Canada Lynx Conservation Assessment and Strategy
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Eastern Coyotes in Massachusetts
LIVING WITH WILDLIFE EASTERN COYOTES IN MASSACHUSETTS The eastern coyote is well established throughout season peaks in mid-February. They give birth in a den to Massachusetts except on Nantucket and Martha’s 4–8 pups in April or May. Coyotes maintain seasonal social Vineyard. A medium-sized predator, it is an opportunistic units that consist of the adult pair and the pups until the feeder and extraordinarily adaptable to a wide range of pups disperse on their own in late autumn. habitats. Coyotes thrive in suburban, urban, and rural areas. They will utilize whatever food is naturally available, FOOD, HABITS, AND HABITAT including small animals, birds, insects and fruits, as well as Coyotes are typically shy and elusive, but they can artificial sources such as garbage, pet food, birdseed, and frequently be seen individually, in pairs, or in small groups compost. where food is commonly found. They communicate by vocalizing, scent marking, and through a variety of body DESCRIPTION displays. It is common to hear them howling and yipping The eastern coyote resembles a medium-sized dog in body at night, or even during the day in response to sirens and size and shape, but has longer, denser fur and pointed, erect other loud noises. Coyotes remain active year-round and ears. The tail is long, black-tipped, and bushy. Typical coat do not hibernate. They are opportunistic feeders, meaning color is a grizzled gray but can vary from creamy blonde to they will feed on whatever is most readily available and red or nearly solid black. Typical weights for females are easiest to obtain. -
Northeastern Coyote/Coywolf Taxonomy and Admixture: a Meta-Analysis
Way and Lynn Northeastern coyote taxonomy Copyright © 2016 by the IUCN/SSC Canid Specialist Group. ISSN 1478-2677 Synthesis Northeastern coyote/coywolf taxonomy and admixture: A meta-analysis Jonathan G. Way1* and William S. Lynn2 1 Eastern Coyote Research, 89 Ebenezer Road, Osterville, MA 02655, USA. Email [email protected] 2 Marsh Institute, Clark University, Worcester, MA 01610, USA. Email [email protected] * Correspondence author Keywords: Canis latrans, Canis lycaon, Canis lupus, Canis oriens, cladogamy, coyote, coywolf, eastern coyote, eastern wolf, hybridisation, meta-analysis, northeastern coyote, wolf. Abstract A flurry of recent papers have attempted to taxonomically characterise eastern canids, mainly grey wolves Canis lupus, eastern wolves Canis lycaon or Canis lupus lycaon and northeastern coyotes or coywolves Canis latrans, Canis latrans var. or Canis latrans x C. lycaon, in northeastern North America. In this paper, we performed a meta-analysis on northeastern coyote taxonomy by comparing results across studies to synthesise what is known about genetic admixture and taxonomy of this animal. Hybridisation or cladogamy (the crossing between any given clades) be- tween coyotes, wolves and domestic dogs created the northeastern coyote, but the animal now has little genetic in- put from its parental species across the majority of its northeastern North American (e.g. the New England states) range except in areas where they overlap, such as southeastern Canada, Ohio and Pennsylvania, and the mid- Atlantic area. The northeastern coyote has roughly 60% genetic influence from coyote, 30% wolf and 10% domestic dog Canis lupus familiaris or Canis familiaris. There is still disagreement about the amount of eastern wolf versus grey wolf in its genome, and additional SNP genotyping needs to sample known eastern wolves from Algonquin Pro- vincial Park, Ontario to verify this. -
The Cost of Migratory Prey: Seasonal Changes in Semi-Domestic Reindeer Distribution Influences Breeding Success of Eurasian Lynx in Northern Norway
The cost of migratory prey: seasonal changes in semi-domestic reindeer distribution influences breeding success of Eurasian lynx in northern Norway Zea Walton1, Jenny Mattisson2, John D. C. Linnell2, Audun Stien3 and John Odden2 1Dept of Forestry and Wilderness Management, Hedmark College, Koppang, Norway 2Norwegian Inst. for Nature Research (NINA), NO-7484 Trondheim, Norway 3Norwegian Inst. for Nature Research (NINA), Fram Centre, Tromsø, Norway Corresponding author: Zea Walton, Dept of Forestry and Wilderness Management, Hedmark College, Koppang, Norway. E-mail: [email protected] Decision date: 31-Aug-2016 This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: [10.1111/oik.03374]. ‘This article is protected by copyright. All rights reserved.’ Accepted Article Accepted (Abstract) Migratory prey is a widespread phenomenon that has implications for predator–prey interactions. By creating large temporal variation in resource availability between seasons it becomes challenging for carnivores to secure a regular year-round supply of food. Some predators may respond by following their migratory prey, however, most predators are sedentary and experience strong seasonal variation in resource availability. Increased predation on alternative prey may dampen such seasonal resource fluctuations, but reduced reproduction rates in predators is a predicted consequence of migratory primary prey behavior that has received little empirical attention. We used data from 23 GPS collared Eurasian lynx Lynx lynx monitored during 2007–2013 in northern Norway, to examine how spatio-temporal variation in the migratory behavior of semi-domestic reindeer Rangifer tarandus influences lynx spatial organization and reproductive success using estimates of seasonal home range overlap and breeding success. -
Wildlife Research Reports
MAMMALS - JULY 2005 WILDLIFE RESEARCH REPORTS JULY 2004 – JUNE 2005 MAMMALS PROGRAM COLORADO DIVISION OF WILDLIFE Research Center, 317 W. Prospect, Fort Collins, CO 80526 The Wildlife Reports contained herein represent preliminary analyses and are subject to change. For this reason, information MAY NOT BE PUBLISHED OR QUOTED without permission of the Author. STATE OF COLORADO Bill Owens, Governor DEPARTMENT OF NATURAL RESOURCES Russell George, Executive Director WILDLIFE COMMISSION Jeffrey Crawford, Chair …………………………………………………………………….…..… Denver Tom Burke, Vice Chair ………………………………….…………...………….…........…Grand Junction Ken Torres, Secretary ……………………………………...…………….……………..……….... Weston Robert Bray………………………………………………….......................................................…Redvale Rick Enstrom………………………………………………………………….………….……...Lakewood Philip James …………………………………………………………………..….………….…Fort Collins Claire M. O’Neal………………………………………………..…………….………..…………..Holyoke Richard Ray ………………………………………………………………………………...Pagosa Springs Robert T. Shoemaker…………………………………………………………….………..…….Canon City Don Ament, Dept. of Ag, Ex-officio…………………………………………………….…….....Lakewood Russell George, Executive Director, Ex-officio……………………………………………..………Denver DIRECTOR’S STAFF Bruce McCloskey, Director Mark Konishi, Deputy Director-Education and Public Affairs Steve Cassin, Chief Financial Officer Jeff Ver Steeg, Assistant Director-Wildlife Programs John Bredehoft, Assistant Director-Field Operations Marilyn Salazar, Assistant Director-Support Services MAMMALS RESEARCH STAFF David Freddy, -
White-Tailed Deer, Coyotes, and the Ecology of Fear in a Longleaf
WHITE-TAILED DEER, COYOTES, AND THE ECOLOGY OF FEAR IN A LONGLEAF PINE SAVANNA By MICHAEL JOHN CHERRY (Under the Direction of Robert J. Warren) Abstract Predators can exert powerful influence on their prey, independent of direct killing, by inducing antipredator responses. Coyotes (Canis latrans) have recently achieved abundances capable of influencing white-tailed deer (Odocoileus virginianus) population demography in the southeastern USA, but the effects of antipredator responses have not been reported. I conducted a multifaceted investigation of coyote and white-tailed deer interactions, using population monitoring data, harvest data, and results from controlled experimentation with predator exclosures. This work provided evidence that coyotes can influence white-tailed deer space use and vigilance while foraging, and documented a negative relationship between coyote abundance and body mass of adult female deer during an 11-year period. I compared multiple measures of reproductive success during a 7-year period that encompassed high and low coyote-deer ratios to elucidate the relative contributions of direct predation and predation risk effects to an observed increase on recruitment as measured by fawn-adult female ratios. Fawn survival rates were similar between periods, but the proportion of females with evidence of ovulation increased during the period of low coyote-deer ratios. Increases in ovulation were similar to increases in the proportion of females with evidence of lactation and fawn-adult female ratios. While direct killing by predators greatly influenced survival of fawns during both periods, changes in recruitment resulted from variations in fecundity. I tested hypotheses predicting the consequences of 10 years of predator exclusion on oak (Quercus sp.) recruitment and the density of selected deer forage species. -
Coyotes in New Jersey
If You See A Coyote Informational Links DO NOT allow a coyote to approach you or your pet. http://coyoteyipps.com/ People have been injured while COYOTES http://www.state.nj.us/dep/fgw/coyote_info.htm attempting to protect small pets from coyotes. Call 911 first and do http://www.state.nj.us/dep/fgw/coyote_mgt06.htm not attempt to touch the coyote. IN http://www.nj.com/hunterdon-county- Instead, show them that they are democrat/index.ssf/2013/11/new_jersey_wildlife_the_easter. not welcome. Make loud noises NEW JERSEY (hit pots, throw rocks, spray html The first coyote sighting in New Jersey water etc.) http://www.esf.edu/pubprog/brochure/coyote/coyote.htm took place in Hunterdon County in 1939. http://www.humanesociety.org/animals/coyotes/tips/agains Since then, the coyote population of t_killing_coyotes.html has risen to over 14,000. http://www.dec.ny.gov/animals/9359.html Coyotes are NOT native to New Jersey. It is believed that western coyote migrated here and bred with wolves to create the eastern coyote. Relocation? Kaela Shepard In the past, Coyotes have been Girl Scouts of Northern New Jersey relocated. This approach has proven Gold Award Leadership Project unsuccessful for humans and coyotes alike. Coyotes that have been relocated will travel great distances to find their way back to familiar territory in search of food, water, and shelter. They are shunned by other coyotes, and are sometimes killed on unfamiliar roads. Facts Why they are in New Jersey The eastern coyote resembles a small With the loss of wolves as the top predator, as German Shepherd, but has a long snout and a well as the loss of habitat in the west, the bushy, black-tipped tail. -
Lynx, Felis Lynx, Predation on Red Foxes, Vulpes Vulpes, Caribou
Lynx, Fe/is lynx, predation on Red Foxes, Vulpes vulpes, Caribou, Rangifer tarandus, and Dall Sheep, Ovis dalli, in Alaska ROBERT 0. STEPHENSON, 1 DANIEL V. GRANGAARD,2 and JOHN BURCH3 1Alaska Department of Fish and Game, 1300 College Road, Fairbanks, Alaska, 99701 2Alaska Department of Fish and Game, P.O. Box 305, Tok, Alaska 99780 JNational Park Service, P.O. Box 9, Denali National Park, Alaska 99755 Stephenson, Robert 0., Daniel Y. Grangaard, and John Burch. 1991. Lynx, Fe/is lynx, predation on Red Foxes, Vulpes vulpes, Caribou, Rangifer tarandus, and Dall Sheep, Ovis dalli, in Alaska. Canadian Field-Naturalist 105(2): 255- 262. Observations of Canada Lynx (Fe/is lynx) predation on Red Foxes ( Vulpes vulpes) and medium-sized ungulates during winter are reviewed. Characteristics of I 3 successful attacks on Red Foxes and 16 cases of predation on Caribou (Rangifer tarandus) and Dall Sheep (Ovis dalli) suggest that Lynx are capable of killing even adults of these species, with foxes being killed most easily. The occurrence of Lynx predation on these relatively large prey appears to be greatest when Snowshoe Hares (Lepus americanus) are scarce. Key Words: Canada Lynx, Fe/is lynx, Red Fox, Vulpes vulpes, Caribou, Rangifer tarandus, Dall Sheep, Ovis dalli, predation, Alaska. Although the European Lynx (Felis lynx lynx) quently reach 25° C in summer and -10 to -40° C in regularly kills large prey (Haglund 1966; Pullianen winter. Snow depths are generally below 80 cm, 1981), the Canada Lynx (Felis lynx canadensis) and snow usually remains loosely packed except at relies largely on small game, primarily Snowshoe high elevations. -
PICA Project Report (Action A2.2 & 2.3)
PICA Project Report (Action A2.2 & 2.3) Investigation of Pallas’s cat activity patterns and temporal interactions with sympatric species Authors: Katarzyna Ruta, Gustaf Samelius, David Barclay, Emma Nygren PICA - “Conservation of the Pallas’s cat through capacity building, research, and global planning” 1. Introduction: 1.1 Activity patterns of wild felids: Activity patterns form a part of species’ adaptation to their environment (Beltran & Delibes, 1994) and are therefore a fundamental aspect of animal behaviour (Nielsen, 1983; Weller & Bennett, 2001). Felids are generally considered to be crepuscular and nocturnal in their activity (Kitchener, 1991), although they are well adapted to function in a wide range of light conditions (Sunquist & Sunquist, 2002). Numerous abiotic pressures and biotic interactions are known to shape the temporal behaviour of (cat-like) carnivores (Marinho et al., 2018), including changes in temperature (Beltran & Delibes, 1994; Podolski et al., 2013), light (Huck et al., 2017; Heurich et al., 2014) and season (Podolski et al., 2013; Manfredi et al., 2011), sex and reproductive status of the animal (Kolbe & Squires, 2007; Schmidt, 1999; Schmidt et al., 2009), predation risk (Caro, 2005; Farías et al., 2012) and human disturbance (Wolf & Ale, 2009; Ale & Brown, 2009). Owing to the dietary constraints of carnivores whose preys have their own well-defined circadian rhythms (Halle, 2000; Zielinski, 2000), the availability and vulnerability of prey is, however, considered as one of the main influences on predator temporal activity (Zielinski, 1988; Lodé, 1995). According to Optimal Foraging Theory, predators are expected to synchronize their daily activity with the activity of their most profitable prey, increasing the probability of encounters while reducing energy expenditure (MacArthur & Pianka, 1966; Monterroso et al., 2013; Emmons, 1987). -
Canada Lynx Lynx Canadensis Fact Sheet Natural Resources April 2011 Conservation Service
Canada Lynx Lynx canadensis Fact Sheet Natural Resources April 2011 Conservation Service and seral lodgepole pine, is the primary vegetation type occupied. Cedar-hemlock forests may also be important. Mature forests with downed logs and windfalls provide cover for denning, escape, and protection from severe weather. Landscapes with a variety of forest age classes and cover types support large numbers of snowshoe hares for lynx foraging. Recent burns and cutting units may provide herbaceous summer foods for snowshoe hares and older, regenerating burns and cutting units provide Official Status: Threatened. woody browse for winter snowshoe hare Threatened species are species that are likely to populations. Cold, dry snow conditions give lynx a become endangered within the foreseeable future competitive advantage with their long legs and large throughout all or a significant portion of their range. feet, which act as snowshoes. Listed Federal Register Volume 63, No. 58, March 24, 2000. Historical Status The Canada lynx once occupied 16 of the contiguous United States (Maine, New Hampshire, Vermont, New York, Massachusetts, Pennsylvania, Michigan, Wisconsin, Minnesota, Washington, Oregon, Idaho, Montana, Wyoming, Utah, and Colorado) as well as present day range in mountainous and boreal forest habitats throughout Canada and Alaska. Present Status Small populations of lynx remain in only three of the 16 contiguous states originally inhabited: Montana, Life History Washington, and Maine. If lynx still exist in any of Mating occurs through March and April; kittens are the other lower 48 states, they are very rare. born during May and June after a 62-day gestation Habitat period. Litter size averages 2 (1-4). -
The Scientific Basis for Conserving Forest Carnivores: American Marten, Fisher, Lynx and Wolverine in the Western United States
United States The Scientific Basis for Conserving Forest Carnivores Department of Agriculture Forest Service American Marten, Fisher, Lynx, Rocky Mountain and Wolverine Forest and Range Experiment Station in the Western United States Fort Collins, Colorado 80526 General Technical Report RM-254 Abstract Ruggiero, Leonard F.; Aubry, Keith B.; Buskirk, Steven W.; Lyon, L. Jack; Zielinski, William J., tech. eds. 1994. The Scientific Basis for Conserving Forest Carnivores: American Marten, Fisher, Lynx and Wolverine in the Western United States. Gen. Tech. Rep. RM-254. Ft. Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station. 184 p. This cooperative effort by USDA Forest Service Research and the National Forest System assesses the state of knowledge related to the conservation status of four forest carnivores in the western United States: American marten, fisher, lynx, and wolverine. The conservation assessment reviews the biology and ecology of these species. It also discusses management considerations stemming from what is known and identifies information needed. Overall, we found huge knowledge gaps that make it difficult to evaluate the species’ conservation status. In the western United States, the forest carnivores in this assessment are limited to boreal forest ecosystems. These forests are characterized by extensive landscapes with a component of structurally complex, mesic coniferous stands that are characteristic of late stages of forest development. The center of the distrbution of this forest type, and of forest carnivores, is the vast boreal forest of Canada and Alaska. In the western conterminous 48 states, the distribution of boreal forest is less continuous and more isolated so that forest carnivores and their habitats are more fragmented at the southern limits of their ranges. -
Eurasian Lynx 1 Eurasian Lynx
Eurasian Lynx 1 Eurasian Lynx Eurasian Lynx[1] Conservation status [2] Least Concern (IUCN 3.1) Scientific classification Kingdom: Animalia Phylum: Chordata Class: Mammalia Order: Carnivora Family: Felidae Genus: Lynx Species: L. lynx Binomial name Lynx lynx (Linnaeus, 1758) Eurasian Lynx 2 Eurasian Lynx range Synonyms Felis lynx (Linnaeus, 1758) The Eurasian lynx (Lynx lynx) is a medium-sized cat native to European and Siberian forests, South Asia and East Asia. It is also known as the European lynx, common lynx, the northern lynx, and the Siberian or Russian lynx. While its conservation status has been classified as "Least Concern", populations of Eurasian lynx have been reduced or extirpated from western Europe, where it is now being reintroduced. Physical characteristics The Eurasian lynx is the largest lynx species, ranging in length from 80 to 130 cm (31 to 51 in) and standing about 70 cm (28 in) at the shoulder. The tail measures 11 to 25 cm (4.3 to 9.8 in) in length. Males usually weigh from 18 to 30 kg (40 to 66 lb) and females weigh 10 to 21 kg (22 to 46 lb).[3] [4] [5] Male lynxes from Siberia, where the species reaches the largest body size, can weigh up to 38 kg (84 lb) or reportedly even 45 kg (99 lb).[6] [7] It has powerful legs, with large webbed and furred paws that act like snowshoes. It also possesses a short "bobbed" tail with an all-black tip, black tufts of hair on its ears, and a long grey-and-white ruff. -
Coywolf: Eastern Coyote Genetics, Ecology, Management, and Politics
Coywolf: Eastern Coyote Genetics, Ecology, Management, and Politics By Jonathan G. Way Published by Eastern Coyote/Coywolf Research - www.EasternCoyoteResearch.com E-book • Citation: • Way, J.G. 2021. E-book. Coywolf: Eastern Coyote Genetics, Ecology, Management, and Politics. Eastern Coyote/Coywolf Research, Barnstable, Massachusetts. 277 pages. Open Access URL: http://www.easterncoyoteresearch.com/CoywolfBook. • Copyright © 2021 by Jonathan G. Way, Ph.D., Founder of Eastern Coyote/Coywolf Research. • Photography by Jonathan Way unless noted otherwise. • All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, e-mailing, or by any information storage, retrieval, or sharing system, without permission in writing or email to the publisher (Jonathan Way, Eastern Coyote Research). • To order a copy of my books, pictures, and to donate to my research please visit: • http://www.easterncoyoteresearch.com/store or MyYellowstoneExperience.org • Previous books by Jonathan Way: • Way, J. G. 2007 (2014, revised edition). Suburban Howls: Tracking the Eastern Coyote in Urban Massachusetts. Dog Ear Publishing, Indianapolis, Indiana, USA. 340 pages. • Way, J. G. 2013. My Yellowstone Experience: A Photographic and Informative Journey to a Week in the Great Park. Eastern Coyote Research, Cape Cod, Massachusetts. 152 pages. URL: http://www.myyellowstoneexperience.org/bookproject/ • Way, J. G. 2020. E-book (Revised, 2021). Northeastern U.S. National Parks: What Is and What Could Be. Eastern Coyote/Coywolf Research, Barnstable, Massachusetts. 312 pages. Open Access URL: http://www.easterncoyoteresearch.com/NortheasternUSNationalParks/ • Way, J.G. 2020. E-book (Revised, 2021). The Trip of a Lifetime: A Pictorial Diary of My Journey Out West.