Curriculam Vitae

Total Page:16

File Type:pdf, Size:1020Kb

Curriculam Vitae CURRICULAM VITAE CHANDRAKANTH S Current Address: Mobile Number : +91- 9600247884 96/42 Paramakudi Nannu Samy Iyer Street +91- 7506131740 Pattai kovil Salem – 636 001. E-mail : Tamil Nadu [email protected] WORK EXPERIENCE : 3.5+ years Prana Studios, Mumbai - FX Technical Artist / Tool Developer (Feb2013 – till date) Worked Projects: Disney's Planes 2013 Disney's Planes 2 Fire & Rescue 2013-2014 Responsibilities: Executing some complex FX shots involving Pyro (Smoke and Fire) simulations in Houdini. Using the Cloud tools and developing some custom setups for clouds in Houdini. Also developed some Python based tools for the team. Tools Developed: Load Shot Before this tool a Houdini artist had to manually import dozens of alembics into the file, one by one. So as per the requirement, created this shelf tool using Houdini Python and pyQt4 widgets. When an artist opens a shot file this tool enables the artist to get the required alembic animation caches from the correct location and imports them into the file. If the alembic is already loaded in the file then it prompts the user about the same. You can also use this tool to unload the not required alembics. Hence the artist could easily import the required alembic(.abc) files into houdini in a single click. Camera Swapper Using the Tkinter GUI programming in python, developed a shelf script in houdini using which a user can select multiple cameras in a list and easily switch into each camera in the viewport . Alembic Exporter for Houdini 12.5 This Python tool exports all the geometry meshes in a group (like Characters, Set, Foliage etc.) into alembic format to their respective folders; so that using Load shot shelf script, artist can easily import the alembic files. Anibrain Digital Technologies,Pune - Technical Artist (October2011 – Dec2012) Worked Projects: The Three Musketeers Silent Hill : Revelation Resident Evil: Retribution Responsibilities: Creating automated asset tools using python for debris, smoke and ash in Maya Creating user friendly interfaces for snow particle simulation in Maya. Automating the production tools depending upon the projects. Structuring the data flow between departments. Creating blood like fluid simulations using realflow. Checking test composition using Nuke 6. Arowana Studios,Banglore - MEL Scripter & Fx Artist (May2010 – August2011) Worked Projects: In house Projects Responsibilities: Writing MEL scripts for production workflow Creating dust and water simulation using Maya particles, Fluids and Realflow. Checking test composition using Eyeon Fusion ACADEMIC CHRONICLE : Diploma in Arena Multimedia Jan 2010 3D animation Chennai - 600 028 B.Tech(IT) Dhanalakshmi Srinivasan Engg College May’2009 Perambalur-636 212. (Anna University) HSC Bharathi Vidhyalaya Hr.Sec School, MAR’2005 Salem-7. (State Board) SSLC Bharathi Vidhyalaya Hr.Sec School, MAR’2003 Salem-7. (State Board) TECHNICAL SKILLS : Sidefx Houdini Autodesk Maya 2013 3ds max Realflow 5 Eyeon Fusion, Nuke Adobe After Effects Adobe Photoshop CS3 PERSONAL SKILLS : Strong Knowledge in Scripting Languages (C,C++,MEL,PYTHON,Linux bash Scripting) Ability to work on Object Oriented Programming Language Ability to work in a team or as an individual. Interested in creating artist friendly tools and bridging the gaps between departments. PERSONAL DETAILS : Father’s Name : Mr. P.C.T.Santharam Date of Birth : 16.2.1987 Marital Status : Single Nationality : INDIAN Linguistic Proficiency : Sowrashtra, English , Hindi & Tamil Permanent Address : 96/42 Paramakudi Nannu Samy Iyer Street, Pattaikovil Salem- 636 001.
Recommended publications
  • Procedural Content Generation for Games
    Procedural Content Generation for Games Inauguraldissertation zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften der Universit¨atMannheim vorgelegt von M.Sc. Jonas Freiknecht aus Hannover Mannheim, 2020 Dekan: Dr. Bernd L¨ubcke, Universit¨atMannheim Referent: Prof. Dr. Wolfgang Effelsberg, Universit¨atMannheim Korreferent: Prof. Dr. Colin Atkinson, Universit¨atMannheim Tag der m¨undlichen Pr¨ufung: 12. Februar 2021 Danksagungen Nach einer solchen Arbeit ist es nicht leicht, alle Menschen aufzuz¨ahlen,die mich direkt oder indirekt unterst¨utzthaben. Ich versuche es dennoch. Allen voran m¨ochte ich meinem Doktorvater Prof. Wolfgang Effelsberg danken, der mir - ohne mich vorher als Master-Studenten gekannt zu haben - die Promotion an seinem Lehrstuhl erm¨oglichte und mit Geduld, Empathie und nicht zuletzt einem mir unbegreiflichen Verst¨andnisf¨ur meine verschiedenen Ausfl¨ugein die Weiten der Informatik unterst¨utzthat. Sie werden mir nicht glauben, wie dankbar ich Ihnen bin. Weiterhin m¨ochte ich meinem damaligen Studiengangsleiter Herrn Prof. Heinz J¨urgen M¨ullerdanken, der vor acht Jahren den Kontakt zur Universit¨atMannheim herstellte und mich ¨uberhaupt erst in die richtige Richtung wies, um mein Promotionsvorhaben anzugehen. Auch Herr Prof. Peter Henning soll nicht ungenannt bleiben, der mich - auch wenn es ihm vielleicht gar nicht bewusst ist - davon ¨uberzeugt hat, dass die Erzeugung virtueller Welten ein lohnenswertes Promotionsthema ist. Ganz besonderer Dank gilt meiner Frau Sarah und meinen beiden Kindern Justus und Elisa, die viele Abende und Wochenenden zugunsten dieser Arbeit auf meine Gesellschaft verzichten mussten. Jetzt ist es geschafft, das n¨achste Projekt ist dann wohl der Garten! Ebenfalls geb¨uhrt meinen Eltern und meinen Geschwistern Dank.
    [Show full text]
  • Making a Game Character Move
    Piia Brusi MAKING A GAME CHARACTER MOVE Animation and motion capture for video games Bachelor’s thesis Degree programme in Game Design 2021 Author (authors) Degree title Time Piia Brusi Bachelor of Culture May 2021 and Arts Thesis title 69 pages Making a game character move Animation and motion capture for video games Commissioned by South Eastern Finland University of Applied Sciences Supervisor Marko Siitonen Abstract The purpose of this thesis was to serve as an introduction and overview of video game animation; how the interactive nature of games differentiates game animation from cinematic animation, what the process of producing game animations is like, what goes into making good game animations and what animation methods and tools are available. The thesis briefly covered other game design principles most relevant to game animators: game design, character design, modelling and rigging and how they relate to game animation. The text mainly focused on animation theory and practices based on commentary and viewpoints provided by industry professionals. Additionally, the thesis described various 3D animation and motion capture systems and software in detail, including how motion capture footage is shot and processed for games. The thesis ended on a step-by-step description of the author’s motion capture cleanup project, where a jog loop was created out of raw motion capture data. As the topic of game animation is vast, the thesis could not cover topics such as facial motion capture and procedural animation in detail. Technologies such as motion matching, machine learning and range imaging were also suggested as topics worth covering in the future.
    [Show full text]
  • Blender Instructions a Summary
    BLENDER INSTRUCTIONS A SUMMARY Attention all Mac users The first step for all Mac users who don’t have a three button mouse and/or a thumb wheel on the mouse is: 1.! Go under Edit menu 2.! Choose Preferences 3.! Click the Input tab 4.! Make sure there is a tick in the check boxes for “Emulate 3 Button Mouse” and “Continuous Grab”. 5.! Click the “Save As Default” button. This will allow you to navigate 3D space and move objects with a trackpad or one-mouse button and the keyboard. Also, if you prefer (but not critical as you do have the View menu to perform the same functions), you can emulate the numpad (the extra numbers on the right of extended keyboard devices). It means the numbers across the top of the standard keyboard will function the same way as the numpad. 1.! Go under Edit menu 2.! Choose Preferences 3. Click the Input tab 4.! Make sure there is a tick in the check box for “Emulate Numpad”. 5.! Click the “Save As Default” button. BLENDER BASIC SHORTCUT KEYS OBJECT MODE SHORTCUT KEYS EDIT MODE SHORTCUT KEYS The Interface The interface of Blender (version 2.8 and higher), is comprised of: 1. The Viewport This is the 3D scene showing you a default 3D object called a cube and a large mesh-like grid called the plane for helping you to visualize the X, Y and Z directions in space. And to save time, in Blender 2.8, the camera (left) and light (right in the distance) has been added to the viewport as default.
    [Show full text]
  • A Procedural Interface Wrapper for Houdini Engine in Autodesk Maya
    A PROCEDURAL INTERFACE WRAPPER FOR HOUDINI ENGINE IN AUTODESK MAYA A Thesis by BENJAMIN ROBERT HOUSE Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Chair of Committee, André Thomas Committee Members, John Keyser Ergun Akleman Head of Department, Tim McLaughlin May 2019 Major Subject: Visualization Copyright 2019 Benjamin Robert House ABSTRACT Game development studios are facing an ever-growing pressure to deliver quality content in greater quantities, making the automation of as many tasks as possible an important aspect of modern video game development. This has led to the growing popularity of integrating procedural workflows such as those offered by SideFX Software’s Houdini FX into the already established de- velopment pipelines. However, the current limitations of the Houdini Engine plugin for Autodesk Maya often require developers to take extra steps when creating tools to speed up development using Houdini. This hinders the workflow for developers, who have to design their Houdini Digi- tal Asset (HDA) tools around the limitations of the Houdini Engine plugin. Furthermore, because of the implementation of the HDA’s parameter display in Maya’s Attribute Editor when using the Houdini Engine Plugin, artists can easily be overloaded with too much information which can in turn hinder the workflow of any artists who are using the HDA. The limitations of an HDA used in the Houdini Engine Plugin in Maya as a tool that is intended to improve workflow can actually frustrate and confuse the user, ultimately causing more harm than good.
    [Show full text]
  • 3D Data Visualization in Astrophysics Dr
    3D Data Visualization in Astrophysics Dr. Brian R. Kent National Radio Astronomy Observatory http://www.cv.nrao.edu/~bkent/blender http://iopscience.iop.org/journal/1538-3873/page/Techniques-and-Methods-for-Astrophysical-Data-Visualization Overview ● What we want to get out of 3D data visualization ● Types of visualizations when rendering 3D graphics ● How we can leverage Blender for 3D viz ● Examples Dr. Brian R. Kent (NRAO) ADASS 2018 Astrophysical Phenomena What do we want when visualizing our data in 3D? ● Effectively display a discovery, principle, data characteristics, or parameter space ● Show a data perspective not otherwise seen ● Collapse a high N phase space into a 3D animation ● Visuals for EPO Dr. Brian R. Kent (NRAO) ADASS 2018 Types of Data in Astronomy Dr. Brian R. Kent (NRAO) ADASS 2018 Data Volumes in Astronomy Dr. Brian R. Kent (NRAO) ADASS 2018 3D Graphics Software HOUDINI 3D Graphics, Python, and Astronomy I use a non-traditional package called Blender to render different forms of astronomical data - catalogs, data cubes, simulations, etc. Dr. Brian R. Kent (NRAO) ADASS 2018 What is Blender? Blender is: ● 3D graphics software for modeling, animation, and visualization ● Open-source ● a real-time 3D viewer and GUI ● A Python scriptable interface for loading and manipulating data http://www.blender.org Dr. Brian R. Kent (NRAO) ADASS 2018 Publications ● Kent 2013 ● http://adsabs.harvard.edu/abs/2013PASP..125..731K ● Kent 2015 ● http://iopscience.iop.org/book/978-1-6270-5612-0 ● Kent 2017 ● http://adsabs.harvard.edu/abs/2017PASP..129e8004K Elements of 3D Graphics We need to consider: ● Models - physical or data containers? ● Textures - 2D, 3D, and projections? ● Lighting - illumination of data - physical or artistic ● Animation - How will the model move and change? ● Camera control - lens selection, angle, image size, and movement and tracking ● Rendering - backend engine choice ● Compositing - layering final output Dr.
    [Show full text]
  • Powering a New Era of Collaboration and Simulation in Media And
    Image Courtesy of ILM SOLUTION SHOWCASE NVIDIA Omniverse™ is a groundbreaking POWERING A NEW ERA OF virtual platform built for collaboration and real-time photorealistic simulation. COLLABORATION AND SIMULATION Studios can now maximize productivity, IN MEDIA AND ENTERTAINMENT enhance communication, and boost creativity while collaborating on the same 3D scenes from anywhere. NVIDIA continues to advance state-of-the-art graphics hardware, and Omniverse showcases what is possible with real-time ray tracing. The potential to improve the creative process through all stages of VFX Built For and animation pipelines will be transformative. > Concept Artists — Francois Chardavoine, VP of Technology, Lucasfilm & Industrial Light & Magic > Modelers > Animators > Texture Artists Challenges in the Media and Entertainment Industry > Lighting or Look Development Artists The Film, Television, and Broadcast industries are undergoing rapid change as new production pipelines are emerging to address the growing demand for high-quality > VFX Artists content in a globally distributed workforce. Additionally, new streaming services are > Motion Designers creating the need for constant releases and refreshes to satisfy a growing subscriber base. > Rendering Specialists NVIDIA Omniverse gives creative teams the ability to create, iterate, and collaborate on Platform Features assets using a variety of creative applications to deliver real-time results. Artists can focus on maximum iterations with no opportunity cost or the need to wait for long render > Compatible with top industry design times to achieve high-quality results. and visualization software > Scalable, works on all NVIDIA RTX™ M&E Use Cases for Omniverse solutions, from the laptop to the data center > Initial Concept Design - Artists can quickly develop and refine conceptual ideas to bring the Director’s vision to life.
    [Show full text]
  • Surrealist Aesthetics
    SURREALIST AESTHETICS Using Surrealist Aesthetics to Explore a Personal Visual Narrative about Air Pollution Peggy Li Auckland University of Technology Master of Design 2020 A thesis submitted to Auckland University of Technology in partial fulfilment of the requirements for the degree of Master of Design, Digital Design P a g e | 1 Abstract “Using Surrealist Aesthetics to Explore a Personal Visual Narrative about Air Pollution”, is a practice-based research project focusing on the production of a poetic short film that incorporates surrealist aesthetics with motion capture and digital simulation effects. The project explores surrealist aesthetics using visual effects combined with motion capture techniques to portray the creator’s personal experiences of air pollution within a poetic short film form. This research explicitly portrays this narrative through the filter of the filmmaker’s personal experience, deploying an autoethnographic methodological approach in the process of its creation. The primary thematic contexts situated within this research are surrealist aesthetics, personal experiences and air pollution. The approach adopted for this research was inspired by the author’s personal experiences of feeling trapped in an air-polluted environment, and converting these unpleasant memories using a range of materials, memories, imagination, and the subconscious mind to portray the negative effects of air pollution. The overall aim of this process was to express my experiences poetically using a surrealist aesthetic, applied through
    [Show full text]
  • An Introduction for Beginners Platige Image
    An Introduction for Beginners Platige Image Page 3 RealFlow 2014 Over the last years computers have become more and more powerful, and modern systems are able to solve complex tasks like simulations, physically-based rendering, and handling huge amounts of polygons. With increasing computer power, the de- mand for realistic luid and dynamics simulation has been growing as well. Today, you can see luids ranging from small drops to huge loods – and all these elements are often combined with rigid and soft bodies. There is hardly any commercial or fea- ture ilm without luids – and many of these effects have been created with RealFlow. With RealFlow, you can literally dive into this world and create stunning, ar- tist-controllable, and realistic simulations of watery or viscous substances, huge amounts of interacting rigid bodies, deforming soft bodies, and ininite oce- an surfaces. An open pipeline, connectivity plugins, and sophisticated render tools make it easy to exchange your RealFlow simulations with your favourite 3D software. RealFlow also supports standards like Alembic I/O and OpenVDB. This document is a quick guide to RealFlow‘s user interface and main tools. Once you have read through it you will be able to create your own luid and dynamics simulations. No matter whether you are a beginner in the ield of visual effects or an experienced, production-proven veteran: you will love RealFlow‘s intuitive worklow and the endless possibilities this unique simulation tool offers. Mirada Page 4 Why RealFlow? RealFlow also has the ability to cover all your simulation needs within a single RealFlow has unreached expertise in the ield of luid dynamics.
    [Show full text]
  • 232 Advanced 3D Photorealism Techniques
    Publisher: Robert Ipsen Editor: Cary Sullivan Assistant Editor: Kathryn A. Malm Managing Editor: Brian Snapp Electronic Products, Associate Editor: Mike Sosa Text Design & Composition: North Market Street Graphics Designations used by companies to distinguish their products are often claimed as trade- marks. In all instances where John Wiley & Sons, Inc., is aware of a claim, the product names appear in initial capital or ALL CAPITAL LETTERS. Readers, however, should contact the appro- priate companies for more complete information regarding trademarks and registration. This book is printed on acid-free paper. Q Copyright 1999 by Bill Fleming. All rights reserved. Published by John Wiley & Sons, Inc. Published simultaneously in Canada. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copy- right Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 7508400, fax (978) 750-4744. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 605 Third Avenue, New York, NY 10158-0012, (212) 850-6011, fax (212) 850- 6008, E-Mail: [email protected]. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold with the understanding that the publisher is not engaged in professional services. If professional advice or other expert assistance is required, the services of a competent professional person should be sought.
    [Show full text]
  • 3D Computer Graphics Compiled By: H
    animation Charge-coupled device Charts on SO(3) chemistry chirality chromatic aberration chrominance Cinema 4D cinematography CinePaint Circle circumference ClanLib Class of the Titans clean room design Clifford algebra Clip Mapping Clipping (computer graphics) Clipping_(computer_graphics) Cocoa (API) CODE V collinear collision detection color color buffer comic book Comm. ACM Command & Conquer: Tiberian series Commutative operation Compact disc Comparison of Direct3D and OpenGL compiler Compiz complement (set theory) complex analysis complex number complex polygon Component Object Model composite pattern compositing Compression artifacts computationReverse computational Catmull-Clark fluid dynamics computational geometry subdivision Computational_geometry computed surface axial tomography Cel-shaded Computed tomography computer animation Computer Aided Design computerCg andprogramming video games Computer animation computer cluster computer display computer file computer game computer games computer generated image computer graphics Computer hardware Computer History Museum Computer keyboard Computer mouse computer program Computer programming computer science computer software computer storage Computer-aided design Computer-aided design#Capabilities computer-aided manufacturing computer-generated imagery concave cone (solid)language Cone tracing Conjugacy_class#Conjugacy_as_group_action Clipmap COLLADA consortium constraints Comparison Constructive solid geometry of continuous Direct3D function contrast ratioand conversion OpenGL between
    [Show full text]
  • GTA Hoya V001 1920 N017.Pdf (4.8MB)
    VOL. I GEORGETOWN UNIVERSITY, WASHINGTON. D. C, MAY 20, 1920 No. 17 GASTON FIRST IN DID MISGUIDED SENIORS PROPOSE REYNOLDS BEATS DEBATING HONORS THAT NIGHT AT SENIOR PROM? MARYLAND STATE Annual Inter-Society Clash Won By the Gaston Debaters Holds College Park Athletes to Again. Rumor Has It That Five of Them Offered to Endow With All Their One Run, While Team- Worldly Wealth Their Lady Fair—If So, Who mates Score 14. The question, "Resolved, That Equal Suffrage be Granted to Women Other- Accepted Them, and Why? wise than by Amendment to the Consti- There is an old trick among pugilists tution of the U. S.," was hotly contested whereby one fighter hopes to unnerve last Sunday night by the Gaston and his rival by putting in a belated appear- White Debating Societies. Tha Gaston_ While the elements threatened, and the damp, cold weather put warm ance at the ringside. Thus the early ar- Society upheld the negative side of the hearts much in demand, the Seniors got away with a most enjoyable rival, who has cooled his heels for an discussion and was awarded the decision, hour or so, feels his courage oozing drop which, according to the report of the week-end party, starting last Thursday night, inaugurating a custom that by drop as the minutes pass. "Curly" chairman of judges, was very close. bids fair to become an established thing on the Hilltop. Byrd resorted to these tactics yesterday Michael Bruder. '22, Joseph Little, '22, out at College Park in a last desperate and William McGuire, '23, represented And now that it is all over but paying the bills, the question agitating effort to snatch victory from the Blue the White Society, while Gaston de- the minds of many may be stated simply as follows: Did five Seniors and Gray.
    [Show full text]
  • 3D Scientific Visualization with Blender Brian R
    3D Scientific Visualization with Blender Brian R. Kent, Ph.D. Scientist, National Radio Astronomy Observatory www.cv.nrao.edu/~bkent/blender Twitter and Instagram: @VizAstro Watch the live broadcast of this presentation, courtesy of NCSA, at: https://youtu.be/8FqGNdvEVWo?t=539 Interesting in learning more? Book and tutorials available at: http://www.cv.nrao.edu/~bkent/blender/ https://www.youtube.com/VisualizeAstronomy Twitter and Instagram: @VizAstro Brian R. Kent, Ph.D. Scientist, National Radio Astronomy Observatory Overview - 3D Scientific Visualization with Blender • Science domain and data of astronomy • What and why we need to visualize data • All about the visualization tool Blender • Examples • Intro to using the interface Dr. Brian R. Kent 3D Visualization NRAO Radio Telescopes Dr. Brian R. Kent 3D Visualization Dr. Brian R. Kent 3D Visualization Astrophysical Phenomena Dr. Brian R. Kent 3D Visualization Dr. Brian R. Kent 3D Visualization Dr. Brian R. Kent 3D Visualization Dr. Brian R. Kent 3D Visualization What do we do in observational astronomy? Caltech/NRAO/NASA/STScI Remote sensing and planetary exploration Dr. Brian R. Kent 3D Visualization Remote Sensing ● Imaging from the ground or space of phenomena that we can’t physically reach ● The entire physical Universe is our laboratory ● Spectroscopy ○ Dynamics and kinematics, chemistry ● Imaging ○ Earth looking out, and from orbit looking at planets ● Time-series ○ Asteroid identification, light-curves for planet finding, and pulsar timing for general relativity Dr. Brian R. Kent 3D Visualization Astrophysical Simulations ● N-body simulations ● Smoothed Particle Hydrodynamics ● Numerical Relativity ● Models of… ○ Interacting Binary Stars ○ Active Galactic Nuclei Jets ○ Black Holes ○ Interacting Galaxies Data from Matt Wood, Texas A&M University-Commerce Dr.
    [Show full text]