The Role of Ecological Theory in Microbial Ecology

Total Page:16

File Type:pdf, Size:1020Kb

The Role of Ecological Theory in Microbial Ecology PERSPECTIVES many areas in which microorganisms are of ESSAY environmental and economic importance. For example, improved quantitative theory The role of ecological theory could increase the efficiency of wastewater treatment processes, through the predic- tion of optimal operating conditions and in microbial ecology conditions that are likely to result in system failure. Quantitative information on the James I. Prosser, Brendan J. M. Bohannan, Tom P. Curtis, Richard J. Ellis, links between microbial community structure, Mary K. Firestone, Rob P. Freckleton, Jessica L. Green, Laura E. Green, population dynamics and activities will also Ken Killham, Jack J. Lennon, A. Mark Osborn, Martin Solan, facilitate assessment and, potentially, mitiga- Christopher J. van der Gast and J. Peter W. Young tion of microbial contributions to climate change, and should lead to quantitative Abstract | Microbial ecology is currently undergoing a revolution, with predictions of the impact of climate change repercussions spreading throughout microbiology, ecology and ecosystem science. on microbial contributions to specific eco- The rapid accumulation of molecular data is uncovering vast diversity, abundant system processes. Given the high abundance, biomass, diversity and global activities of uncultivated microbial groups and novel microbial functions. This accumulation of microorganisms, the ecological theory that data requires the application of theory to provide organization, structure, has been developed for plants and animals mechanistic insight and, ultimately, predictive power that is of practical value, but is of limited value if it does not apply to the application of theory in microbial ecology is currently very limited. Here we microbial communities. Microorganisms argue that the full potential of the ongoing revolution will not be realized if arguably provide much better controlled and more manipulable experimental systems research is not directed and driven by theory, and that the generality of established for testing ecological theory than plants ecological theory must be tested using microbial systems. or animals, and such testing is essential to establish the generality of theory. The use of Bacteria and Archaea have an essential microbial processes (in, for example, better controlled microbial systems might role in earth system processes. They are wastewater treatment, industrial chemical also generate new theory that is relevant to ubiquitous, possess enormous metabolic and production, pharmaceutical production and plants and animals. physiological versatility and are essential to bioremediation), and the realization that Two factors limit the development of virtually all biogeochemical cycling proc- many nonspecific microbial processes such theory in microbial ecology. The first esses — microbial carbon and nitrogen are as biogeochemical cycling are essential for is a lack of data and associated insights. calculated to be, respectively, equivalent to ecosystem sustainability, understanding the This is due in large part to the difficulties and tenfold as great as the carbon and nitro- factors that control these processes is crucial. inherent in observing microorganisms in gen stored in plants1. Although small (~10–6 In our view, this can best be achieved by nature, which often have few distinguishing m), they are abundant (>1030 individuals generating theory that is based on existing morphological features and often cannot globally). Their phylogenetic and physiologi- observations and subsequent experimental be cultivated in the laboratory. The applica- cal diversity is considerably greater than that validation. tion of cultivation-independent molecular of animals and plants and their interactions techniques and their successors — genom- with other life forms are correspondingly The importance of theory ics, metagenomics, transcriptomics and more complex. Theory is used to classify, interpret and proteomics — has generated a plethora of Understanding the ecology of micro- predict the world around us. Without it, new and more comprehensive observations organisms is arguably one of the most microbial ecology is merely the accumula- of microorganisms in nature, but we still compelling intellectual challenges facing tion of situation-bound statements that lack the theoretical tools required to detect contemporary ecology. Although worthy for are of limited predictive ability, providing underlying principles and mechanisms. its intellectual merits alone, developing such microbiologists with few insights. Theory The second factor is cultural, in that the an understanding is essential to meet many has an essential role in developing an under- tools and disciplines of ecological theory of the major challenges facing human society standing of, and explaining the interactions are not part of the contemporary mindset today, such as the management of natural between, microorganisms and their physical, in microbiology. Ecological theory and ecosystems and the mitigation of climate chemical and biological environments. quantitative reasoning typically form only change. Despite this, the application of theory This understanding will be lacking if it is minor components of education in microbi- is severely lacking in microbial ecology solely qualitative, and a full understanding ology, and microbiologists have traditionally where, paradoxically, it is required most. Just therefore requires quantitative theory. used a detailed, reductionist approach that as ecological theory arose from natural his- Theory generates predictions that can be is based on understanding physiological tory to draw generalized conclusions from of practical value for policy makers, stake- mechanisms, with relatively little attention specific observations of organisms in their holders and society. A striking example is the paid to theory. Although the challenge environment, so microbiologists need theory use of epidemiological models to predict for the microbial ecologist might appear to interpret the plethora of observations the spread of human and plant pathogens to be the discovery (or recollection) of ever- that have been made since van Leeuwenhoek and the use of these predictions to inform and more fascinating details of a given system, first saw ‘animalcules’ more than 300 years implement control policies2. There is similar the theoretician aims to predict as much as ago. With the increasing reliance on specific potential value in applying theory in the possible about a system using as few of these 384 | MAY 2007 | VOLUME 5 www.nature.com/reviews/micro © 2007 Nature Publishing Group PERSPECTIVES details as possible; but the populations and systems and allow the much more effective might not lead to simple mapping between structures of microbial communities, by management of the natural world. molecular markers and an ecological niche. comparison with those of plants and ani- In the following sections we discuss More crucially, speciation, and ecological mals, remain inscrutable. The application of examples of areas of ecological theory that species definitions, must consider bacterial molecular techniques has demonstrated the might be particularly valuable in microbial gene-transfer processes, which are erratic need for discovery research, but in our view ecology. In doing this, we attempt to deter- and transfer only a small part of the genome. this can only be exploited if it is directed mine whether the particular characteristics They provide a potential mechanism for by insights gained from the application of of microorganisms present difficulties in maintaining biological species in Mayr’s theory. applying ecological theory that has been sense8, because an incoming gene can developed for plants and higher animals. replace the homologous copy in the genome, Current ecological theory We consider whether and where new theory maintaining the genetic cohesion of the An established body of theory exists for might be required for microorganisms to species. In addition, these processes can also plant and animal ecology but the differ- enhance or replace established ecological result in the horizontal transfer of genes with ences between microorganisms and ‘large’ theory. We also identify conceptual and no counterpart in the recipient that can be organisms, and the extent to which these dif- practical challenges faced by microbial maintained on a plasmid or integrated by ferences restrict the applicability of existing ecologists in applying quantitative ecological non-homologous recombination. However, theory to microbial ecology, often form an theory. the importance of homologous recombina- impasse that is tacitly accepted and seldom tion and horizontal transfer varies widely questioned. Commonly cited differences Ecological species concepts among well-studied bacterial species, and include the small size of microorganisms, Most ecological theory depends on a con- perhaps even more so among the uncultured high rates of population growth, high rates cept of species: population ecology counts masses in the environment. This hetero- and extent of dispersal, the vast abundance individuals within species whereas com- geneity is one reason why we are still far of microorganisms, and the unique aspects of munity ecology and macroecology count from a consensus on the nature of bacterial their biology (such as parasexuality or the number of species. Species are most species, as revealed at a recent Royal Society extremely hardy resting stages). However, commonly defined
Recommended publications
  • Aristotle's Essentialism Revisited
    University of Missouri, St. Louis IRL @ UMSL Theses Graduate Works 4-15-2013 Accommodating Species Evolution: Aristotle’s Essentialism Revisited Yin Zhang University of Missouri-St. Louis, [email protected] Follow this and additional works at: http://irl.umsl.edu/thesis Recommended Citation Zhang, Yin, "Accommodating Species Evolution: Aristotle’s Essentialism Revisited" (2013). Theses. 192. http://irl.umsl.edu/thesis/192 This Thesis is brought to you for free and open access by the Graduate Works at IRL @ UMSL. It has been accepted for inclusion in Theses by an authorized administrator of IRL @ UMSL. For more information, please contact [email protected]. Accommodating Species Evolution: Aristotle’s Essentialism Revisited by Yin Zhang B.A., Philosophy, Peking University, 2010 A Thesis Submitted to The Graduate School at the University of Missouri – St. Louis in partial fulfillment of the requirements for the degree Master of Arts in Philosophy May 2013 Advisory Committee Jon D. McGinnis, Ph.D. Chairperson Andrew G. Black, Ph.D. Berit O. Brogaard, Ph.D. Zhang, Yin, UMSL, 2013, p. i PREFACE In the fall of 2008 when I was a junior at Peking University, I attended a lecture series directed by Dr. Melville Y. Stewart on science and religion. Guest lecturers Dr. Alvin Plantinga, Dr. William L. Craig and Dr. Bruce Reichenbach have influenced my thinking on the relation between evolution and faith. In the fall of 2010 when I became a one-year visiting student at Calvin College in Michigan, I took a seminar directed by Dr. Kelly J. Clark on evolution and ethics. Having thought about evolution/faith and evolution/ethics, I signed up for Dr.
    [Show full text]
  • 7.014 Handout PRODUCTIVITY: the “METABOLISM” of ECOSYSTEMS
    7.014 Handout PRODUCTIVITY: THE “METABOLISM” OF ECOSYSTEMS Ecologists use the term “productivity” to refer to the process through which an assemblage of organisms (e.g. a trophic level or ecosystem assimilates carbon. Primary producers (autotrophs) do this through photosynthesis; Secondary producers (heterotrophs) do it through the assimilation of the organic carbon in their food. Remember that all organic carbon in the food web is ultimately derived from primary production. DEFINITIONS Primary Productivity: Rate of conversion of CO2 to organic carbon (photosynthesis) per unit surface area of the earth, expressed either in terns of weight of carbon, or the equivalent calories e.g., g C m-2 year-1 Kcal m-2 year-1 Primary Production: Same as primary productivity, but usually expressed for a whole ecosystem e.g., tons year-1 for a lake, cornfield, forest, etc. NET vs. GROSS: For plants: Some of the organic carbon generated in plants through photosynthesis (using solar energy) is oxidized back to CO2 (releasing energy) through the respiration of the plants – RA. Gross Primary Production: (GPP) = Total amount of CO2 reduced to organic carbon by the plants per unit time Autotrophic Respiration: (RA) = Total amount of organic carbon that is respired (oxidized to CO2) by plants per unit time Net Primary Production (NPP) = GPP – RA The amount of organic carbon produced by plants that is not consumed by their own respiration. It is the increase in the plant biomass in the absence of herbivores. For an entire ecosystem: Some of the NPP of the plants is consumed (and respired) by herbivores and decomposers and oxidized back to CO2 (RH).
    [Show full text]
  • Relationships Between Net Primary Production, Water Transparency, Chlorophyll A, and Total Phosphorus in Oak Lake, Brookings County, South Dakota
    Proceedings of the South Dakota Academy of Science, Vol. 92 (2013) 67 RELATIONSHIPS BETWEEN NET PRIMARY PRODUCTION, WATER TRANSPARENCY, CHLOROPHYLL A, AND TOTAL PHOSPHORUS IN OAK LAKE, BROOKINGS COUNTY, SOUTH DAKOTA Lyntausha C. Kuehl and Nels H. Troelstrup, Jr.* Department of Natural Resource Management South Dakota State University Brookings, SD 57007 *Corresponding author email: [email protected] ABSTRACT Lake trophic state is of primary concern for water resource managers and is used as a measure of water quality and classification for beneficial uses. Secchi transparency, total phosphorus and chlorophyll a are surrogate measurements used in the calculation of trophic state indices (TSI) which classify waters as oligotrophic, mesotrophic, eutrophic or hypereutrophic. Yet the relationships between these surrogate measurements and direct measures of lake productivity vary regionally and may be influenced by external factors such as non-algal tur- bidity. Prairie pothole basins, common throughout eastern South Dakota and southwestern Minnesota, are shallow glacial lakes subject to frequent winds and sediment resuspension. Light-dark oxygen bottle methodology was employed to evaluate vertical planktonic production within an eastern South Dakota pothole basin. Secchi transparency, total phosphorus and planktonic chlorophyll a were also measured from each of three basin sites at biweekly intervals throughout the 2012 growing season. Secchi transparencies ranged between 0.13 and 0.25 meters, corresponding to an average TSISD value of 84.4 (hypereutrophy). Total phosphorus concentrations ranged between 178 and 858 ug/L, corresponding to an average TSITP of 86.7 (hypereutrophy). Chlorophyll a values corresponded to an average TSIChla value of 69.4 (transitional between eutrophy and hypereutro- phy) and vertical production profiles yielded areal net primary productivity val- ues averaging 288.3 mg C∙m-2∙d-1 (mesotrophy).
    [Show full text]
  • Diversity and Evolution of Bacterial Bioluminescence Genes in the Global Ocean Thomas Vannier, Pascal Hingamp, Floriane Turrel, Lisa Tanet, Magali Lescot, Y
    Diversity and evolution of bacterial bioluminescence genes in the global ocean Thomas Vannier, Pascal Hingamp, Floriane Turrel, Lisa Tanet, Magali Lescot, Y. Timsit To cite this version: Thomas Vannier, Pascal Hingamp, Floriane Turrel, Lisa Tanet, Magali Lescot, et al.. Diversity and evolution of bacterial bioluminescence genes in the global ocean. NAR Genomics and Bioinformatics, Oxford University Press, 2020, 2 (2), 10.1093/nargab/lqaa018. hal-02514159 HAL Id: hal-02514159 https://hal.archives-ouvertes.fr/hal-02514159 Submitted on 21 Mar 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Published online 14 March 2020 NAR Genomics and Bioinformatics, 2020, Vol. 2, No. 2 1 doi: 10.1093/nargab/lqaa018 Diversity and evolution of bacterial bioluminescence genes in the global ocean Thomas Vannier 1,2,*, Pascal Hingamp1,2, Floriane Turrel1, Lisa Tanet1, Magali Lescot 1,2,* and Youri Timsit 1,2,* 1Aix Marseille Univ, Universite´ de Toulon, CNRS, IRD, MIO UM110, 13288 Marseille, France and 2Research / Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022 Tara GOSEE, 3 rue Michel-Ange, Downloaded from https://academic.oup.com/nargab/article-abstract/2/2/lqaa018/5805306 by guest on 21 March 2020 75016 Paris, France Received October 21, 2019; Revised February 14, 2020; Editorial Decision March 02, 2020; Accepted March 06, 2020 ABSTRACT ganisms and is particularly widespread in marine species (7–9).
    [Show full text]
  • The Effects of Eutrophication on the Structure and Function of Microbial Biofilms
    The Effects of Eutrophication on the Structure and Function of Microbial Biofilms David J. Van Horn1*, Cliff N. Dahm1 1UNM Department of Biology, 167 Castetter Hall MSC03 2020, 1 University of New Mexico, Albuquerque, NM 87131-0001 Abstract: Biofilms are the dominate form of microbial life in aquatic ecosystems and are responsible for performing a wide variety of ecosystem services including nutrient and organic matter processing and retention. Understanding how eutrophication impacts these communities is essential for ecosystem managers as many aquatic ecosystems are being enriched by anthropogenic activities. This study investigated the effects of eutrophication on biofilm productivity, community structure and diversity, and function. Increasing background dissolved organic carbon and nutrient concentrations by a factor of twelve increased biofilm ash free dry mass and the abundance of live cells ~ 22 and 200 fold respectively. Extracellular enzyme activities for five enzymes from the same samples showed a range of increase from ~ 300 times for phosphatase to 8000 times for N-acetylglucosaminidase. Enrichment decreased the bacterial diversity of these biofilms and resulted in a gradual shift in community structure that intensified from low to high enrichment. These data indicate that the productivity, community structure, and function of stream biofilm communities are highly responsive to eutrophication inputs. 1 Introduction: Microbes are the most abundant organisms on Earth and play a central role in all global processes. While often overlooked due to their inconspicuous nature, microbes contain as much carbon and ten times more nitrogen and phosphorus than plants (Whitman et al. 1998), possess unique metabolic pathways essential to biogeochemical cycles (Schlesinger 1997), and represent a potentially massive pool of genetic diversity that is only now being explored (Curtis et al.
    [Show full text]
  • Productivity Is Defined As the Ratio of Output to Input(S)
    Institute for Development Policy and Management (IDPM) Development Economics and Public Policy Working Paper Series WP No. 31/2011 Published by: Development Economics and Public Policy Cluster, Institute of Development Policy and Management, School of Environment and Development, University of Manchester, Manchester M13 9PL, UK; email: [email protected]. PRODUCTIVITY MEASUREMENT IN INDIAN MANUFACTURING: A COMPARISON OF ALTERNATIVE METHODS Vinish Kathuria SJMSOM, Indian Institute of Technology Bombay [email protected] Rajesh S N Raj * Centre for Multi-Disciplinary Development Research, Dharwad [email protected] Kunal Sen IDPM, University of Manchester [email protected] Abstract Very few other issues in explaining economic growth has generated so much debate than the measurement of total factor productivity (TFP) growth. The concept of TFP and its measurement and interpretation have offered a fertile ground for researchers for more than half a century. This paper attempts to provide a review of different issues in the measurement of TFP including the choice of inputs and outputs. The paper then gives a brief review of different techniques used to compute TFP growth. Using three different techniques – growth accounting (non-parametric), production function accounting for endogeniety (semi-parametric) and stochastic production frontier (parametric) – the paper computes the TFP growth of Indian manufacturing for both formal and informal sectors from 1989-90 to 2005-06. The results indicate that the TFP growth of formal and informal sector has differed greatly during this 16-year period but that the estimates are sensitive to the technique used. This suggests that any inference on productivity growth in India since the economic reforms of 1991 is conditional on the method of measurement used, and that there is no unambiguous picture emerging on the direction of change in TFP growth in post-reform India.
    [Show full text]
  • Structure and Distribution of Cold Seep Communities Along the Peruvian Active Margin: Relationship to Geological and Fluid Patterns
    MARINE ECOLOGY PROGRESS SERIES Vol. 132: 109-125, 1996 Published February 29 Mar Ecol Prog Ser l Structure and distribution of cold seep communities along the Peruvian active margin: relationship to geological and fluid patterns 'Laboratoire Ecologie Abyssale, DROIEP, IFREMER Centre de Brest, BP 70, F-29280 Plouzane, France '~epartementdes Sciences de la Terre, UBO, 6 ave. Le Gorgeu, F-29287 Brest cedex, France 3~aboratoireEnvironnements Sedimentaires, DROIGM, IFREMER Centre de Brest, BP 70, F-29280 Plouzane, France "niversite P. et M. Curie, Observatoire Oceanologique de Banyuls, F-66650 Banyuls-sur-Mer, France ABSTRACT Exploration of the northern Peruvian subduction zone with the French submersible 'Nau- tile' has revealed benthlc communities dominated by new species of vesicomyid bivalves (Calyptogena spp and Ves~comyasp ) sustained by methane-nch fluid expulsion all along the continental margin, between depths of 5140 and 2630 m Videoscoplc studies of 25 dives ('Nautiperc cruise 1991) allowed us to describe the distribution of these biological conlnlunities at different spahal scales At large scale the communities are associated with fluid expuls~onalong the major tectonic features (scarps, canyons) of the margln At a smaller scale on the scarps, the distribuhon of the communities appears to be con- trolled by fluid expulsion along local fracturatlon features such as joints, faults and small-scale scars Elght dlves were made at one particular geological structure the Middle Slope Scarp (the scar of a large debns avalanche) where numerous
    [Show full text]
  • Soil Microbial Biomass, Activity and Community Composition Along
    Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-184 Manuscript under review for journal Biogeosciences Discussion started: 12 June 2017 c Author(s) 2017. CC BY 3.0 License. 1 Soil microbial biomass, activity and community composition along 2 altitudinal gradients in the High Arctic (Billefjorden, Svalbard) 3 Petr Kotas1,2, Hana Šantrůčková1, Josef Elster3,4, Eva Kaštovská1 4 1Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, České Budějovice, 370 05, Czech 5 Republic 6 2Institute of Chemistry and Biochemistry, Faculty of Science, University of South Bohemia, České Budějovice, 370 05, 7 Czech Republic 8 3Centre for Polar Ecology, Faculty of Science, University of South Bohemia, České Budějovice, 370 05, Czech Republic 9 4Centre for Phycology, Institute of Botany, Academy of Sciences of the Czech Republic, Třeboň, 379 82, Czech Republic 10 11 Correspondence to: Petr Kotas ([email protected]) 12 Abstract The unique and fragile High Arctic ecosystems are vulnerable to proceeding global climate warming. Elucidation 13 of factors driving microbial distribution and activity in Arctic soils is essential for comprehensive understanding of the 14 ecosystem functioning and its response to environmental change. The goals of this study were to investigate the microbial 15 biomass, activity, microbial community structure (MCS) and its abiotic controls in soils along three elevational gradients in 16 coastal mountains of Billefjorden, Central Svalbard. Soils from four different altitudes (25, 275, 525, and 765 m above sea 17 level) were analysed for a suite of characteristics including temperature regimes, organic matter content, base cation 18 availability, moisture, pH, basal respiration, and microbial biomass and community structure using phospholipid fatty acids 19 (PLFA).
    [Show full text]
  • Carlson's Trophic State Index
    Carlson's Trophic State Index The cloudiness of lake water and how far down you can see is often related to the amount of nutrients in the water. Nutrients promote growth of microscopic plant cells (phytoplankton) that are fed upon by microscopic animals (zooplankton). The more the nutrients, the more the plants and animals and the cloudier the water is. This is a common, but indirect, way to roughly estimate the condition of the lake. This condition, called eutrophication, is a natural aging process of lakes, but which is unnaturally accelerated by too many nutrients. A Secchi disk is commonly used to measure the depth to which you can easily see through the water, also called its transparency. Secchi disk transparency, chlorophyll a (an indirect measure of phytoplankton), and total phosphorus (an important nutrient and potential pollutant) are often used to define the degree of eutrophication, or trophic status of a lake. The concept of trophic status is based on the fact that changes in nutrient levels (measured by total phosphorus) causes changes in algal biomass (measured by chlorophyll a) which in turn causes changes in lake clarity (measured by Secchi disk transparency). A trophic state index is a convenient way to quantify this relationship. One popular index was developed by Dr. Robert Carlson of Kent State University. Trophic State Index Carlson's index uses a log transformation of Secchi disk values as a measure of algal biomass on a scale from 0 - 110. Each increase of ten units on the scale represents a doubling of algal biomass. Because chlorophyll a and total phosphorus are usually closely correlated to Secchi disk measurements, these parameters can also be assigned trophic state index values.
    [Show full text]
  • PISA Style Scientific Literacy Question on the Origin of Species
    PISA Style Scientific Literacy Question On the Origin of Species – Text 1 Read the following extract from Charles Darwin’s book ‘On the Origin of Species’ ‘Can it then be thought improbable, seeing that variations useful to man have undoubtedly occurred, that other variations useful in some way to each being in the great and complex battle of life, should sometimes occur in the course of thousands of generations? If such do occur, can we doubt (remembering that many more individuals are born than can possibly survive) that individuals having an advantage, however slight, over others, would have the best chance of surviving and procreating their kind? On the other hand, we may feel that any variation in the least degree injurious would be rigidly destroyed’. Question 1 : ON THE ORIGIN OF SPECIES In this piece of text, Darwin is explaining his theory of evolution. He called this A Natural Selection B Adaptation C Inheritance D Variation Question 2 : ON THE ORIGIN OF SPECIES At the time, Darwin’s theory was not widely accepted. Which of the reasons below would explain why people did not support his idea? Reason why people did not support Darwin’s theory Yes or No ? There was little scientific evidence to support his theory Yes / No The theory of creationism as taught by the church was widely Yes / No believed and accepted People did not know about Darwin’s theory because there was no Yes / No radio or television Other scientists had come up with similar theories to Darwin Yes / No Question 3 : ON THE ORIGIN OF SPECIES Mali says that the theory of natural selection as described by Darwin in the text does not apply so well for humans.
    [Show full text]
  • Patterns of Microbial Diversity and Community Composition in Slot Canyons, Rock Pools, and Other Ephemeral and Perennial Aquatic Habitats
    Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 5-2020 Patterns of Microbial Diversity and Community Composition in Slot Canyons, Rock Pools, and Other Ephemeral and Perennial Aquatic Habitats Marley Madsen Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Ecology and Evolutionary Biology Commons Recommended Citation Madsen, Marley, "Patterns of Microbial Diversity and Community Composition in Slot Canyons, Rock Pools, and Other Ephemeral and Perennial Aquatic Habitats" (2020). All Graduate Theses and Dissertations. 7750. https://digitalcommons.usu.edu/etd/7750 This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. PATTERNS OF MICROBIAL DIVERSITY AND COMMUNITY COMPOSITION IN SLOT CANYONS, ROCK POOLS, AND OTHER EPHEMERAL AND PERENNIAL AQUATIC HABITATS by Marley Madsen A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Ecology Approved: Bonnie Waring, Ph.D. Paul Wolf, Ph.D. Major Professor Committee Member Will Pearse, Ph.D. Richard S. Inouye, Ph.D. Committee Member Vice Provost for Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2020 ii Copyright c Marley Madsen 2020 All Rights Reserved iii Abstract Patterns of Microbial Diversity and Community Composition in Slot Canyons, Rock Pools, and Other Ephemeral and Perennial Aquatic Habitats by Marley Madsen, Master of Science Utah State University, 2020 Major Professor: Dr. Bonnie Waring Department: Biology In general, species sorting is the dominant community assembly mechanism for mi- crobes, and this pattern holds true over a diverse range of habitats and spatial scales.
    [Show full text]
  • Forest Production Ecology • Objectives – Overview of Forest Production Ecology • C Cycling – Primary Productivity of Trees and Forest Ecosystems
    Forest Production Ecology • Objectives – Overview of forest production ecology • C cycling – Primary productivity of trees and forest ecosystems … ecologists and ecosystem managers are unlikely to achieve desired management objectives unless they are familiar with the distribution and movements of energy that are responsible for the character and productivity of ecosystems under their management. (Kimmins 2004) – First: questions, take-home points, things you learned, etc. from reading assignment 1 Forest Production Ecology • Why should you care about C cycling? – C is the energy currency of all ecosystems • Plant (autotrophic) production is the base of almost all food/energy pyramids • Underlies all ecosystem goods & services – Plant C cycling, to a large extent, controls atmospheric CO2 concentrations (i.e., climate) • 3-4x as much C in terrestrial ecosystems as the atmosphere • Forests account for ~80% of global plant biomass and ~50% of global terrestrial productivity – C is fundamental to soil processes (i.e., SOM) • Belowground resources are a primary control over all ecosystem processes 2 Forest Production Ecology •Global Carbon Cycle ≈ “Breathing” of Earth 3 Forest Production Ecology • C enters via photosynthesis The C Bank Account 1. Gross Primary Production (GPP) •Total C input via photosynthesis 2. Accumulates in ecosystems (C pools/storage) as: (a) plant biomass; (b) SOM & microbial biomass; or (c) animal biomass 3. Returned to the atmosphere via: (a) respiration (R; auto- or hetero-trophic); (b) VOC emissions; or (c) disturbance Chapin et al. (2011) 4. Leached from or transferred laterally to another ecosystem Forest Production Ecology • Keys to understanding biological C cycling 1. Pools (storage) vs. fluxes (flows) of C • Live and dead (detrital) biomass • Above- and belowground 2.
    [Show full text]