Productivity Significant Ideas

Total Page:16

File Type:pdf, Size:1020Kb

Productivity Significant Ideas 2.3 Flows of Energy & Matter - Productivity Significant Ideas • Ecosystems are linked together by energy and matter flow • The Sun’s energy drives these flows and humans are impacting the flows of energy and matter both locally and globally Knowledge & Understandings • As solar radiation (insolation) enters the Earth’s atmosphere some energy becomes unavailable for ecosystems as the energy absorbed by inorganic matter or reflected back into the atmosphere. • Pathways of radiation through the atmosphere involve the loss of radiation through reflection and absorption • Pathways of energy through an ecosystem include: • Conversion of light to chemical energy • Transfer of chemical energy from one trophic level to another with varying efficiencies • Overall conversion of UB and visible light to heat energy by the ecosystem • Re-radiation of heat energy to the atmosphere. Knowledge & Understandings • The conversion of energy into biomass for a given period of time is measured by productivity • Net primary productivity (NPP) is calculated by subtracting respiratory losses (R) from gross primary productivity (GPP) NPP = GPP – R • Gross secondary productivity (GSP) is the total energy/biomass assimulated by consumers and is calculated by subtracting the mass of fecal loss from the mass of food eaten. GSP = food eaten – fecal loss • Net secondary productivity (NSP) is calculated by subtracting the respiratory losses (R) from GSP. NSP=GSP - R Applications and Skills • Analyze quantitative models of flows of energy and matter • Construct quantitative models of flows of energy or matter for given data • Analyze the efficiency of energy transfers through a system • Calculate the values of both gross primary productivity (GPP) and net primary productivity (NPP) from given data • Calculate the values of both gross secondary productivity (GSP) and net secondary productivity (NSP) from given data Key terms • Gross productivity (GP) • Gross Primary Productivity (GPP) • Gross Secondary Productivity (GSP) • Net productivity • Net Primary Productivity (NPP) • Net Secondary Productivity (NSP) • Primary productivity • Secondary productivity What happens to solar radiation entering Earth’s system? 3% absorbed by clouds 100% entering 17% absorbed by solar molecules & dust radiation 49% absorbed by ground Figure 10.1 Photoautotrophs Only 0.06% of all solar radiation falling on Earth is captured by photoautotrophs! Photosynthesis in Plants • Chloroplasts are the location of photosynthesis in plants • In all green parts of plants – leaves, stems,… • Green color from chlorophyll (photosynthetic pigment) • Found in cells of mesophyll – interior tissue of leaves • Gases exchanges through the stomata • Water enters through xylem of roots Figure 10.2 Focusing in on the location of photosynthesis in a plant Energy Processes • Photosynthesis (Green Plants) sunlight +water + carbon dioxide oxygen + sugars • Respiration (All living things) oxygen + sugars ATP +water + carbon dioxide • ATP is molecular energy storage Producers • Make their own food - photoautotrophs, chemoautotrophs • Convert inorganic materials into organic compounds • Transform energy into a form usable by living organisms Photosynthesis • Inputs – sunlight, carbon dioxide, water • Outputs – sugars, oxygen • Transformations – radiant energy into chemical energy, inorganic carbon into organic carbon Respiration • Inputs - sugars, oxygen • Outputs - ATP, carbon dioxide, water • Transformations – chemical energy in carbon compounds into chemical energy as ATP, organic carbon compounds into inorganic carbon compounds Ecological Efficiency Ecological Efficiency Ecological Efficiency Pearson Environmental Systems and Societies 2015 Primary Productivity • The gain of energy or biomass by producers, per unit area per unit time. • The conversion of solar energy into chemical energy. • Depends on amount of sunlight (insolation) available, the efficiency of the producers to perform photosynthesis, and the availability of other factors needed for growth (nutrients). Distribution of World Productivity • Primary productivity is highest where conditions for growth is highest • High levels of insolation • Good water supply • Warm temperatures • High nutrients • Constant growing seasons Secondary Productivity • The biomass gained by consumers and decomposers through feeding and absorption • Measured in mass or energy per unit area per unit time • Depends on the amount of food available and the efficiency of the consumers for turning it into new biomass Gross Productivity (GP) • Total gain in energy or biomass produced per unit area per unit time • Varies across the surface of the earth • Generally greatest productivity • In shallow waters near continents • Along coral reefs – abundant light, heat, nutrients • Where upwelling currents bring nitrogen & phosphorous to the surface • Generally lowest • In deserts & arid regions with lack of water but high temperatures • Open ocean lacking nutrients and sun only near the surface Net Productivity (NP) • The gain in energy or biomass minus amount used by organism through respiration (R) • Some of GP used to stay alive, grow and reproduce • NP is what’s left • Most NP • Estuaries, swamps, tropical rainforests • Least NP • Open ocean, tundra, desert • Open ocean has low NP but its large area gives it more NP total than anywhere else Ocean Area vs Productivity Productivity & Agricultural Land • Highly modified, maintained ecosystems • Goal is increasing NPP and biomass of crop plants • Add in water (irrigation), nutrients (fertilizer) • Nitrogen and phosphorous are most often limiting to crop growth • Despite modification NPP in agricultural land is less than many other ecosystems GROSS PRIMARY PRODUCTIVITY (GPP) • The rate at which producers use photosynthesis to make more biomass • The mass of glucose created per unit area per unit time NET PRIMARY PRODUCTIVITY (NPP) • The rate at which energy for consumers is stored in new biomass per unit area per unit time after subtracting respiratory losses (R) • This is the amount of energy/biomass available to the consumers at the next trophic level • NPP = GPP - R Productivity Calculations • Total Primary Productivity = Gross Primary Production (GPP) Amount of light energy converted into chemical energy by photosynthesis per unit time • Joules / Meter2 / year • Net Primary Productivity GPP – R, or GPP – some energy used for cell respiration in the primary producers (R = respiratory loss) • Represents the energy storage available for the whole community of consumers • Standing crop = Total living material at a trophic level Experiments to Calculate Productivity (Light/Dark Rxns) • Use aquatic plants • Measure both photosynthesis and respiration by looking at oxygen levels • In water we must measure dissolved oxygen (DO) – indirect measure • NPP can be estimated by measuring the increase in DO when in light • GPP can be calculated by measuring the decrease in DO when put in the dark (only respiration (R) will occur) • NPP = GPP – R so GPP = NPP + R Experiments to Calculate Productivity (Light/Dark Rxns) • You start a light bottle/dark bottle measurement on algae Species X with 10 mg/L of oxygen in both bottles. You let the bottles sit for 1 week so that photosynthesis and respiration rates can be calculated. At the end of 1 week, you have 7 mg/L of oxygen in your dark bottle and 12 mg/L oxygen in your light bottle. What is the NPP, GPP, and respiration? Experiments to Calculate Productivity (Light/Dark Rxns) • You start a light bottle/dark bottle measurement on algae Species X with 10 mg/L of oxygen in both bottles. You let the bottles sit for 1 hour so that photosynthesis and respiration rates can be calculated. At the end of 1 week, you have 7 mg/L of oxygen in your dark bottle and 12 mg/L oxygen in your light bottle. What is the NPP, GPP, and respiration? • NPP = 12 mg/L – 10 mg/L = 2 mg O2 per liter per week • Loss of dissolved O2 (R) = 10 mg/L – 7 mg/L = 3 mg/L/wk • NPP = GPP – R so GPP = NPP + R • GPP = 2 + 3 = 5 mg O2/L/wk Problems Dissolved Oxygen (mmol/L) in water samples from Lake Ashby Transparent Bottle Opaque Bottle Initial, 6 a.m. 0.288 0.288 Final, 9 a.m. 0.292 0.282 Difference 0.004 0.006 1. Write the equation for and calculate the GPP 2. Write the equation for and calculate the NPP 3. Write the equation for and calculate the Respiration GROSS SECONDARY PRODUCTIVITY (GSP) • The total energy or biomass assimilated by consumers • GSP = food eaten – fecal loss NET SECONDARY PRODUCTIVITY (NSP) • The gain by consumers in energy or biomass remaining per unit area per unit time after respiratory losses • NSP = GSP - R More Productivity Calculations Producers: • NPP = GPP – R Consumers: • GSP = Food eaten – fecal losses • NSP = change in mass over time • NSP = GSP – R Measuring Secondary Productivity • Gross Secondary Production • Measure the mass of food eaten by an organism (best if controlled diet in lab) • Measure mass of waste (excrement, shedding, etc.) produced • GSP = food eaten – mass of feces • Net Secondary Production • Measure organism’s starting mass and ending mass for experiment duration • NSP = Ending Mass – starting mass Calculating GSP, NSP, and R Experiment was carried out over 5 days. • NSP - gain in biomass of stick insect • 9.2g – 8.9g = 0.3 g / 5 days = 0.06 g/day • GSP = food eaten – fecal loss • Food eaten 29.2g – 26.3g = 2.9g • GSP = 2.9g – 0.5g = 2.4g/ 5 days = 0.48g/day • NSP = GSP – R So R = GSP – NSP • R = 0.48 g/day – 0.06 g/day = 0.42 g/day Method evaluation • GSP method difficult in natural conditions • Even in lab hard to get exact masses for waste • NSP method hard to document mass change in organism unless it is over a long time period What types of things effect productivity? • What can we measure for an experiment? • Effects of light exposure – strength, time, color, … • Effects of temperature • Differences between types of plants • Differences between types of producers • Effects of nutrient additions • Effects of salinity.
Recommended publications
  • Freshwater Ecosystems and Biodiversity
    Network of Conservation Educators & Practitioners Freshwater Ecosystems and Biodiversity Author(s): Nathaniel P. Hitt, Lisa K. Bonneau, Kunjuraman V. Jayachandran, and Michael P. Marchetti Source: Lessons in Conservation, Vol. 5, pp. 5-16 Published by: Network of Conservation Educators and Practitioners, Center for Biodiversity and Conservation, American Museum of Natural History Stable URL: ncep.amnh.org/linc/ This article is featured in Lessons in Conservation, the official journal of the Network of Conservation Educators and Practitioners (NCEP). NCEP is a collaborative project of the American Museum of Natural History’s Center for Biodiversity and Conservation (CBC) and a number of institutions and individuals around the world. Lessons in Conservation is designed to introduce NCEP teaching and learning resources (or “modules”) to a broad audience. NCEP modules are designed for undergraduate and professional level education. These modules—and many more on a variety of conservation topics—are available for free download at our website, ncep.amnh.org. To learn more about NCEP, visit our website: ncep.amnh.org. All reproduction or distribution must provide full citation of the original work and provide a copyright notice as follows: “Copyright 2015, by the authors of the material and the Center for Biodiversity and Conservation of the American Museum of Natural History. All rights reserved.” Illustrations obtained from the American Museum of Natural History’s library: images.library.amnh.org/digital/ SYNTHESIS 5 Freshwater Ecosystems and Biodiversity Nathaniel P. Hitt1, Lisa K. Bonneau2, Kunjuraman V. Jayachandran3, and Michael P. Marchetti4 1U.S. Geological Survey, Leetown Science Center, USA, 2Metropolitan Community College-Blue River, USA, 3Kerala Agricultural University, India, 4School of Science, St.
    [Show full text]
  • Ecosystem Structure and Function. Dr
    TOPIC: - ECOSYSTEM STRUCTURE AND FUNCTION. DR. ABHAY KRISHNA SINGH PAPER NAME: - ENVIRONMENTAL GEOGRAPHY SUBJECT: - GEOGRAPHY SEMESTER: - M.A. –IV PAPER CODE: - (GEOG. 403) UNIVERSITY DEPARTMENT OF GEOGRAPHY, DR. SHYMA PRASAD MUKHERJEE UNIVERSITY, RANCHI. Environmental Sciences INTRODUCTION: - All organisms need energy to perform the essential functions such as maintenance, growth, repair, movement, locomotion and reproduction; all of these processes require energy expenditure. The ultimate source of energy for all ecological systems is Sun. The solar energy is captured by the green plants (primary producers or autotrophs) and transformed into chemical energy and bound in glucose as potential energy during the process of photosynthesis. In this stored form, other organisms take the energy and pass it on further to other organisms. During this process, a reasonable proportion of energy is lost out of the living system. The whole process is called flow of energy in the ecosystem. It is the amount of energy that is received and transferred from organism to organism in an ecosystem that modulates the ecosystem structure. Without autotrophs, there would be no energy available to all other organisms that lack the capability of fixing light energy. A fraction i.e. about 1/50 millionth of the total solar radiation reaches the earth’s atmosphere. About 34% of the sunlight reaching the earth’s atmosphere is reflected back into the atmosphere, 10% is held by ozone layer, water vapors and other atmospheric gases. The remaining 56% sunlight reaches the earth’s surface. Only a fraction of this energy reaching the earth’s surface (1 to 5%) is used by green plants for photosynthesis and the rest is absorbed as heat by ground vegetation or water.
    [Show full text]
  • 7.014 Handout PRODUCTIVITY: the “METABOLISM” of ECOSYSTEMS
    7.014 Handout PRODUCTIVITY: THE “METABOLISM” OF ECOSYSTEMS Ecologists use the term “productivity” to refer to the process through which an assemblage of organisms (e.g. a trophic level or ecosystem assimilates carbon. Primary producers (autotrophs) do this through photosynthesis; Secondary producers (heterotrophs) do it through the assimilation of the organic carbon in their food. Remember that all organic carbon in the food web is ultimately derived from primary production. DEFINITIONS Primary Productivity: Rate of conversion of CO2 to organic carbon (photosynthesis) per unit surface area of the earth, expressed either in terns of weight of carbon, or the equivalent calories e.g., g C m-2 year-1 Kcal m-2 year-1 Primary Production: Same as primary productivity, but usually expressed for a whole ecosystem e.g., tons year-1 for a lake, cornfield, forest, etc. NET vs. GROSS: For plants: Some of the organic carbon generated in plants through photosynthesis (using solar energy) is oxidized back to CO2 (releasing energy) through the respiration of the plants – RA. Gross Primary Production: (GPP) = Total amount of CO2 reduced to organic carbon by the plants per unit time Autotrophic Respiration: (RA) = Total amount of organic carbon that is respired (oxidized to CO2) by plants per unit time Net Primary Production (NPP) = GPP – RA The amount of organic carbon produced by plants that is not consumed by their own respiration. It is the increase in the plant biomass in the absence of herbivores. For an entire ecosystem: Some of the NPP of the plants is consumed (and respired) by herbivores and decomposers and oxidized back to CO2 (RH).
    [Show full text]
  • Bacterial Production and Respiration
    Organic matter production % 0 Dissolved Particulate 5 > Organic Organic Matter Matter Heterotrophic Bacterial Grazing Growth ~1-10% of net organic DOM does not matter What happens to the 90-99% of sink, but can be production is physically exported to organic matter production that does deep sea not get exported as particles? transported Export •Labile DOC turnover over time scales of hours to days. •Semi-labile DOC turnover on time scales of weeks to months. •Refractory DOC cycles over on time scales ranging from decadal to multi- decadal…perhaps longer •So what consumes labile and semi-labile DOC? How much carbon passes through the microbial loop? Phytoplankton Heterotrophic bacteria ?? Dissolved organic Herbivores ?? matter Higher trophic levels Protozoa (zooplankton, fish, etc.) ?? • Very difficult to directly measure the flux of carbon from primary producers into the microbial loop. – The microbial loop is mostly run on labile (recently produced organic matter) - - very low concentrations (nM) turning over rapidly against a high background pool (µM). – Unclear exactly which types of organic compounds support bacterial growth. Bacterial Production •Step 1: Determine how much carbon is consumed by bacteria for production of new biomass. •Bacterial production (BP) is the rate that bacterial biomass is created. It represents the amount of Heterotrophic material that is transformed from a nonliving pool bacteria (DOC) to a living pool (bacterial biomass). •Mathematically P = µB ?? µ = specific growth rate (time-1) B = bacterial biomass (mg C L-1) P= bacterial production (mg C L-1 d-1) Dissolved organic •Note that µ = P/B matter •Thus, P has units of mg C L-1 d-1 Bacterial production provides one measurement of carbon flow into the microbial loop How doe we measure bacterial production? Production (∆ biomass/time) (mg C L-1 d-1) • 3H-thymidine • 3H or 14C-leucine Note: these are NOT direct measures of biomass production (i.e.
    [Show full text]
  • Thermophilic Lithotrophy and Phototrophy in an Intertidal, Iron-Rich, Geothermal Spring 2 3 Lewis M
    bioRxiv preprint doi: https://doi.org/10.1101/428698; this version posted September 27, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Thermophilic Lithotrophy and Phototrophy in an Intertidal, Iron-rich, Geothermal Spring 2 3 Lewis M. Ward1,2,3*, Airi Idei4, Mayuko Nakagawa2,5, Yuichiro Ueno2,5,6, Woodward W. 4 Fischer3, Shawn E. McGlynn2* 5 6 1. Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138 USA 7 2. Earth-Life Science Institute, Tokyo Institute of Technology, Meguro, Tokyo, 152-8550, Japan 8 3. Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 9 91125 USA 10 4. Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, 11 Japan 12 5. Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro, Tokyo, 13 152-8551, Japan 14 6. Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth 15 Science and Technology, Natsushima-cho, Yokosuka 237-0061, Japan 16 Correspondence: [email protected] or [email protected] 17 18 Abstract 19 Hydrothermal systems, including terrestrial hot springs, contain diverse and systematic 20 arrays of geochemical conditions that vary over short spatial scales due to progressive interaction 21 between the reducing hydrothermal fluids, the oxygenated atmosphere, and in some cases 22 seawater. At Jinata Onsen, on Shikinejima Island, Japan, an intertidal, anoxic, iron- and 23 hydrogen-rich hot spring mixes with the oxygenated atmosphere and sulfate-rich seawater over 24 short spatial scales, creating an enormous range of redox environments over a distance ~10 m.
    [Show full text]
  • Microbial Loop' in Stratified Systems
    MARINE ECOLOGY PROGRESS SERIES Vol. 59: 1-17, 1990 Published January 11 Mar. Ecol. Prog. Ser. 1 A steady-state analysis of the 'microbial loop' in stratified systems Arnold H. Taylor, Ian Joint Plymouth Marine Laboratory, Prospect Place, West Hoe, Plymouth PLl 3DH, United Kingdom ABSTRACT. Steady state solutions are presented for a simple model of the surface mixed layer, which contains the components of the 'microbial loop', namely phytoplankton, picophytoplankton, bacterio- plankton, microzooplankton, dissolved organic carbon, detritus, nitrate and ammonia. This system is assumed to be in equilibrium with the larger grazers present at any time, which are represented as an external mortality function. The model also allows for dissolved organic nitrogen consumption by bacteria, and self-grazing and mixotrophy of the microzooplankton. The model steady states are always stable. The solution shows a number of general properties; for example, biomass of each individual component depends only on total nitrogen concentration below the mixed layer, not whether the nitrogen is in the form of nitrate or ammonia. Standing stocks and production rates from the model are compared with summer observations from the Celtic Sea and Porcupine Sea Bight. The agreement is good and suggests that the system is often not far from equilibrium. A sensitivity analysis of the model is included. The effect of varying the mixing across the pycnocline is investigated; more intense mixing results in the large phytoplankton population increasing at the expense of picophytoplankton, micro- zooplankton and DOC. The change from phytoplankton to picophytoplankton dominance at low mixing occurs even though the same physiological parameters are used for both size fractions.
    [Show full text]
  • Model-Based Analysis of the Energy Fluxes and Trophic Structure of a Portunus Trituberculatus Polyculture Ecosystem
    Vol. 9: 479–490, 2017 AQUACULTURE ENVIRONMENT INTERACTIONS Published December 5 https://doi.org/10.3354/aei00247 Aquacult Environ Interact OPENPEN ACCESSCCESS Model-based analysis of the energy fluxes and trophic structure of a Portunus trituberculatus polyculture ecosystem Jie Feng1, Xiang-Li Tian1,*, Shuang-Lin Dong1, Rui-Peng He1, Kai Zhang1, Dong-Xu Zhang1, Qing-Qi Zhang2 1The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266003, PR China 2Marine Fishery Technology Guiding Office of Ganyu, Lianyungang 222100, PR China ABSTRACT: We constructed a quantitative Ecopath model of a trophic network to evaluate the energy flow and properties in a polyculture ecosystem containing 4 species (swimming crab Por- tunus trituberculatus, white shrimp Litopenaeus vannamei, short-necked clam Ruditapes philip- pinarum, and redlip mullet Liza haematochila) over a 90 d experimental period. The model con- tained 10 consumers, 4 detritus groups, and 4 primary producers. Ecotrophic efficiency values indicated that the system had high energy utilization efficiency. However, benthic bacteria con- verted the largest amount of energy back to the detritus groups, which had the lowest ecotrophic efficiency (0.01). When aggregating the network to discrete trophic levels (TLs), most of the throughput and biomass of the system were distributed on the first 2 TLs; consequently, there was high energy transfer efficiency between TL I and II (81.98%). The trophic flow of this ecosystem was dominated by energy that originated from the detritus groups (73.77%). Imported artificial food was particularly important for the trophic flow of the total ecosystem, contributing 31.02% to total system consumption.
    [Show full text]
  • Relationships Between Net Primary Production, Water Transparency, Chlorophyll A, and Total Phosphorus in Oak Lake, Brookings County, South Dakota
    Proceedings of the South Dakota Academy of Science, Vol. 92 (2013) 67 RELATIONSHIPS BETWEEN NET PRIMARY PRODUCTION, WATER TRANSPARENCY, CHLOROPHYLL A, AND TOTAL PHOSPHORUS IN OAK LAKE, BROOKINGS COUNTY, SOUTH DAKOTA Lyntausha C. Kuehl and Nels H. Troelstrup, Jr.* Department of Natural Resource Management South Dakota State University Brookings, SD 57007 *Corresponding author email: [email protected] ABSTRACT Lake trophic state is of primary concern for water resource managers and is used as a measure of water quality and classification for beneficial uses. Secchi transparency, total phosphorus and chlorophyll a are surrogate measurements used in the calculation of trophic state indices (TSI) which classify waters as oligotrophic, mesotrophic, eutrophic or hypereutrophic. Yet the relationships between these surrogate measurements and direct measures of lake productivity vary regionally and may be influenced by external factors such as non-algal tur- bidity. Prairie pothole basins, common throughout eastern South Dakota and southwestern Minnesota, are shallow glacial lakes subject to frequent winds and sediment resuspension. Light-dark oxygen bottle methodology was employed to evaluate vertical planktonic production within an eastern South Dakota pothole basin. Secchi transparency, total phosphorus and planktonic chlorophyll a were also measured from each of three basin sites at biweekly intervals throughout the 2012 growing season. Secchi transparencies ranged between 0.13 and 0.25 meters, corresponding to an average TSISD value of 84.4 (hypereutrophy). Total phosphorus concentrations ranged between 178 and 858 ug/L, corresponding to an average TSITP of 86.7 (hypereutrophy). Chlorophyll a values corresponded to an average TSIChla value of 69.4 (transitional between eutrophy and hypereutro- phy) and vertical production profiles yielded areal net primary productivity val- ues averaging 288.3 mg C∙m-2∙d-1 (mesotrophy).
    [Show full text]
  • Supplement A: Assumptions and Equations in Ecopath with Ecosim Governing Equations
    Transactions of the American Fisheries Society 145:136–162, 2016 © American Fisheries Society 2016 DOI: 10.1080/00028487.2015.1069211 Supplement A: Assumptions and Equations in Ecopath with Ecosim Governing Equations The Ecopath module of EwE is a static, mass-balance ecosystem model that uses two governing equations for each species and age group (Christensen and Walters 2004). The first governing equation describes each species group’s production for a time period, i.e., production (P) is the sum of fishery catch (F), predation (M2), net migration (immigration, I, and emigration, E), biomass accumulation (BA), and mortality from other sources (‘other mortality’, M0): P = F + M2 + (I - E) + BA - M0 The second governing equation is based on the principle of conservation of matter within a group, and is designed to balance the energy flows of a biomass pool, i.e., consumption (C) equals the sum of production (P), respiration (R), and unassimilated food (U): C = P + R + U At a minimum, Ecopath requires inputs of diet composition (DCi,j, where i is predator and j is prey), fishery catch (Yi), and three of the following four parameters for each model group (i): biomass (Bi), production-to-biomass ratio (Pi/Bi), consumption-to-biomass ratio (Qi/Bi), and the ecotrophic efficiency (EEi, the fraction of the production that is used in the system and does not move directly to the detritus pool). Mass-balance principles are then used to estimate the fourth parameter. P/B is the annual production rate of the population in Ecopath. Under equilibrium conditions, the P/B ratio of fish is equivalent to its total annual instantaneous mortality (Z) (Allen 1971).
    [Show full text]
  • Interactions Between Photosynthesis and Respiration in an Aquatic Ecosystem
    Interactions between Photosynthesis and Respiration in an Aquatic Ecosystem Jane E. Caldwell and Kristi Teagarden 53 Campus Drive, P.O. Box 6057 Dept. of Biology West Virginia University Morgantown, WV 26506 [email protected] (304)293-5201 extension 31459 [email protected] (304)293-5201 extension 31542 Abstract: Students measure the results of respiration and photosynthesis separately, combined, and in comparison to a non-living control “ecosystem”. The living ecosystem uses only snails and water plants. Oxygen, carbon dioxide, and ammonia nitrogen concentrations are measured with simple colorimetric and titration water tests using commercially available kits. The exercise is designed for large enrollment non-majors labs, but modifications for large and small classrooms are described. Introduction This lab exercise was developed for a freshman course for non-science majors at West Virginia University. The exercise asks students to apply their knowledge of basic metabolic processes to a series of simple aquatic ecosystems, which students monitor through water testing. These ecosystems consist of aquaria containing plants and/or snails with or without light exposure, and are compared against a non-living control system (an aquarium with water, light, and gravel). As they analyze their results, students observe the interplay of respiration, photosynthesis, protein digestion (or waste excretion), and decomposition through their effects on dissolved oxygen, carbon dioxide, and ammonia. Students synthesize these observations into written explanations of their results. During the course of the lab, students: • predict the relative levels of oxygen, carbon dioxide, and ammonia for various aquaria compared to a control aquarium. • observe and conduct titrimetric and colorimetric tests for dissolved compounds in water.
    [Show full text]
  • Productivity Is Defined As the Ratio of Output to Input(S)
    Institute for Development Policy and Management (IDPM) Development Economics and Public Policy Working Paper Series WP No. 31/2011 Published by: Development Economics and Public Policy Cluster, Institute of Development Policy and Management, School of Environment and Development, University of Manchester, Manchester M13 9PL, UK; email: [email protected]. PRODUCTIVITY MEASUREMENT IN INDIAN MANUFACTURING: A COMPARISON OF ALTERNATIVE METHODS Vinish Kathuria SJMSOM, Indian Institute of Technology Bombay [email protected] Rajesh S N Raj * Centre for Multi-Disciplinary Development Research, Dharwad [email protected] Kunal Sen IDPM, University of Manchester [email protected] Abstract Very few other issues in explaining economic growth has generated so much debate than the measurement of total factor productivity (TFP) growth. The concept of TFP and its measurement and interpretation have offered a fertile ground for researchers for more than half a century. This paper attempts to provide a review of different issues in the measurement of TFP including the choice of inputs and outputs. The paper then gives a brief review of different techniques used to compute TFP growth. Using three different techniques – growth accounting (non-parametric), production function accounting for endogeniety (semi-parametric) and stochastic production frontier (parametric) – the paper computes the TFP growth of Indian manufacturing for both formal and informal sectors from 1989-90 to 2005-06. The results indicate that the TFP growth of formal and informal sector has differed greatly during this 16-year period but that the estimates are sensitive to the technique used. This suggests that any inference on productivity growth in India since the economic reforms of 1991 is conditional on the method of measurement used, and that there is no unambiguous picture emerging on the direction of change in TFP growth in post-reform India.
    [Show full text]
  • Structure and Distribution of Cold Seep Communities Along the Peruvian Active Margin: Relationship to Geological and Fluid Patterns
    MARINE ECOLOGY PROGRESS SERIES Vol. 132: 109-125, 1996 Published February 29 Mar Ecol Prog Ser l Structure and distribution of cold seep communities along the Peruvian active margin: relationship to geological and fluid patterns 'Laboratoire Ecologie Abyssale, DROIEP, IFREMER Centre de Brest, BP 70, F-29280 Plouzane, France '~epartementdes Sciences de la Terre, UBO, 6 ave. Le Gorgeu, F-29287 Brest cedex, France 3~aboratoireEnvironnements Sedimentaires, DROIGM, IFREMER Centre de Brest, BP 70, F-29280 Plouzane, France "niversite P. et M. Curie, Observatoire Oceanologique de Banyuls, F-66650 Banyuls-sur-Mer, France ABSTRACT Exploration of the northern Peruvian subduction zone with the French submersible 'Nau- tile' has revealed benthlc communities dominated by new species of vesicomyid bivalves (Calyptogena spp and Ves~comyasp ) sustained by methane-nch fluid expulsion all along the continental margin, between depths of 5140 and 2630 m Videoscoplc studies of 25 dives ('Nautiperc cruise 1991) allowed us to describe the distribution of these biological conlnlunities at different spahal scales At large scale the communities are associated with fluid expuls~onalong the major tectonic features (scarps, canyons) of the margln At a smaller scale on the scarps, the distribuhon of the communities appears to be con- trolled by fluid expulsion along local fracturatlon features such as joints, faults and small-scale scars Elght dlves were made at one particular geological structure the Middle Slope Scarp (the scar of a large debns avalanche) where numerous
    [Show full text]