Determining the F-Ratio

Total Page:16

File Type:pdf, Size:1020Kb

Determining the F-Ratio 11/16/2010 Plankton production is supported by 2 types of nitrogen: The f‐ratio 1) new production supported by external sources of N (e.g. NO ‐ and N ), Assumptions: 3 2 ‐ ‐ 2) recycled or regenerated production, sustained by recycling of N. 1) N2 fixation is low f = (VNO3 )/ (VNO3 + ∑VNR) 2) Steady state system 3) Euphotic zone nitrification is low Note NR includes regenerated forms of N N uptake (historically thought to include 2 + urea and NH4 ) regenerated Biological + MthMathema tiltical ditidescription linki ng new NH4 production production and organic matter export. At steady state, nitrogen input is balanced by export nitrogen export. ‐ NO3 Under steady state (i.e. nitrate input balanced by export/grazing loss), if export NO ‐ NH + is less than input, biomass accumulates. NO ‐ 2 4 N export This biomass must eventually be exported 3 to keep the system in steady state. ‐Why does this generalization apply to the open sea but not near shore environments? Determining the f‐ratio • Incubate seawater in the presence of trace 15 ‐ 15 + 15 NO3 , NH4 , and sometimes N‐urea 15N • Calculate NO3‐, NH4+, and “DON” uptake 15N • What makes this difficu lt for the oligotrop hic 15N ocean? Net Uptake 15N 1 11/16/2010 Autonomous sensing of nitrate 2 11/16/2010 Not all “new” nutrients are introduced to the euphotic zone from below… • Atmospheric deposition (both dry and wet) Johnson et al. (2010) Nature can form an important source of nutrients. • Advection: lateral input of nutrients • N2 fixation Assimilation of N by N2 fixation • N2 fixation is the primary mode of nitrogen introduction to marine and terrestrial ecosystems. • N2 fixation converts N2 to NH3; exclusively prokaryotic process • Requires significant energy expensive 3 11/16/2010 Each annual cycle at HOT and BATS has significant Dissolved At Station ALOHA, N Inorganic Carbon 2 (DIC) drawdown, fixation appears to but not enough contribute ~30‐84% of nitrate is present new production in surface water to support growth. 8 NO 6 3‐ from Karl et al. in 4 Fasham, Ocean (‰) 2 Biogeochemistry 0 N particulate N export N2 15 -2 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 Year Let’s look at dissimilatory nitrogen transformations Oxidized N Energy to be gained in oxidation Reduced N Global estimate of N2 fixation based on N‐DIC drawdown in NO3‐ depleted warm waters is equivalent to 0.8 0.3 Pg C yr‐1 (Sarmiento & Gruber, 2006) 4 11/16/2010 Nitrification Dissimilatory nitrogen transformations - •Biological oxidation of NH3 to NO3 using oxygen as terminal electron acceptor. NH2OH → NO → N2O + - - Nitrification: NH4 → NO2 → NO3 •Two step process; ammonia oxidation fllfollowe dbd by n itititrite ox idtiidation; bthboth reactions yield energy. - - Denitrification: NO3 → NO2 → NO → N2O → N2 - •NO2 serves as an important intermediate; incomplete nitrification also + Anammox: NO2 + NH4 → N2 + 2H2O yields N2O. Aerobic regeneration of nitrogen Complete decomposition of organic matter (CH2O)106(NH3)16H3PO4 + 138O2 106CO2 + 122H2O +16HNO3 + H3PO4 + Degradation of organic N to Multi-step process. First step is the breakdown of amino acids to NH4 ; this process ammonium occurs during is mediated by heterotrophic microorganisms heterotrophic metabolism. Nitrification: 2NH + + 3O 2NO - + 4H+ + 2H O Nitrification is a 2 step 4 2 2 2 predominately mediated by ppyrocess that is mediated by - - chemoautotrophic microbes 2NO2 +O+ O2 2NO3 different groups of (best studied are microbes. The first step These reactions yield energy (but not much…) Nitrosomonas and Nitrobacter) (termed ammonium + oxidation) oxidizes NH4 to - NO2 , and the second step - - converts NO2 to NO3 . 5 11/16/2010 Recent isolation and cultivation of an abundant archaeal ammonium oxidizer Archaea 20- 40% of total picoplankton in meso- and bathypelagic waters 0 Let’s look at dissimilatory nitrogen transformations 1000 Oxidized N 2000 Pacific Atlantic Depth (m) 3000 4000 Energy to be 0 1020304050 gained in NO - + NO - (mol L-1) 3 2 oxidation Reduced N (Sarmiento & Gruber, 2006) 6 11/16/2010 Denitrification Anaerobic ammonium oxidation - - The reduction of NO3 and NO2 to N2 during heterotrophic respiration of (anammox) organic matter. Occurs predominately in anaerobic or suboxic environments. + - • NH4 + NO2 2N2 + 2H2O - C106H175O42N16P + 104 NO3 106CO2 + 60N2 + H3PO4 +138 H2O • Anaerobic ammonium oxidation • Major source of N gas - - 2 NO3 and NO2 are (along with denitrification) used as terminal electron acceptors during heterotrophic • Anoxic sediments, marine respiration. water column, and sewage wastewater • Mediated by Planctomyces Oxygen concentrations along the 26.9 kg m-3 isopycnal surface (~500 m in the N. Pacific) High productivity in surface water due to upwelling of nutrients. High organic matter flux depletes O2 concentrations below the euphotic zone. Chlorophyll distributions 7 11/16/2010 Global Nitrogen Budget Process Nitrogen Flux (TgN yr-1) Sources Pelagic N fixation 120 50 N input by N2 Losses of N by 2 fixation denitrification Benthic N2 fixation 15 10 Atmosphere N2 N2 N2O River input (DON) 35 10 River input (PON) 45 10 Photosynthesis Atmospheric deposition 50 20 TtlSTotal Sources 265 55 Bacterial Nitrification - Organic NO2 degradation NH + - Sinks matter 4 NO3 Organic N export 1 N O 2 Benthic denitrification 180 50 Aerobic Suboxic Water column denitrification 65 20 Denitirifcation N2O Sediment burial 25 10 Bacterial + N O loss to atmosphere 4 2 Detritus NH 2 degradation 4 N 2 Total Sinks 275 55 1 Tg = 1012 g 8.
Recommended publications
  • Altered Organic Matter Dynamics in Rivers and Streams: Ecological Consequences and Management Implications
    Limnetica, 29 (2): x-xx (2011) Limnetica, 35 (2): 303-322 (2016). DOI: 10.23818/limn.35.25 c Asociación Ibérica de Limnología, Madrid. Spain. ISSN: 0213-8409 Altered organic matter dynamics in rivers and streams: ecological consequences and management implications Arturo Elosegi and Jesús Pozo Faculty of Science and Technology, the University of the Basque Country UPV/EHU, PoBox 644, 48080 Bilbao, Spain. ∗ Corresponding author: [email protected] 2 Received: 15/02/2016 Accepted: 05/05/2016 ABSTRACT Altered organic matter dynamics in rivers and streams: ecological consequences and management implications Scientists have spent decades measuring inputs, storage and breakdown of organic matter in freshwaters and have documented the effects of soil uses, pollution, climate warming or flow regulation on these pivotal ecosystem functions. Large-scale collaborative experiments and meta-analyses have revealed some clear patterns as well as substantial variability in detritus dynamics, and a number of standardized methods have been designed for routine monitoring of organic matter inputs, retention and breakdown in different conditions. Despite the knowledge gathered, scientists have been relatively ineffective at convincing managers of the importance of organic matter dynamics in freshwaters. Here we review the existing information of the role of organic matter as a) an element structuring freshwater habitats, b) a source or sink of nutrients, c) a food resource for heterotrophs, d) a source of pollution, e) a modulator of the fate of pollutants, f) a source of greenhouse gases, g) a potential source of environmental problems, and h) a diagnostic tool for ecosystem functioning. Current knowledge in some of these points is enough to be transferred to management actions, although has seldom been so.
    [Show full text]
  • 7.014 Handout PRODUCTIVITY: the “METABOLISM” of ECOSYSTEMS
    7.014 Handout PRODUCTIVITY: THE “METABOLISM” OF ECOSYSTEMS Ecologists use the term “productivity” to refer to the process through which an assemblage of organisms (e.g. a trophic level or ecosystem assimilates carbon. Primary producers (autotrophs) do this through photosynthesis; Secondary producers (heterotrophs) do it through the assimilation of the organic carbon in their food. Remember that all organic carbon in the food web is ultimately derived from primary production. DEFINITIONS Primary Productivity: Rate of conversion of CO2 to organic carbon (photosynthesis) per unit surface area of the earth, expressed either in terns of weight of carbon, or the equivalent calories e.g., g C m-2 year-1 Kcal m-2 year-1 Primary Production: Same as primary productivity, but usually expressed for a whole ecosystem e.g., tons year-1 for a lake, cornfield, forest, etc. NET vs. GROSS: For plants: Some of the organic carbon generated in plants through photosynthesis (using solar energy) is oxidized back to CO2 (releasing energy) through the respiration of the plants – RA. Gross Primary Production: (GPP) = Total amount of CO2 reduced to organic carbon by the plants per unit time Autotrophic Respiration: (RA) = Total amount of organic carbon that is respired (oxidized to CO2) by plants per unit time Net Primary Production (NPP) = GPP – RA The amount of organic carbon produced by plants that is not consumed by their own respiration. It is the increase in the plant biomass in the absence of herbivores. For an entire ecosystem: Some of the NPP of the plants is consumed (and respired) by herbivores and decomposers and oxidized back to CO2 (RH).
    [Show full text]
  • Relationships Between Net Primary Production, Water Transparency, Chlorophyll A, and Total Phosphorus in Oak Lake, Brookings County, South Dakota
    Proceedings of the South Dakota Academy of Science, Vol. 92 (2013) 67 RELATIONSHIPS BETWEEN NET PRIMARY PRODUCTION, WATER TRANSPARENCY, CHLOROPHYLL A, AND TOTAL PHOSPHORUS IN OAK LAKE, BROOKINGS COUNTY, SOUTH DAKOTA Lyntausha C. Kuehl and Nels H. Troelstrup, Jr.* Department of Natural Resource Management South Dakota State University Brookings, SD 57007 *Corresponding author email: [email protected] ABSTRACT Lake trophic state is of primary concern for water resource managers and is used as a measure of water quality and classification for beneficial uses. Secchi transparency, total phosphorus and chlorophyll a are surrogate measurements used in the calculation of trophic state indices (TSI) which classify waters as oligotrophic, mesotrophic, eutrophic or hypereutrophic. Yet the relationships between these surrogate measurements and direct measures of lake productivity vary regionally and may be influenced by external factors such as non-algal tur- bidity. Prairie pothole basins, common throughout eastern South Dakota and southwestern Minnesota, are shallow glacial lakes subject to frequent winds and sediment resuspension. Light-dark oxygen bottle methodology was employed to evaluate vertical planktonic production within an eastern South Dakota pothole basin. Secchi transparency, total phosphorus and planktonic chlorophyll a were also measured from each of three basin sites at biweekly intervals throughout the 2012 growing season. Secchi transparencies ranged between 0.13 and 0.25 meters, corresponding to an average TSISD value of 84.4 (hypereutrophy). Total phosphorus concentrations ranged between 178 and 858 ug/L, corresponding to an average TSITP of 86.7 (hypereutrophy). Chlorophyll a values corresponded to an average TSIChla value of 69.4 (transitional between eutrophy and hypereutro- phy) and vertical production profiles yielded areal net primary productivity val- ues averaging 288.3 mg C∙m-2∙d-1 (mesotrophy).
    [Show full text]
  • Salt Marsh Food Web a Food Chain Shows How Each Living Thing Gets Its Food
    North Carolina Aquariums Education Section Salt Marsh Food Web A food chain shows how each living thing gets its food. Some animals eat plants and some animals eat other animals. For example, a simple food chain links the plants, snails (that eats the plants), and the birds (that eat the snails). Each link in this chain is food for the next link. Food Webs are networks of several food chains. They show how plants and animals are connected in many ways to help them all survive. Below are some helpful terms associated with food chains and food webs. Helpful Terms Ecosystem- is a community of living and non-living things that work together. Producers- are plants that make their own food or energy. Consumers-are animals, since they are unable to produce their own food, they must consume (eat) plants or animals or both. There are three types of consumers: Herbivores-are animals that eat only plants. Carnivores- are animals that eat other animals. Omnivores- are animals that eat both plants and animals. Decomposers-are bacteria or fungi which feed on decaying matter. They are very important for any ecosystem. If they weren't in the ecosystem, the plants would not get essential nutrients, and dead matter and waste would pile up. Salt Marsh Food Web Activities The salt marsh houses many different plants and animals that eat each other, which is an intricately woven web of producers, consumers, and decomposers. Consumers usually eat more than one type of food, and they may be eaten by many other consumers. This means that several food chains become connected together to form a food web.
    [Show full text]
  • Detrital Food Chain As a Possible Mechanism to Support the Trophic Structure of the Planktonic Community in the Photic Zone of a Tropical Reservoir
    Limnetica, 39(1): 511-524 (2020). DOI: 10.23818/limn.39.33 © Asociación Ibérica de Limnología, Madrid. Spain. ISSN: 0213-8409 Detrital food chain as a possible mechanism to support the trophic structure of the planktonic community in the photic zone of a tropical reservoir Edison Andrés Parra-García1,*, Nicole Rivera-Parra2, Antonio Picazo3 and Antonio Camacho3 1 Grupo de Investigación en Limnología Básica y Experimental y Biología y Taxonomía Marina, Instituto de Biología, Universidad de Antioquia. 050010 Medellín, Colombia. 2 Grupo de Fundamentos y Enseñanza de la Física y los Sistemas Dinámicos, Instituto de Física, Universidad de Antioquia. 050010 Medellín, Colombia. 3 Instituto Cavanilles de Biodiversidad y Biología Evolutiva. Universidad de Valencia. E–46980 Paterna, Valencia. España. * Corresponding author: [email protected] Received: 31/10/18 Accepted: 10/10/19 ABSTRACT Detrital food chain as a possible mechanism to support the trophic structure of the planktonic community in the photic zone of a tropical reservoir In the photic zone of aquatic ecosystems, where different communities coexist showing different strategies to access one or different resources, the biomass spectra can describe the food transfers and their efficiencies. The purpose of this work is to describe the biomass spectrum and the transfer efficiency, from the primary producers to the top predators of the trophic network, in the photic zone of the Riogrande II reservoir. Data used in the model of the biomass spectrum were taken from several studies carried out between 2010 and 2013 in the reservoir. The analysis of the slope of a biomass spectrum, of the transfer efficiencies, and the omnivory indexes, suggest that most primary production in the photic zone of the Riogrande II reservoir is not directly used by primary consumers, and it appears that detritic mass flows are an indirect way of channeling this production towards zooplankton.
    [Show full text]
  • Productivity Is Defined As the Ratio of Output to Input(S)
    Institute for Development Policy and Management (IDPM) Development Economics and Public Policy Working Paper Series WP No. 31/2011 Published by: Development Economics and Public Policy Cluster, Institute of Development Policy and Management, School of Environment and Development, University of Manchester, Manchester M13 9PL, UK; email: [email protected]. PRODUCTIVITY MEASUREMENT IN INDIAN MANUFACTURING: A COMPARISON OF ALTERNATIVE METHODS Vinish Kathuria SJMSOM, Indian Institute of Technology Bombay [email protected] Rajesh S N Raj * Centre for Multi-Disciplinary Development Research, Dharwad [email protected] Kunal Sen IDPM, University of Manchester [email protected] Abstract Very few other issues in explaining economic growth has generated so much debate than the measurement of total factor productivity (TFP) growth. The concept of TFP and its measurement and interpretation have offered a fertile ground for researchers for more than half a century. This paper attempts to provide a review of different issues in the measurement of TFP including the choice of inputs and outputs. The paper then gives a brief review of different techniques used to compute TFP growth. Using three different techniques – growth accounting (non-parametric), production function accounting for endogeniety (semi-parametric) and stochastic production frontier (parametric) – the paper computes the TFP growth of Indian manufacturing for both formal and informal sectors from 1989-90 to 2005-06. The results indicate that the TFP growth of formal and informal sector has differed greatly during this 16-year period but that the estimates are sensitive to the technique used. This suggests that any inference on productivity growth in India since the economic reforms of 1991 is conditional on the method of measurement used, and that there is no unambiguous picture emerging on the direction of change in TFP growth in post-reform India.
    [Show full text]
  • Structure and Distribution of Cold Seep Communities Along the Peruvian Active Margin: Relationship to Geological and Fluid Patterns
    MARINE ECOLOGY PROGRESS SERIES Vol. 132: 109-125, 1996 Published February 29 Mar Ecol Prog Ser l Structure and distribution of cold seep communities along the Peruvian active margin: relationship to geological and fluid patterns 'Laboratoire Ecologie Abyssale, DROIEP, IFREMER Centre de Brest, BP 70, F-29280 Plouzane, France '~epartementdes Sciences de la Terre, UBO, 6 ave. Le Gorgeu, F-29287 Brest cedex, France 3~aboratoireEnvironnements Sedimentaires, DROIGM, IFREMER Centre de Brest, BP 70, F-29280 Plouzane, France "niversite P. et M. Curie, Observatoire Oceanologique de Banyuls, F-66650 Banyuls-sur-Mer, France ABSTRACT Exploration of the northern Peruvian subduction zone with the French submersible 'Nau- tile' has revealed benthlc communities dominated by new species of vesicomyid bivalves (Calyptogena spp and Ves~comyasp ) sustained by methane-nch fluid expulsion all along the continental margin, between depths of 5140 and 2630 m Videoscoplc studies of 25 dives ('Nautiperc cruise 1991) allowed us to describe the distribution of these biological conlnlunities at different spahal scales At large scale the communities are associated with fluid expuls~onalong the major tectonic features (scarps, canyons) of the margln At a smaller scale on the scarps, the distribuhon of the communities appears to be con- trolled by fluid expulsion along local fracturatlon features such as joints, faults and small-scale scars Elght dlves were made at one particular geological structure the Middle Slope Scarp (the scar of a large debns avalanche) where numerous
    [Show full text]
  • Development Team Prof
    Paper No: 01 Ecosystem Structures & Functions Module 5: Food chains and Food webs Development Team Prof. R.K. Kohli Principal Investigator & Prof. V.K. Garg & Prof. Ashok Dhawan Co- Principal Investigator Central University of Punjab, Bathinda Dr. Renuka Gupta, YMCA University of Science Paper Coordinator and Technology, Faridabad, Haryana Dr. Renuka Gupta, YMCA University of Science Content Writer and Technology, Faridabad, Haryana Content Reviewer Prof. V. K. Garg, Central University of Punjab, Bathinda 1 Anchor Institute Central University of Punjab Ecosystem Structures & Functions Environmental Module 5: Food Chains and Food Webs Sciences Description of Module Subject Name Environmental Sciences Paper Name Ecosystem Structure & Function Module 5. Food Chains and Food webs Name/Title Module Id EVS/ESF-I/5 Pre-requisites • To learn about food chains and food web in an ecosystem. • To understand about grazing and detritus food chains. Objectives • To learn about different types of food webs. • To understand special features and significance of food chains and food web Ecosystem, Food chain, Food web, Grazing food chain, Detritus food chain, Types Keywords of food web, Reward Feedback, Trophic Cascades, Keystone Predation, Bottom - up approach, Top - down approach, Bioaccumulation, Biomagnification. 2 Ecosystem Structures & Functions Environmental Module 5: Food Chains and Food Webs Sciences Module 5: Food Chains and Food Webs Contents 1. Introduction 2. Food Chains 3. Types of Food Chains 4. Food Webs 5. Types of Food webs 6. Characteristics of food webs 7. Significance of food chains and food webs 8. Biomagnification 5. 1 Introduction Every ecosystem works in a systematic manner under natural conditions. It receives energy from the sun and passes it to various biotic components.
    [Show full text]
  • Carlson's Trophic State Index
    Carlson's Trophic State Index The cloudiness of lake water and how far down you can see is often related to the amount of nutrients in the water. Nutrients promote growth of microscopic plant cells (phytoplankton) that are fed upon by microscopic animals (zooplankton). The more the nutrients, the more the plants and animals and the cloudier the water is. This is a common, but indirect, way to roughly estimate the condition of the lake. This condition, called eutrophication, is a natural aging process of lakes, but which is unnaturally accelerated by too many nutrients. A Secchi disk is commonly used to measure the depth to which you can easily see through the water, also called its transparency. Secchi disk transparency, chlorophyll a (an indirect measure of phytoplankton), and total phosphorus (an important nutrient and potential pollutant) are often used to define the degree of eutrophication, or trophic status of a lake. The concept of trophic status is based on the fact that changes in nutrient levels (measured by total phosphorus) causes changes in algal biomass (measured by chlorophyll a) which in turn causes changes in lake clarity (measured by Secchi disk transparency). A trophic state index is a convenient way to quantify this relationship. One popular index was developed by Dr. Robert Carlson of Kent State University. Trophic State Index Carlson's index uses a log transformation of Secchi disk values as a measure of algal biomass on a scale from 0 - 110. Each increase of ten units on the scale represents a doubling of algal biomass. Because chlorophyll a and total phosphorus are usually closely correlated to Secchi disk measurements, these parameters can also be assigned trophic state index values.
    [Show full text]
  • Nutrient Release Rates and Ratios by Two Stream Detritivores Fed Leaf Litter Grown Under Elevated Atmospheric CO2
    Arch. Hydrobiol. 163 4 463–477 Stuttgart, August 2005 Nutrient release rates and ratios by two stream detritivores fed leaf litter grown under elevated atmospheric CO2 Paul C. Frost1 * and Nancy C. Tuchman2 With 5 figures and 1 table Abstract: We examined how nutrient release by two common stream detritivores, Asellus and Gammarus, was affected by the consumption of aspen leaf litter from trees grown under elevated CO2. We measured excretory release of dissolved organic carbon (DOC), ammonia (NH4), and soluble reactive phosphorus (SRP) from consumers fed senesced leaves of Populus tremuloides (trembling aspen) trees grown under elevated (720 ppm) and ambient (360 ppm) CO2. Contrary to predictions based on ecological stoichiometry, elevated CO2 leaves caused greater NH4 and SRP release from both ani- mals but did not affect the release of DOC. Elevated CO2 leaves reduced DOC : NH4 and DOC : SRP ratios released from Asellus but did not affect these ratios from Gam- marus. Both animals showed lower NH4 : SRP release ratios after eating elevated CO2 leaves. A mass balance model of consumer N and P release demonstrated that in- creased excretion rates likely resulted from reduced absorption efficiencies (and un- changed or higher digestive efficiencies) in these aquatic detritivores. Our results indi- cate that changes in leaf biochemistry resulting from elevated atmospheric CO2 will strongly affect the ability of stream consumers to retain important biogenic elements. Increased release rates of NH4 and SRP are another indication, along with reduced growth and reproduction, that litter produced under elevated CO2 has strong effects on key physiological processes in detritivores with potentially strong consequences for nutrient cycling in streams of forested regions.
    [Show full text]
  • Detritus Dynamics in the Seagrass Posidonia Oceanica: Elements for an Ecosystem Carbon and Nutrient Budget
    MARINE ECOLOGY PROGRESS SERIES Vol. 151: 43-53, 1997 Published May 22 Mar Ecol Prog Ser Detritus dynamics in the seagrass Posidonia oceanica: elements for an ecosystem carbon and nutrient budget M. A. Mateo*, J. Romero Departament d'Ecologia, Universitat de Barcelona, Diagonal 645, E-08028 Barcelona, Spain ABSTRACT. Leaf decay, leaf l~tterexport, burial in belowground sinks, and resp~ratoryconsumption of detritus were exam~nedat 2 different depths in a Posidonia oceanica (L ) Delile meadow off the Medes Islands, NW Mediterranean. At 5 m, the amount of exported leaf litter represented carbon, nitrogen and phosphorus losses of 7. 9 and 6%)of the plant primary productlon, respectively. About 26% of the carbon produced by the plant in 1 yr was immobilized by burial in the belowground compartment, i.e. as roots and rhizomes. Annual nitrogen and phosphorus burial in the sediment was 8 and 5",, of total N and P needs, respectively. Respiratory consumption (aerobic) of carbon leaf detritus represented 17"" of the annual production. An additional, but very substantial, loss of carbon as very fine particulate organic matter has been estimated at ca 48%. At 13 m the pattern of carbon losses was similar, but the lesser effect of wave action (reldtive to that at 5 m) reduced exportation, hence increasing the role of respiratory consumption. Data on carbon losses indicated that only a small part of the plant productlon was actually available to fuel the food web of this ecosystem. Total nutrient losses were in the range of 21 to 47 ",I of annual needs. From differences found in N and P concentrations between liv~ngand dead tissues, it is suggested that important nutrient recycling (50 to 70%)) may be due either to reclamation or to leaching immediately after plant death.
    [Show full text]
  • Forest Production Ecology • Objectives – Overview of Forest Production Ecology • C Cycling – Primary Productivity of Trees and Forest Ecosystems
    Forest Production Ecology • Objectives – Overview of forest production ecology • C cycling – Primary productivity of trees and forest ecosystems … ecologists and ecosystem managers are unlikely to achieve desired management objectives unless they are familiar with the distribution and movements of energy that are responsible for the character and productivity of ecosystems under their management. (Kimmins 2004) – First: questions, take-home points, things you learned, etc. from reading assignment 1 Forest Production Ecology • Why should you care about C cycling? – C is the energy currency of all ecosystems • Plant (autotrophic) production is the base of almost all food/energy pyramids • Underlies all ecosystem goods & services – Plant C cycling, to a large extent, controls atmospheric CO2 concentrations (i.e., climate) • 3-4x as much C in terrestrial ecosystems as the atmosphere • Forests account for ~80% of global plant biomass and ~50% of global terrestrial productivity – C is fundamental to soil processes (i.e., SOM) • Belowground resources are a primary control over all ecosystem processes 2 Forest Production Ecology •Global Carbon Cycle ≈ “Breathing” of Earth 3 Forest Production Ecology • C enters via photosynthesis The C Bank Account 1. Gross Primary Production (GPP) •Total C input via photosynthesis 2. Accumulates in ecosystems (C pools/storage) as: (a) plant biomass; (b) SOM & microbial biomass; or (c) animal biomass 3. Returned to the atmosphere via: (a) respiration (R; auto- or hetero-trophic); (b) VOC emissions; or (c) disturbance Chapin et al. (2011) 4. Leached from or transferred laterally to another ecosystem Forest Production Ecology • Keys to understanding biological C cycling 1. Pools (storage) vs. fluxes (flows) of C • Live and dead (detrital) biomass • Above- and belowground 2.
    [Show full text]