Vulnerability Characteristics of Tsunamis in Indonesia: Analysis of the Global Centre for Disaster Statistics Database

Total Page:16

File Type:pdf, Size:1020Kb

Vulnerability Characteristics of Tsunamis in Indonesia: Analysis of the Global Centre for Disaster Statistics Database Vulnerability Characteristics of Tsunamis in Indonesia: Analysis of the Global Centre for Disaster Statistics Database Paper: Vulnerability Characteristics of Tsunamis in Indonesia: Analysis of the Global Centre for Disaster Statistics Database 1,† 2 3 4 1 Anawat Suppasri∗ ,AbdulMuhari∗ ,Syamsidik∗ ,RidwanYunus∗ ,KwanchaiPakoksung∗ , 1 1 5 Fumihiko Imamura∗ ,ShunichiKoshimura∗ ,andRyanPaulik∗ 1 ∗ International Research Institute of Disaster Science (IRIDeS), Tohoku University 468-1 Aoba, Aramaki-Aza, Aoba-ku, Sendai, Miyagi 980-0845, Japan †Corresponding author, E-mail: [email protected] 2 ∗ Ministry of Marine Affairs and Fisheries, Jakarta, Indonesia 3 ∗ Tsunami and Disaster Mitigation Research Center (TDMRC), Syiah Kuala University, Banda Aceh, Indonesia 4 ∗ United Nations Development Programme (UNDP) Indonesia Country Office, Jakarta, Indonecia 5 ∗ National Institute of Water and Atmospheric Research (NIWA), Wellington, New Zealand [Received April 24, 2018; accepted October 15, 2018] Regional disaster data are important for understand- tsunami disaster data for the GCDS database. ing the characteristics of disasters and for identify- ing potential mitigation measures. However, many countries have no official disaster database that in- Keywords: global centre for disaster statistics, tsunami, cludes information such as numbers of deaths or dam- vulnerability, Indonesia, disaster database aged buildings for each disaster event. The Global Centre for Disaster Statistics (GCDS) was established to assist countries and organizations in the collection 1. Introduction of disaster data. At present, a significant amount of tsunami disaster data are available from Indone- The third World Conference on Disaster Risk Reduc- sia, which will be used to demonstrate its applica- tion (WCDRR) was held in Sendai on March 2015. At tion for analyzing vulnerability characteristics of his- that time, a new framework for disaster risk reduction, torical tsunamis. There are 53 data points covering referred to as the Sendai Framework for Disaster Risk 13 tsunami events between the year 1861 and 2014. Reduction (SFDRR), was adopted by 187 countries, and Based on data availability, five tsunami events, namely included seven global targets. This new framework will the 1977 Sumba, the 2004 Indian Ocean, the 2006 be applied between 2015 and 2030. In addition, post- Java, the 2010 Mentawai, and the 2011 Great East 2015 Sustainable Development Goals (SDGs) were also Japan, were selected. Numbers of deaths and dam- adopted in September 2015, with 17 global goals and aged buildings were used in combination with hazard 169 targets. These targets include reducing mortality, the data to estimate vulnerability, defined as the ratio be- numbers of affected people, and direct economic losses tween maximum flow depth against death and build- from disasters. The development of detailed disaster dam- ing damage ratios. Numbers of evacuees were initially age and loss-related information is crucial for measuring used to estimate actual numbers of exposed population and monitoring these targets. but it was later discovered that this parameter overes- timated the exposed population in certain cases. As 1.1. Tsunami Hazard-Related Information from aresult,thisstudypresentsthevulnerabilitycharac- Historic Tsunami Databases teristics of people and buildings in Indonesia, exposed to unusual or extreme tsunamis, mostly in a condi- There are few hazard databases in the tsunami research tion without or with limited access to official warn- field, namely (1) Global Historical Tsunami Database op- ings. In brief, a maximum flow depth of 5 m caused erated by National Oceanic and Atmospheric Association an approximate 100% death ratio in the majority of (NOAA), USA [1], (2) Historical Tsunami Database for Indonesian tsunamis in this study. On the other hand, the World Ocean by Tsunami Laboratory, Novosibirsk, death ratio in the 2011 Japan tsunami was limited to Russia [2], and (3) Japan Tsunami Trace Database, In- 10% because of the early warning and high disaster ternational Research Institute of Disaster Science, To- awareness. Effective disaster risk reduction activities hoku University, Japan [3]. The main purposes of these such as official warnings, evacuations, and tsunami ed- databases are to collect and store hazard damage data, fol- ucation were observed for certain locations. Lastly, lowing tsunami disasters. Of these, NOAA’s global his- adding hazard and population data at the village level toric tsunami database is the most widely used because is recommended for improving the collection of future of its regularly updated information, completeness, global coverage area, and long coverage period. Therefore, the Journal of Disaster Research Vol.13 No.6, 2018 1039 Suppasri, A. et al. Table 1. Overview of the GCDS database focusing on tsunamirelated events in Indonesia. Year Source location No. of points Main damage information Other damage related information 1861 SW Sumatra 1 b Not available 1973 Unknown 1 d Crops 1977* Sunda Islands 5 b,c,d Education related facilities, crops 1979 Lomblen Island 1 b,d,e Not available 1991 Unknown 1 b,d Not available 1992 Flores Sea 1 b,g Education related facilities 1994 South of Java 1 b,d Not available 2004* West of Sumatra 21 a,b,c,d,e, f,g,i Health and education related facilities, crops, roads 2006* South of Java 9 b,c,d,e,g,i Offices, kiosks, infrastructures, rice fields, health, education and worship related facilities, roads 2010∗ Sumatra 1 a,b,c,d,e,g,i Offices, education and worship related facilities 2011* East of Japan 1 b,e,g,i Roads, health and worship related facilities 2012* NW Sumatra 9 b,c Offices 2014a NMoluccasIslands 1 No damage Infrastructures * = events that were analyzed and discussed in this study, a = losses (million rupias), b = number of deaths, c = number of injuries, d = number of missing, e = number of evacuees, f = number of affected people, g = number of major damaged buildings, h = numbers of moderate damaged buildings, and i = numbers of minor damaged buildings maximum tsunami height data from the NOAA database sia, where data are available for few historical tsunami are the most commonly used. events. These data must be supplemented with other The estimated maximum flow depth was obtained by sources to form a tsunami disaster statistics database for subtracting the maximum tsunami height by land eleva- Indonesia. The purpose of this study is to demonstrate tion (MSL) at the same position from a substantial number how GCDS data from historic tsunami events in Indone- of sources, namely Lidar measurement data from the In- sia could be used to identify people and building vulner- donesian National Agency for Disaster Management [4], abilities to hazard exposure, and determine the impact of contour map from Indonesian National Institute of Aero- disaster risk reduction (DRR) measures on lowering such nautics and Space [5], and ALOS (Advanced Land Ob- vulnerability. Recommendations for the collection of fu- serving Satellite) PALSAR (Phased Array type L-band ture tsunami disaster data are determined to improve vul- Synthetic Aperture Radar) [6]. In addition to hazard- nerability research activities and disaster statistics report- related data, damage information was stored for each ing for GCDS. tsunami event. The NOAA database contains general in- formation about tsunami sources (earthquake, landslide, volcanic eruption, etc.) and occurrence times. For every 1.2. Tsunami Damage-Related Information from single tsunami height, information on its validity, distance the GCDS Database from the source, arrival time, wave period, numbers of The GCDS database provides 53 district- or city-level death, numbers of injured and missing persons, and num- damage data points from 13 tsunami events between 1861 bers of destroyed houses was stored. and 2014. Each data point includes the occurrence year, The Global Centre for Disaster Statistics (GCDS) was source location, number of points, main damage infor- established in March 2015 under collaboration between mation, and other damage-related information, which are the United Nations Development Program (UNDP) and summarized in Table 1 and the targeted tsunamis in this the International Research Institute of Disaster Science study is shown in Fig. 1.Certaintsunamieventsprovide (IRIDeS) at Tohoku University. Each organization is as- only one tsunami information data point for each repre- signed the task of collecting global disaster data from sented location. historic events and centralizing them in a global disas- In other cases, one point is available for one adminis- ter statistics database. There are seven pilot countries, trative area such as district or city, even though there are namely Cambodia, Indonesia, thePhilippines,Maldives, asignificantnumberofvillagesaffectedbytherespec- Myanmar, Nepal, and Sri Lanka. At present, only a cer- tive tsunami. Although the GCDS database consists of no tain amount of disaster data from the Indonesian gov- tsunami hazard information, additional damage and im- ernment are ready for utilization in database develop- pact information is provided, such as numbers of evac- ment and research activities. However, data are often not uees, affected people, damaged infrastructure, and pub- available or are incomplete for all disaster types. This lic facilities at city or district level; however, not for all is the case for tsunami, a frequent disaster in Indone- events. It has been established from a previous study [7] 1040 Journal of Disaster
Recommended publications
  • Appendix 8: Damages Caused by Natural Disasters
    Building Disaster and Climate Resilient Cities in ASEAN Draft Finnal Report APPENDIX 8: DAMAGES CAUSED BY NATURAL DISASTERS A8.1 Flood & Typhoon Table A8.1.1 Record of Flood & Typhoon (Cambodia) Place Date Damage Cambodia Flood Aug 1999 The flash floods, triggered by torrential rains during the first week of August, caused significant damage in the provinces of Sihanoukville, Koh Kong and Kam Pot. As of 10 August, four people were killed, some 8,000 people were left homeless, and 200 meters of railroads were washed away. More than 12,000 hectares of rice paddies were flooded in Kam Pot province alone. Floods Nov 1999 Continued torrential rains during October and early November caused flash floods and affected five southern provinces: Takeo, Kandal, Kampong Speu, Phnom Penh Municipality and Pursat. The report indicates that the floods affected 21,334 families and around 9,900 ha of rice field. IFRC's situation report dated 9 November stated that 3,561 houses are damaged/destroyed. So far, there has been no report of casualties. Flood Aug 2000 The second floods has caused serious damages on provinces in the North, the East and the South, especially in Takeo Province. Three provinces along Mekong River (Stung Treng, Kratie and Kompong Cham) and Municipality of Phnom Penh have declared the state of emergency. 121,000 families have been affected, more than 170 people were killed, and some $10 million in rice crops has been destroyed. Immediate needs include food, shelter, and the repair or replacement of homes, household items, and sanitation facilities as water levels in the Delta continue to fall.
    [Show full text]
  • Title Characteristics of Seismicity Distribution Along the Sunda Arc
    Characteristics of Seismicity Distribution along the Sunda Arc: Title Some New Observations Author(s) GHOSE, Ranajit; OIKE, Kazuo Bulletin of the Disaster Prevention Research Institute (1988), Citation 38(2): 29-48 Issue Date 1988-06 URL http://hdl.handle.net/2433/124954 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University Bull. Disas. Prey. Res. Inst., Kyoto Univ., Vol. 38, Part 2, No. 332, June, 1988 29 Characteristics of Seismicity Distribution along the Sunda Arc: Some New Observations By Ranajit GHOSEand Kazuo OIKE (Manuscript received March 7, 1988) Abstract Spatio-temporal variations of earthquake activity along the Sunda arc were investigated. We prepared a strain release map for this century. Adjacent to the zones of high strain release, presence of seismically quiet zones was noted. A careful inspection of the depth distribution of the earthquakes revealed that in the eastern Sunda arc, possibly there exists a zone of scarce seismicity at an interme- diate depth. We discussed the probable implications. We also analysed the patterns of temporal distributions of earthquakes at the three different seismotectonic provinces of the Sunda arc—Sumatra, Java, and the Lesser Sunda Islands. We could clearly see that, although the causative geodynamic situations for seismicity vary significantly in space along the length of the arc, the period of increase or decrease in seismicity is largely space invariant. The locally differing levels of seismicity are superposed on the common background of long period seismicity fluctuation. Finally, clustering of seismicity at some patches along the Sunda arc was studied with respect to the altimetric gravity anomaly data. We noted some apparent conformities.
    [Show full text]
  • Landslide Generated Tsunamis : Numerical Modeling
    Sektion 2.5: Geodynamische Modellierung, GeoForschungsZentrum Potsdam Landslide generated tsunamis - Numerical modeling and real-time prediction Dissertation zur Erlangung des akademischen Grades Doktor der Naturwissenschaften (Dr. rer. nat.) in der Wissenschaftsdisziplin Geophysik eingereicht an der Mathematisch-Naturwissenschaftlichen Fakultät der Universität Potsdam vorgelegt von Sascha Brune Potsdam, den 29. Januar 2009 This work is licensed under a Creative Commons License: Attribution - Noncommercial - Share Alike 3.0 Germany To view a copy of this license visit http://creativecommons.org/licenses/by-nc-sa/3.0/de/deed.en Published online at the Institutional Repository of the University of Potsdam: URL http://opus.kobv.de/ubp/volltexte/2009/3298/ URN urn:nbn:de:kobv:517-opus-32986 [http://nbn-resolving.org/urn:nbn:de:kobv:517-opus-32986] Abstract Submarine landslides can generate local tsunamis posing a hazard to human lives and coastal facilities. Two major related problems are: (i) quantitative estimation of tsunami hazard and (ii) early detection of the most dangerous landslides. This thesis focuses on both those issues by providing numerical modeling of landslide- induced tsunamis and by suggesting and justifying a new method for fast detection of tsunamigenic landslides by means of tiltmeters. Due to the proximity to the Sunda subduction zone, Indonesian coasts are prone to earthquake, but also landslide tsunamis. The aim of the GITEWS-project (German- Indonesian Tsunami Early Warning System) is to provide fast and reliable tsunami warnings, but also to deepen the knowledge about tsunami hazards. New bathymetric data at the Sunda Arc provide the opportunity to evaluate the hazard potential of landslide tsunamis for the adjacent Indonesian islands.
    [Show full text]
  • ISC-GEM Global Instrumental Earthquake Catalogue (1900-2009)
    ISC-GEM Global Instrumental Earthquake Catalogue (1900-2009) GEM Technical Report 2012-01 V1.0.0 Storchak D.A., D. Di Giacomo, I. Bondár, J. Harris, E.R. Engdahl, W.H.K. Lee, A. Villaseñor, P. Bormann, and G. Ferrari Geological, earthquake and geophysical data GEM GLOBAL EARTHQUAKE MODEL ISC-GEM Global Instrumental Earthquake Catalogue (1900-2009) GEM Technical Report 2012-01 Version: 1.0.0 Date: July 2012 Authors*: Storchak D.A., D. Di Giacomo, I. Bondár, J. Harris, E.R. Engdahl, W.H.K. Lee, A. Villaseñor, P. Bormann, and G. Ferrari (*) Authors’ affiliations: Dmitry Storchak, International Seismological Centre (ISC), Thatcham, UK Domenico Di Giacomo, International Seismological Centre (ISC), Thatcham, UK István Bondár, International Seismological Centre (ISC), Thatcham, UK James Harris, International Seismological Centre (ISC), Thatcham, UK Bob Engdahl, University of Colorado Boulder, USA Willie Lee, U.S. Geological Survey (USGS), Menlo Park, USA Antonio Villaseñor, Institute of Earth Sciences (IES) Jaume Almera, Barcelona, Spain Peter Bormann, Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences, Germany Graziano Ferrari, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Bologna, Italy Rights and permissions Copyright © 2012 GEM Foundation, International Seismological Centre, Storchak D.A., D. Di Giacomo, I. Bondár, J. Harris, E.R. Engdahl, W.H.K. Lee, A. Villaseñor, P. Bormann, and G. Ferrari Except where otherwise noted, this work is licensed under a Creative Commons Attribution 3.0 Unported License. The views and interpretations in this document are those of the individual author(s) and should not be attributed to the GEM Foundation. With them also lies the responsibility for the scientific and technical data presented.
    [Show full text]
  • Appendix 3 Selection of Candidate Cities for Demonstration Project
    Building Disaster and Climate Resilient Cities in ASEAN Final Report APPENDIX 3 SELECTION OF CANDIDATE CITIES FOR DEMONSTRATION PROJECT Table A3-1 Long List Cities (No.1-No.62: “abc” city name order) Source: JICA Project Team NIPPON KOEI CO.,LTD. PAC ET C ORP. EIGHT-JAPAN ENGINEERING CONSULTANTS INC. A3-1 Building Disaster and Climate Resilient Cities in ASEAN Final Report Table A3-2 Long List Cities (No.63-No.124: “abc” city name order) Source: JICA Project Team NIPPON KOEI CO.,LTD. PAC ET C ORP. EIGHT-JAPAN ENGINEERING CONSULTANTS INC. A3-2 Building Disaster and Climate Resilient Cities in ASEAN Final Report Table A3-3 Long List Cities (No.125-No.186: “abc” city name order) Source: JICA Project Team NIPPON KOEI CO.,LTD. PAC ET C ORP. EIGHT-JAPAN ENGINEERING CONSULTANTS INC. A3-3 Building Disaster and Climate Resilient Cities in ASEAN Final Report Table A3-4 Long List Cities (No.187-No.248: “abc” city name order) Source: JICA Project Team NIPPON KOEI CO.,LTD. PAC ET C ORP. EIGHT-JAPAN ENGINEERING CONSULTANTS INC. A3-4 Building Disaster and Climate Resilient Cities in ASEAN Final Report Table A3-5 Long List Cities (No.249-No.310: “abc” city name order) Source: JICA Project Team NIPPON KOEI CO.,LTD. PAC ET C ORP. EIGHT-JAPAN ENGINEERING CONSULTANTS INC. A3-5 Building Disaster and Climate Resilient Cities in ASEAN Final Report Table A3-6 Long List Cities (No.311-No.372: “abc” city name order) Source: JICA Project Team NIPPON KOEI CO.,LTD. PAC ET C ORP.
    [Show full text]
  • 1 the JAVA TSUNAMI MODEL: USING HIGHLY-RESOLVED DATA to MODEL the PAST EVENT and to ESTIMATE the FUTURE HAZARD Widjo Kongko1
    THE JAVA TSUNAMI MODEL: USING HIGHLY-RESOLVED DATA TO MODEL THE PAST EVENT AND TO ESTIMATE THE FUTURE HAZARD Widjo Kongko1 and Torsten Schlurmann2 This study is to validate the tsunami model with extensive field observation data gathered from the 2006 Java tsunami. In the relevant study area, where highly-resolved geometric data were recently made available and other related post- tsunami field data have been collected, the tsunami maximum run-up onto land and its marigram have been simulated and evaluated. Several plausible tsunami sources are proposed to adequately mimic the 2006 Java tsunami by including the influence of low rigidity material in the accretionary prism as well as its single-multi fault source type’s effect. Since it has a significant role on tsunami excitation, this parameter and other assumptions are then employed to study an estimated set of reasonable maximum magnitude earthquake-tsunami scenario and projected inundation areas for probable future tsunami on the South Java coastline. In a final step tentative technical mitigation measures are proposed and assessed to deal with adequate coastal protection issues by means of soft (greenbelt, etc.) and hard engineering (sand dunes, etc.) approaches. Their effectiveness in terms of reducing inundation area is assessed and general recommendations for coastal planning authorities are dealt with. Keywords: tsunami model, highly resolved data, accretionary prism, single-multi segment faults, and technical mitigation measures INTRODUCTION Past Events in Java Based on historical data, the number of earthquakes in Java’s subduction zone occurred within the time period of 1977-2007 in bounding coordinates depicted in Figure 1 with magnitudes greater than Ms 5.0 and hypocenter shallower than 40 km, is about 420 events.
    [Show full text]
  • Seismotektonik Busur Seismotektonik Sunda Editor: Hery Harjono
    Seismotektonik Busur Seismotektonik Sunda Editor: Hery Harjono usur Sunda merupakan zona tempat Busur Seismotektonik Bmenunjamnya Lempeng India-Australia ke bawah Lempeng Eurasia, yang memanjang dari Andaman, Sumatra, Jawa, Nusa Tenggara, hingga Banda. Pergerakan kedua lempeng tersebut merupakan bagian dari pergerakan Lempeng India yang menabrak Lempeng Asia di sisi barat dan pergerakan Lempeng Australia yang menabrak Sunda Lempeng Pasifik di sisi timur. Editor: Hery Harjono Tidak hanya seputar permasalahan di atas, bunga Busur Sunda rampai ini juga mengulas berbagai pergerakan pada kerak bumi yang menimbulkan lekukan, lipatan, patahan, dan retakan di sepanjang Busur Sunda. Banyak peneliti ilmu kebumian yang tertarik meneliti Busur Sunda dikarenakan adanya zona subduksi yang memiliki potensi bencana alam yang begitu besar, terutama mengenai kegempabumian, tsunami, dan aktivitas vulkaniknya. Walaupun demikian, diharapkan pembaca bunga rampai ini tidak hanya dari kalangan peneliti dan ahli gempa bumi, tetapi juga para penentu kebijakan yang terkait tata ruang wilayah, dosen, dan juga mahasiswa fakultas ilmu kebumian. Editor: Hery Harjono ISBN 978-979-799-871-4 Dilarang mereproduksi atau memperbanyak seluruh atau sebagian dari buku ini dalam bentuk atau cara apa pun tanpa izin tertulis dari penerbit. © Hak cipta dilindungi oleh Undang-Undang No. 28 Tahun 2014 All Rights Reserved LIPI Press © 2017 Lembaga Ilmu Pengetahuan Indonesia (LIPI) Pusat Penelitian Geoteknologi Katalog dalam Terbitan (KDT) Seismotektonik Busur Sunda/Hery Harjono – Jakarta: LIPI Press, 2017. xii +128 hlm.; 14,8 x 21 cm ISBN 978-979-799-871-4 1. Seismotektonik 2. Busur Sunda 551.22598 1 Copy editor : Heru Yulistyan Proofreader : Sonny Heru Kusuma dan M. Fadly Suhendra Penata Isi : Siti Qomariyah dan Prapti Sasiwi Desainer Sampul : Dhevi E.I.R.
    [Show full text]
  • Study of Characteristics and the Coverage of Tsunami Wave Using 2D Numerical Modeling in the South Coast of Bali, Indonesia
    International Journal of Oceans and Oceanography ISSN 0973-2667 Volume 13, Number 1 (2019), pp. 237-250 © Research India Publications http://www.ripublication.com Study of Characteristics and the Coverage of Tsunami Wave Using 2D Numerical Modeling in the South Coast of Bali, Indonesia A. A. Md. Ananda Putra Suardana1 2*, Denny Nugroho Sugianto2 3, Muhammad Helmi2 3 1Department of Marine Sciences, Faculty of Fisheries and Marine Sciences, Diponegoro University, Jl. Prof. H. Soedarto, S.H, Tembalang, Semarang, Indonesia 50275. 2Center for Coastal Rehabilitation and Disaster Mitigation Studies (CoREM), Center of Excellence for Science and Technology (PUI), Diponegoro University, Indonesia. 3Department of Oceanography, Faculty of Fisheries and Marine Science, Diponegoro University, Indonesia. *Corresponding Author Abstract The location of Indonesia, which is on the three main tectonic plate boundaries, makes Indonesia prone to disasters, including the tsunami. One of the vulnerable areas to tsunami disaster is the southern coast of Bali Province because it is close to the Bali Megathrust subduction zone. The Sumbawa earthquake on August 19, 1977, was an event that occurred at the subduction zone with a strength of 8.3 Mw then caused a tsunami. Studies of wave characteristics and tsunami coverage areas in Bali are rare. This study was aimed to examine the characteristics of waves and tsunami's coverage areas in the south of Bali Province (Denpasar and Badung). We used 2D numerical modeling for the simulation of tsunami waves that built using COMCOT version 1.7. The travel time from the tsunami’s formed to the coast was ranged between 30–39 minutes. The maximum wave height is 16.73 meters at the Uluwatu observation point, because it is close to the tsunami’s epicenter.
    [Show full text]
  • Abschlußbericht Des Vorhabens 03G0190A Und B „SINDBAD I & II“
    Abschlußbericht des Vorhabens 03G0190A und B „SINDBAD I & II“ Zuwendungsempfänger: Leibniz-Institut für Meereswissenschaften (IFM-GEOMAR) Wischhofstr. 1-3 24148 Kiel und Bundesanstalt für Geowissenschaften und Rohstoffe (BGR) Postfach 51 01 53 30631 Hannover Förderkennzeichen: 03G0190A (IFM-GEOMAR) 03G0190B (BGR) Projektleiter: Prof. Dr. Heidrun Kopp (IFM-GEOMAR) Dr. Christian Müller (BGR) Vorhabenbezeichnung: SO 190 SINDBAD I & II Laufzeit des Vorhabens: 01.09.2006 bis 31.12.2008 (IFM-GEOMAR) 01.08.2006 bis 30.11.2008 (BGR) Berichtszeitraum: 01.08.2006 bis 31.05.2009 1. Aufgabenstellung Im Rahmen des Forschungsprojektes SINDBAD (Seismische und geoakustische Untersuchungen entlang des Übergangs vom Sunda- zum Banda-Bogen) wurden marin- geophysikalische Untersuchungen mit FS SONNE vor dem östlichen Sundabogen und im Übergangsbereich zum Bandabogen vor Indonesien durchgeführt. Während der Fahrten SO 190 wurden - neben bathymetrischen und Potentialfeldmessungen – refraktionsseismische und reflexionsseismische Daten auf identischen Profilen mit dem Ziel gewonnen, strukturelle Wechselwirkungen zwischen Unter- und Oberplatte zu untersuchen. 2. Voraussetzungen Die SONNE-Fahrten SO190 I und II wurden in den Zeiträumen vom 09.10.2006 bis zum 09.11.2006 (BGR) sowie vom 10.11.2006 bis zum 24.12.2006 (IFM-GEOMAR) planmäßig und erfolgreich durchgeführt. Ein regelmäßiger Austausch zwischen den Arbeitsgruppen in Hannover (BGR) und Kiel (IFM-GEOMAR) sowie die enge Zusammenarbeit und Absprache der Projektleiter bildete die Grundlage für den erfolgreichen Abschluss der wissenschaftlichen Arbeiten, die in den unten aufgeführten Publikationen detailliert dargestellt sind. Die Aufteilung der Datenbearbeitung auf die beiden Standorte Hannover und Kiel setzte einen koordinierten wissenschaftlichen Austausch voraus, der aufgrund der guten Kooperation der Arbeitsgruppen erfolgreich und effektiv umgesetzt werden konnte.
    [Show full text]
  • Memahami Gempa “Outer-Rise” Busur Sunda Dari Sumatra Sampai Sumba
    TEKNIK GEOFISIKA ITS & MASYARAKAT GEOLOGI TATA LINGKUNGAN INDONESIA Webinar - 21 Mei 2021 Memahami Gempa “Outer-Rise” Busur Sunda dari Sumatra sampai Sumba Awang Harun Satyana Patria & Aulia (2020) Geolog Independen Diskusi 1. Histori, Identifikasi, Karakterisasi Gempa “Outer-Rise” 2. Tektonik Subduksi Busur Sunda 3. Gempa “Outer-Rise” Sumatra-Jawa 4. Gempa “Outer-Rise” SW Sumba Mw 8.3 (1977) dan Tsunami 5. Pemodelan Gempa “Outer-Rise” Diskusi 1. Histori, Identifikasi, Karakterisasi Gempa “Outer-Rise” 2. Tektonik Subduksi Busur Sunda 3. Gempa “Outer-Rise” Sumatra-Jawa 4. Gempa “Outer-Rise” SW Sumba Mw 8.3 (1977) dan Tsunami 5. Pemodelan Gempa “Outer-Rise” ocean-continent convergence Outer Rise Earthquakes "outer-rise event" refers to any earthquake which occurs within the oceanic plate in the vicinity of the trench axis (Christensen & Ruff, 1983). ocean-ocean convergence Several important structural and topographic features form at many subduction zones. A broad rise or bulge in the downgoing plate, known as an outer swell, commonly develops where the plate bends to dive down into the mantle. Hamblin and Christiansen (2009) Classical paper on outer rise earthquakes Classical paper on outer rise earthquakes Isacks et al. [1968] suggest that the lithospheric plates are bent down under the island arcs along the dipping plane of earthquake foci, and a number of suggestions have been made as to why this should be so. Accordingly we should find an upward flexure or rise along some parts of island arcs similar to that of the Hawaiian arch. Such a flexure is evident in many island arcs (Figure 2), and a maximum amplitude of about 700 meters is similar to that of the Hawaiian structure.
    [Show full text]
  • Title Characteristics of Seismicity Distribution Along the Sunda Arc
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Kyoto University Research Information Repository Characteristics of Seismicity Distribution along the Sunda Arc: Title Some New Observations Author(s) GHOSE, Ranajit; OIKE, Kazuo Bulletin of the Disaster Prevention Research Institute (1988), Citation 38(2): 29-48 Issue Date 1988-06 URL http://hdl.handle.net/2433/124954 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University Bull. Disas. Prey. Res. Inst., Kyoto Univ., Vol. 38, Part 2, No. 332, June, 1988 29 Characteristics of Seismicity Distribution along the Sunda Arc: Some New Observations By Ranajit GHOSEand Kazuo OIKE (Manuscript received March 7, 1988) Abstract Spatio-temporal variations of earthquake activity along the Sunda arc were investigated. We prepared a strain release map for this century. Adjacent to the zones of high strain release, presence of seismically quiet zones was noted. A careful inspection of the depth distribution of the earthquakes revealed that in the eastern Sunda arc, possibly there exists a zone of scarce seismicity at an interme- diate depth. We discussed the probable implications. We also analysed the patterns of temporal distributions of earthquakes at the three different seismotectonic provinces of the Sunda arc—Sumatra, Java, and the Lesser Sunda Islands. We could clearly see that, although the causative geodynamic situations for seismicity vary significantly in space along the length of the arc, the period of increase or decrease in seismicity is largely space invariant. The locally differing levels of seismicity are superposed on the common background of long period seismicity fluctuation.
    [Show full text]
  • Brune, S., Ladage, S., Babeyko, AY, Müller, C., Kopp, H
    Originally published as: Brune, S., Ladage, S., Babeyko, A. Y., Müller, C., Kopp, H., Sobolev, S. V. (2010): Submarine slope failures at the eastern Sunda Arc : bathymetry analysis and tsunami modeling. - Mitteilungen der Deutschen Geophysikalische Gesellschaft, Nr. 2, 15-18 Submarine slope failures at the eastern Sunda Arc: bathymetry analysis and tsunami modeling Sascha Brunea, Stefan Ladageb, Andrey Y. Babeykoa, Christian Müllerb, Heidrun Koppc, Stephan V. Soboleva aHelmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum GFZ bBundesanstalt für Geowissenschaften und Rohstoffe (BGR) in Hannover cIFM-GEOMAR Leibniz-Institut für Meereswissenschaften an der Universität Kiel hazard of landslides in Indonesia by analyzing Introduction past events. This can be done via two means: Tsunamis pose a major threat to coastal the study of historical tsunami catalogs and the communities in Indonesia. Most tsunamis are identification of slope failures in available generated by underwater earthquakes and this bathymetry data. danger can be adequately addressed by tsunami early warning systems. Submarine Tsunamigenic slope failures have been slope failures, however, can be responsible for observed multiple times in Indonesian history localized high-amplitude tsunamis as well. (see stars in Figure 1): (1) 1815 north of Bali Here, we address three fundamental questions: (RYNN 2002), (2) 1899 off Seram (1) Where in Indonesia can we expect (www.ngdc.noaa.gov), (3) 1979 near Lomblen submarine landslides? (2) Are they large Island (SOLOVIEV 1992), (4) 1982 at Flores enough to produce significant tsunamis? (3) (RYNN 2002), and (5) 1992 again at Flores Was the largest event triggered by the 1977 (YEH et al. 1993, TSUJI et al. 1995). Another Sumba earthquake? disastrous event (6) took place 1998 in Papua New Guinea, 130 km east of the Indonesian 1.
    [Show full text]