. The format for Volumes 1-5 is: volume (issue): page number(s) The format for Volumes 6 -54 is: volume: page number(s) M McAdams, Cliff, book by, reviewed 26:242 McAdoo, Ellen W. 43:225 McAdoo, W. C. 18:194 McAdoo, William 36:52; 39:225; 43:225 McAhren, Ben 19:353 McAlister, M. J. 26:430 McAllester, David E., book coedited by, reviewed 20:144-46 McAllester, David P., book coedited by, reviewed 45:120 McAllister, James P. 49:4-6 McAllister, R. Burnell 43:51 McAllister, R. S. 43:47 McAllister, S. W. 8:171 n. 2 McAlpine, Tom 10:190 McAndrew, John “Boots”, photo of 36:288 McAnich, Fred, book reviewed by 49:74-75 books reviewed by 43:95-97 1 Index to the Journal of Arizona History, M Arizona Historical Society, [email protected] 480-387-5355 McArtan, Neill, develops Pastime Park 31:20-22 death of 31:36-37 photo of 31:21 McArthur, Arthur 10:20 McArthur, Charles H. 21:171-72, 178; 33:277 photos 21:177, 180 McArthur, Douglas 38:278 McArthur, Lorraine (daughter), photo of 34:428 McArthur, Lorraine (mother), photo of 34:428 McArthur, Louise, photo of 34:428 McArthur, Perry 43:349 McArthur, Warren, photo of 34:428 McArthur, Warren, Jr. 33:276 article by and about 21:171-88 photos 21:174-75, 177, 180, 187 McAuley, (Mother Superior) Mary Catherine 39:264, 265, 285 McAuley, Skeet, book by, reviewed 31:438 McAuliffe, Helen W.
    [Show full text]
  • Planning and Zoning
    TABLE OF CONTENTS 1.0 Summary............................................................................................................................... 1 1.1 Overview ...................................................................................................................... 1 1.2 Definitions Used in This Plan ....................................................................................... 1 1.3 How to Use the Plan .................................................................................................... 2 1.4 Land Use ...................................................................................................................... 2 1.5 Circulation .................................................................................................................... 3 1.6 Applicability .................................................................................................................. 3 1.7 Previous Comprehensive Plans ................................................................................... 3 1.8 Amendments to the Comprehensive Plan ................................................................... 3 2.0 Introduction ........................................................................................................................... 5 2.1 Role and Purpose of the Comprehensive Plan ............................................................ 5 2.2 Land Use Element........................................................................................................ 5 2.3
    [Show full text]
  • Historical Stand-Replacing Fire in Upper Montane Forests of the Madrean Sky Islands and Mogollon Plateau, Southwestern USA
    Fire Ecology Volume 7, Issue 3, 2011 Margolis et al.: Historical Stand-Replacing Fire doi: 10.4996/fireecology.0703088 Page 88 RESEARCH ARTICLE HISTORICAL STAND-REPLACING FIRE IN UPPER MONTANE FORESTS OF THE MADREAN SKY ISLANDS AND MOGOLLON PLATEAU, SOUTHWESTERN USA Ellis Q. Margolis1*, Thomas W. Swetnam1, and Craig D. Allen2 1University of Arizona Laboratory of Tree-Ring Research, 105 W. Stadium, Tucson, Arizona 85721, USA 2US Geological Survey Jemez Mountains Field Station, HCR 1, Box 1, Number 15, Los Alamos, New Mexico 87544, USA *Corresponding author: Tel.: 001-520-626-2733; e-mail: [email protected] ABSTRACT The recent occurrence of large fires with a substantial stand-replacing component in the southwestern United States (e.g., Cerro Grande, 2000; Rodeo-Chedeski, 2002; Aspen, 2003; Horseshoe 2, Las Conchas, and Wallow, 2011) has raised questions about the his- torical role of stand-replacing fire in the region. We reconstructed fire dates and stand-re- placing fire patch sizes using four lines of tree-ring evidence at four upper montane forest sites (>2600 m) in the Madrean Sky Islands and Mogollon Plateau of Arizona and New Mexico, USA. The four lines of tree-ring evidence include: (1) quaking aspen (Populus tremuloides) and spruce-fir age structure, (2) conifer death dates, (3) traumatic resin ducts and ring-width changes, and (4) conifer fire scars. Pre-1905 fire regimes in the upper montane forest sites were variable, with drier, south-facing portions of some sites record- ing frequent, low-severity fire (mean fire interval of all fires ranging from 5 yr to 11 yr among sites), others burning with stand-replacing severity, and others with no evidence of fire for >300 yr.
    [Show full text]
  • Arizona Drought Preparedness Plan
    Arizona Drought Preparedness Plan OOPPEERRAATTIIOONNAALL DDRROOUUGGHHTT PPLLAANN Governor’s Drought Task Force Governor Janet Napolitano October 8, 2004 GOVERNOR’S DROUGHT TASK FORCE ARIZONA DROUGHT PREPAREDNESS PLAN Operational Drought Plan - 10-08-2004 GOVERNOR’S DROUGHT TASK FORCE ACKNOWLEDGEMENTS The Governor’s Drought Task Force would like to thank Herb Guenther, Director of the Arizona Department of Water Resources and his staff for their support and assistance in the development of this Plan. Additionally, the Task Force would like to recognize the following individuals and organizations for their assistance and contributions: Mike Austin, Arizona Department of Water Resources Staff to the Task Force Sandy Whitney, Arizona Water Banking Authority (Coordinator) Carol Young, Arizona Department of Water Resources (Administrative Assistant) Workgroup/Committee Co-Chairs Commerce, Recreation & Tourism Jim Holt, Arizona Department of Water Resources Conservation Committee Marjie Risk, Arizona Department of Water Resources (Coordinator) Environmental Health, Watershed Management, Livestock & Wildlife Steve Barker, Natural Resources Conservation Service (Co-Chair) George Ruyle, University of Arizona (Co-Chair) Sandy Whitney (Co-Chair) Irrigated Agriculture Mike Hanrahan, Arizona Department of Water Resources (Co-Chair) Sheldon Jones, Agri-Business Council (Co-Chair) Monitoring Committee Gregg Garfin, University of Arizona – CLIMAS (Co-Chair) Tony Haffer, National Weather Service – Phoenix (Co-Chair) Municipal & Industrial Workgroup Tom
    [Show full text]
  • The Avifauna of Apache County, Arizona
    THE AVIFAUNA OF APACHE COUNTY, ARIZONA GARY H. ROSENBERG. Museum of Natural Science, Louisiana State University. Baton Rouge, Louisiana 70803 SCOTT B. TERRILL, Departmentof BiologicalSciences, State Universityof New York at Albany, 1400 WashingtonAve., Albany, New York 12222 In general, the distributionand the seasonalstatus of the avifauna of Arizonaare fairly well understood.The Birdsof Arizona (Phillipset al. 1964) encompassesthe entirestate and is fairlycomplete for all seasons.Large sec- tions of the state, however, have received relatively little ornithological coverage. The entire region of Apache County in northeasternArizona is one such area. Even though this area is quite interestingornithologically, before 1976 it receivedlittle coveragerelative to the many popularbirding "hot spots"in other sectionsof the state. It is possibleto assemblea list of those speciesthat breed in Apache County usingPhillips et al. (1964), its revisionby Monson and Phillips(1981), and severaldetailed studies (e.g. Carotherset al. 1973, Franzreb1975). Yet there remain substantialgaps in our knowledgeof migrant, wintering,and some nestingspecies found in Apache County. Since the mid-1970s, primarilyas a resultof the "vagranthunting" boom that swept parts of the West, Apache County has been visitedrepeatedly during all seasons.A significantincrease in knowledge of the statusand distributionof birds in northeasternArizona has resulted. This paper em- phasizesthe diversityand ornithologicaluniqueness of Apache County and summarizes the status of the birds found there. Apache County coversan area of approximately15,000 km2 in the north- eastern corner of Arizona. It extends from the White Mountains in the south to the Utah border in the north. The entire eastern border is shared with New Mexico and the county extendsabout 85 km to its westernborder shared with Navajo County.
    [Show full text]
  • Characteristics of Adult Female Black Bear Daybeds
    CHARACTERISTICSOF ADULTFEMALE BLACK BEAR DAYBEDSIN NORTHERNARIZONA CHERYLM. MOLLOHAN,Arizona Game and Fish Department, 2222 Greenway Road, Phoenix, AZ 85023 Abstract: Ninety-four black bear (Ursus americanus) bedding sites were located between May 1982 and August 1984. Locations were identified by radio- tracking 14 adult females. Sampling from sites of females with and without cubs showed both bedding and feeding activity at 39% of the sites. Multiple daybeds were found at 28% of the sites and all sites were within 0.8 km of water. Bedding sites occurred on canyon walls 81% of the time, the slopes of which averaged 39%. Daybeds were on the uphill side of a tree 74% of the time. Bed trees averaged 73 cm dbh. Chewing and scratching of daybed trees was recorded at 38% of the sites, and scats were found at 69% of the sites. Removal of vegetative cover and large trees in black bear bedding habitat could reduce overall habitat quality. Int. Conf. Bear Res. and Manage. 7:145-149 Black bear activity patterns and habitat use have Basin Conifer Woodland (Brown et al. 1979). Ridg- been documented in the western United States (Am- etops below 2,100 m are predominately pinyon pine strup and Beecham 1976, Lindzey and Meslow 1977, (Pinus edulis) and alligator juniper (Juniperus dep- LeCount et al. 1984, Unsworth 1984, Young 1984, peana); ponderosa pine (Pinus ponderosa) is on the Mollohan 1985). Young (1984) and Unsworth (1984) west-facing slopes of major canyons and mixed con- briefly discussed black bear bedding sites but gave ifer on the east-facing slopes.
    [Show full text]
  • Summary of Earthquake Activity in 1989
    Summary of Earthquake Activity in Arizona for 1989 NORTHERN ARIZONA ~ 2.0. The rest of1989 at theSouthRim was SOUTHERN ARIZONA quiet, except for three earthquakes of M by David S. Brumbaugh, Director 2.9,2.8, and 2.2 inSeptember, one of ML3.& by Terry C. Wallace Arizona Earthquake Information Center in November, and one ofML2.9 in Decem­ Department of Geosciences ber (Table 1). University of Arizona The year 1989 was marked by a sharp Activity onthe MogollonPlateau south­ increase in earthquake activity. This capped east of Flagstaff was initiated by an ML3.4 The University of Arizona operates a a trend during the last half of the decade earthquake at Chavez Mountain on April World Wide Standardized Seismic Network towards larger and more frequent events 18. Events continued through September (WWSSN) station, TUC, in the Catalina (Figure 1). The number of earthquakes of 1989, at times in swarms. Two other earth­ Mountains. The station's instrumentation local magnitude equal to or exceeding 2.0 quakes of ML~ 3.0 occurred onJuly 17 and consists of six seismographs: three short­ (ML~ 2.0) increased nearly200 percent over September 6. The latter shock was part ofa period components and three long-period that in 1988. Nearly all ofthe events were cluster of five events that day near Sunset components. The former are run at high concentrated in three areas in the northern Mountain. magnification (100,000 X) and are extremely part of the State: the Grand Canyon, the Other than the ML4.0 events at the can­ effective for monitoring seismic activity Mogollon Plateau, and the Arizona Strip yon, the largest earthquakes in northern within 500 kilometers of Tucson.
    [Show full text]
  • Central Arizona Highlands Ffolliott
    Central Arizona Highlands Ffolliott Chapter 1 Central Arizona Highlands Peter F. Ffolliott cooperators, this research continues to lead to a compre- hensive understanding of the ecology of the region, and to Introduction formulation of management guidelines that meet the in- creasing needs of people in the region and throughout the The Central Arizona Highlands are a distinct biogeo- Southwestern United States. graphic, climatic, and physiographic province that forms a diverse ecotone between the larger Colorado Plateau to the north and the Sonoran Desert ecoregions to the south (figure 1). The Highlands coincide approximately with the Climate Arizona Transition Zone identified by ecologists, geolo- gists and others. This region is one of the last in the Southwestern United States that was settled by European The Central Arizona Highlands, similar to other areas immigrants. in the state, are characterized by a cyclic climatic regime of With its unique and diverse landscape, the Central winter precipitation, spring drought, summer precipita- Arizona Highlands has been the focus of a wide range of tion, and fall drought. Precipitation usually comes from research efforts designed to learn more about the effects of the northwest in the winter and from the southeast in the natural and human induced disturbances on the function- summer. Winter precipitation, often snow at higher eleva- ing, processes, and components of the region’s ecosys- tions, is associated with frontal storms moving into the tems. Spearheaded by the USDA Forest Service and its region from the Pacific Northwest. Surface thermal heat- ing in the winter is less pronounced than in the summer; upslope air movement is relatively slow; cloudiness is common; and precipitation is usually widespread and relatively low in intensity.
    [Show full text]
  • Chevelon Canyon Potential Wilderness PW-03-01-005
    Apache-Sitgreaves National Forests Wilderness Evaluation Report Chevelon Canyon Potential Wilderness PW-03-01-005 October 2012 Table of Contents Introduction .......................................................................................................................................... 1 Background .......................................................................................................................................... 2 Capability Evaluation ........................................................................................................................... 5 Availability Evaluation ........................................................................................................................ 7 Need Evaluation ................................................................................................................................... 9 Effects of Recommendations ............................................................................................................. 11 Appendix A: Wilderness Evaluation Process ..................................................................................... 18 Appendix B: Capability Evaluation Worksheet ................................................................................. 21 Appendix C: Availability Evaluation Worksheet ............................................................................... 25 Appendix D: Need Evaluation Worksheet ......................................................................................... 28 Chevelon
    [Show full text]
  • Forage Production on Arizona Ranges, IV. Coconino, Navajo, Apache Counties: a Study in Range Condition
    Forage Production on Arizona Ranges, IV. Coconino, Navajo, Apache Counties: A Study in Range Condition Item Type text; Book Authors Humphrey, Robert R. Publisher College of Agriculture, University of Arizona (Tucson, AZ) Download date 11/10/2021 16:13:43 Link to Item http://hdl.handle.net/10150/213113 Forage Production on Arizona Ranges, IV. COCONINO, NAVAJO, APACHE Counties A Study in Range Condition BULLETIN 266 October, 1955 ORGANIZATION Board of Regents of the University and State Colleges of Arizona ERNEST W. MCFARLAND (ex officio), A.B., M.A., J.D., LL.DGovernor of Arizona CLIFTON L. HARKLNS (ex officio), B.S., M.A State Supt. of Public Instruction JOHN G. BABBITT, B.S Term expires January, 1957 MICHAEL B. HODGES, President Term expires January, 1957 JOHN M. JACOBS, Secretary Term expires January, 1959 EVELYN JONES KIRMSE, A.B., A.M Term expires January, 1959 ALEXANDER G. JACOME, B.S., Treasurer Term expires January, 1961 WILLIAM R. MATHEWS, A.B Term expires January, 1961 LYNN M. LANEY, B.S., J.D Term expires January, 1963 SAMUEL H. MORRIS, A.B., J.D., LL.D Term expires January, 1963 RICHARD A. HARVILL, Ph. D. President of the `University ROBERT L. NUCENT, Ph.D Vice- President of the University Experiment Station Administration RALPH S. HAWKINS, Ph.D Acting Director ARLAND R. MEADE, B.S., M.S Editor COVER PICTURE Aspens on the North Kaibab, in Coconino County Betts, October, 1955. 6M. Forage Production on Arizona Ranges IV. Coconino, Navajo, Apache Counties A Study in Range Condition By: Robert R. Humphrey1 FOREWORD Forage production on range lands is determined largely by three factors: productivity of the site, weather and management.In some areas, notably California and Florida, site productivity has been im- proved by fertilization.Other site -improvement techniques that have been used with success in some localities include pitting, ripping and contour furrowing.
    [Show full text]
  • The Grasshoppers and Other Orthoptera of Arizona
    The Grasshoppers and Other Orthoptera of Arizona Item Type text; Book Authors Ball, E. D.; Tinkham, E. R.; Flock, Robert; Vorhies, C. T. Publisher College of Agriculture, University of Arizona (Tucson, AZ) Rights Copyright © Arizona Board of Regents. The University of Arizona. Download date 04/10/2021 13:31:26 Link to Item http://hdl.handle.net/10150/190516 Technical Bulletin No. §3 June 15, 1942 Utttomttg fff Arfemta COLLEGE OF AGRICULTURE AGRICULTURAL EXPERIMENT STATION THE AND OF ARIZONA BY E. D. BALL, K R. XIHKHAM, ROBERT FtocK, AND C. T. VQKBIES BY Itttaerattg ORGANIZATION BOABD OF BEGENTS Sidney P. Osborn (ex-of&cio).. Governor of Arizona E. D. Ring, B.A, (ex-officio). State Superintendent of Public Instruction APPOINTED MEMBERS Albert M. Crawford, B.S., President Prescott William H. Westover, LL.B Yuma Martin Gentry, LL,B Willcox Cleon T. Kmapp, LL.B.» Treasurer Tucson Jack B. Martin, Secretary,.,. Tucson M. O. Best Phoenix Clarence E. Houston, LL.B., B.A..... , ..Tucson Mrs. Joseph Madison Greet, B.A. Phoenix Alfred Atkinson, D.Sc .President of the University EXPJSBIMEHT STATION STAFF Paul S. Burgess, PhJX Dean and Director Ralph S. Hawkins, Ph,D ..Vice-Dean and Vice-Director ENTOMOLOGY AND ECONOMIC ZOOLOGY Charles T. Vorhies, Ph,D .Economic Zoologist •Elmer D. Ball, PhD ...™._ Entomologist Lawrence P, Wehrle, Ph.D...., , .„„. Associate Entomologist H, G* Johnston, Ph.D Associate Entomologist (Phoenix) *On leave. EBRWR Make following changes in numbers caa right hand margins only; Page 299, change "2^" to "26" Page 300, change "26" to "2k" Page 533, change "2V to "25" Pass 333, change "22" to "23" Page 33U, change "23" to "22" Page 33^, change "25" to "24" TABLE OF CONTENTS PAGE INTRODUCTION.,.
    [Show full text]