Axis Scientific Premium Life-Size Human Leg Musculature A-104285
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hip Extensor Mechanics and the Evolution of Walking and Climbing Capabilities in Humans, Apes, and Fossil Hominins
Hip extensor mechanics and the evolution of walking and climbing capabilities in humans, apes, and fossil hominins Elaine E. Kozmaa,b,1, Nicole M. Webba,b,c, William E. H. Harcourt-Smitha,b,c,d, David A. Raichlene, Kristiaan D’Aoûtf,g, Mary H. Brownh, Emma M. Finestonea,b, Stephen R. Rossh, Peter Aertsg, and Herman Pontzera,b,i,j,1 aGraduate Center, City University of New York, New York, NY 10016; bNew York Consortium in Evolutionary Primatology, New York, NY 10024; cDepartment of Anthropology, Lehman College, New York, NY 10468; dDivision of Paleontology, American Museum of Natural History, New York, NY 10024; eSchool of Anthropology, University of Arizona, Tucson, AZ 85721; fInstitute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, United Kingdom; gDepartment of Biology, University of Antwerp, 2610 Antwerp, Belgium; hLester E. Fisher Center for the Study and Conservation of Apes, Lincoln Park Zoo, Chicago, IL 60614; iDepartment of Anthropology, Hunter College, New York, NY 10065; and jDepartment of Evolutionary Anthropology, Duke University, Durham, NC 27708 Edited by Carol V. Ward, University of Missouri-Columbia, Columbia, MO, and accepted by Editorial Board Member C. O. Lovejoy March 1, 2018 (received for review September 10, 2017) The evolutionary emergence of humans’ remarkably economical their effects on climbing performance or tested whether these walking gait remains a focus of research and debate, but experi- traits constrain walking and running performance. mentally validated approaches linking locomotor -
Physio Med Self Help for Achilles Tendinopathy
Physio Med Self Help 0113 229 1300 for Achilles Tendinopathy Achilles tendon injuries are common, often evident in middle aged runners to non-sporting individuals. They are often characterised by pain in the tendon, usually at the beginning and end of exercise, pain and stiffness first thing in the morning or after sitting for long periods. There is much that can be done to both speed up the healing and prevent re-occurrence. Anatomy of the Area The muscles of your calf (the gastrocnemius and soleus) are the muscles which create the force needed to push your foot off the floor when walking, running and jumping, or stand up on your toes. The Achilles tendon is the fibrous band that connects these muscles to your heel. You may recognise the term ‘Achilles Tendonitis’ which was the previous name used for Achilles Tendinopathy. However the name has changed as it is no longer thought to be a totally inflammatory condition, but rather an overuse injury causing pain, some localised inflammation and degeneration of the thick Achilles tendon at the back of the ankle. Potential causes of Achilles Tendinopathy and advice on how to prevent it • Poor footwear or sudden change in training surface e.g. sand makes the calf work harder » Wear suitable shoes for the activity (type, fit and condition of footwear). » Take account of the surface you are exercising on and if soft and unstructured like sand or loose soil reduce the intensity / duration or take a short break or reduce any load you are carrying into smaller loads until you become conditioned to it. -
Achilles Tendon Injuries EXPERT CONSULTANT: Michael S
SPORTS TIP Achilles Tendon Injuries EXPERT CONSULTANT: Michael S. George, MD The Achilles tendon is one of the largest, can mask symptoms and lead to greater While partial tears are typically treated thickest, strongest tendons in the human injury as the athlete tries to play through non-operatively, complete Achilles body. It connects the calf muscles to the the pain. tears may be treated both with surgical heel bone, and allows the heel to push off repair and without surgery. While most the ground during movement. Problems Achilles Tendon Ruptures competitive athletes typically undergo affecting the Achilles tendon vary from The Achilles tendon is one of the most surgical repair of the torn Achilles, some mild inflammation and tendinopathy, commonly ruptured tendons in the human recent research studies have shown to partial tears, to complete ruptures. body. The tendon can rupture as the that outcomes may be similar in the athlete is coming down from a jump, general population between tears treated Achilles Tendinopathy and also during a start-and-stop motion operatively and non-operatively. Therefore, Tendinopathy (otherwise known as of many sports. the decision as to whether surgical or non-surgical treatment is chosen should tendinitis or tendinosis) typically results In cases of a complete rupture, a sudden be made by the patient and the treating from repetitive microtrauma and tendon pop or snap is typically felt in the back physician, and should include careful overuse, such as may occur with sports of the ankle, sometimes “as if someone consideration of such factors as the and exercise, and manifests as tendon kicked the leg,” while running, jumping, patient’s age, activity level, and other degeneration and inflammation of the or quickly changing directions. -
Gluteal Region-II
Gluteal Region-II Dr Garima Sehgal Associate Professor King George’s Medical University UP, Lucknow Structures in the Gluteal region • Bones & joints • Ligaments Thickest muscle • Muscles • Vessels • Nerves Thickest nerve • Bursae Learning Objectives By the end of this teaching session Gluteal region –II all the MBBS 1st year students must be able to: • Enumerate the nerves of gluteal region • Write a short note on nerves of gluteal region • Describe the location & relations of sciatic nerve in gluteal region • Enumerate the arteries of gluteal region • Write a short note on arteries of gluteal region • Enumerate the arteries taking part in trochanteric and cruciate anastomosis • Write a short note on trochanteric and cruciate anastomosis • Enumerate the structures passing through greater sciatic foramen • Enumerate the structures passing through lesser sciatic foramen • Enumerate the bursae in relation to gluteus maximus • Enumerate the structures deep to gluteus maximus • Discuss applied anatomy Nerves of Gluteal region (all nerves in gluteal region are branches of sacral plexus) Superior gluteal nerve (L4,L5, S1) Inferior gluteal nerve (L5, S1, S2) FROM DORSAL DIVISIONS Perforating cutaneous nerve (S2,S3) Nerve to quadratus femoris (L4,L5, S1) Nerve to obturator internus (L5, S1, S2) FROM VENTRAL DIVISIONS Pudendal nerve (S2,S3,S4) Sciatic nerve (L4,L5,S1,S2,S3) Posterior cutaneous nerve of thigh FROM BOTH DORSAL &VENTRAL (S1,S2) & (S2,S3) DIVISIONS 1. Superior Gluteal nerve (L4,L5,S1- dorsal division) 1 • Enters through the greater 3 sciatic foramen • Above piriformis 2 • Runs forwards between gluteus medius & gluteus minimus • SUPPLIES: 1. Gluteus medius 2. Gluteus minimus 3. Tensor fasciae latae 2. -
Abdominal Muscles. Subinguinal Hiatus and Ingiunal Canal. Femoral and Adductor Canals. Neurovascular System of the Lower Limb
Abdominal muscles. Subinguinal hiatus and ingiunal canal. Femoral and adductor canals. Neurovascular system of the lower limb. Sándor Katz M.D.,Ph.D. External oblique muscle Origin: outer surface of the 5th to 12th ribs Insertion: outer lip of the iliac crest, rectus sheath Action: flexion and rotation of the trunk, active in expiration Innervation:intercostal nerves (T5-T11), subcostal nerve (T12), iliohypogastric nerve Internal oblique muscle Origin: thoracolumbar fascia, intermediate line of the iliac crest, anterior superior iliac spine Insertion: lower borders of the 10th to 12th ribs, rectus sheath, linea alba Action: flexion and rotation of the trunk, active in expiration Innervation:intercostal nerves (T8-T11), subcostal nerve (T12), iliohypogastric nerve, ilioinguinal nerve Transversus abdominis muscle Origin: inner surfaces of the 7th to 12th ribs, thoracolumbar fascia, inner lip of the iliac crest, anterior superior iliac spine, inguinal ligament Insertion: rectus sheath, linea alba, pubic crest Action: rotation of the trunk, active in expiration Innervation:intercostal nerves (T5-T11), subcostal nerve (T12), iliohypogastric nerve, ilioinguinal nerve Rectus abdominis muscle Origin: cartilages of the 5th to 7th ribs, xyphoid process Insertion: between the pubic tubercle and and symphysis Action: flexion of the lumbar spine, active in expiration Innervation: intercostal nerves (T5-T11), subcostal nerve (T12) Subingiunal hiatus - inguinal ligament Subinguinal hiatus Lacuna musculonervosa Lacuna vasorum Lacuna lymphatica Lacuna -
All About Glutes 1 Table of Contents
All About Glutes 1 Table of Contents Are You Training Your Glutes the Wrong Way? 3 • Anatomy of the Glutes 4 • Functions of the Glutes at the Hip 4 • The Shortcoming of Most Training Programs 5 • Progression and Preventing Knee Valgus 6 • Simple Solution 6 How to Identify and Correct Tight Hip Flexors 8 • What Exactly Are Tight Hip Flexors? 9 • The Hip Flexor Muscle Group 9 • Signs You Have Tight Hip Flexors 10 • What Causes Hip Tightness 10 • Stretches to Loosen up Tight Hip Flexors 10 • Exercises to Strengthen Hip Flexors 11 Pain in the Buttocks When Sitting? Tips to Prevent and Manage 12 Piriformis Syndrome • What is Piriformis Syndrome? 13 • How Does Piriformis Syndrome Happen? 13 • Special Considerations with Clients 14 • Prevention and Pain Management 14 How Do I Build the Perfect Glutes? 16 • Can’t I Just Squat and Lunge? 17 • Your Best Bets to Target the Glutes 18 • Don’t Forget the Legs 18 • Train the Glutes SPECIFICALLY 19 TABLE OF CONTENTS 800.545.4772 WWW.ISSAONLINE.EDU 2 Are You Training Your Glutes the Wrong Way? 800.545.4772 WWW.ISSAONLINE.EDU 3 UNIT ONE These days, the glutes get a lot of attention, and it’s well deserved. When you build and strengthen your glutes in the right way, they not only make your body look better, but they also increase your performance and can diminish knee pain. The problem is most people aren’t taking the best approach to training for the highest level of glute development. Anatomy of the Glutes Let’s start with a little anatomy. -
Static Stretching Time Required to Reduce Iliacus Muscle Stiffness
Sports Biomechanics ISSN: 1476-3141 (Print) 1752-6116 (Online) Journal homepage: https://www.tandfonline.com/loi/rspb20 Static stretching time required to reduce iliacus muscle stiffness Shusuke Nojiri, Masahide Yagi, Yu Mizukami & Noriaki Ichihashi To cite this article: Shusuke Nojiri, Masahide Yagi, Yu Mizukami & Noriaki Ichihashi (2019): Static stretching time required to reduce iliacus muscle stiffness, Sports Biomechanics, DOI: 10.1080/14763141.2019.1620321 To link to this article: https://doi.org/10.1080/14763141.2019.1620321 Published online: 24 Jun 2019. Submit your article to this journal Article views: 29 View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=rspb20 SPORTS BIOMECHANICS https://doi.org/10.1080/14763141.2019.1620321 Static stretching time required to reduce iliacus muscle stiffness Shusuke Nojiri , Masahide Yagi, Yu Mizukami and Noriaki Ichihashi Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan ABSTRACT ARTICLE HISTORY Static stretching (SS) is an effective intervention to reduce muscle Received 25 September 2018 stiffness and is also performed for the iliopsoas muscle. The iliop- Accepted 9 May 2019 soas muscle consists of the iliacus and psoas major muscles, KEYWORDS among which the former has a greater physiological cross- Iliacus muscle; static sectional area and hip flexion moment arm. Static stretching stretching; ultrasonic shear time required to reduce muscle stiffness can differ among muscles, wave elastography and the required time for the iliacus muscle remains unclear. The purpose of this study was to investigate the time required to reduce iliacus muscle stiffness. Twenty-six healthy men partici- pated in this study. -
Lower Extremity Focal Neuropathies
LOWER EXTREMITY FOCAL NEUROPATHIES Lower Extremity Focal Neuropathies Arturo A. Leis, MD S.H. Subramony, MD Vettaikorumakankav Vedanarayanan, MD, MBBS Mark A. Ross, MD AANEM 59th Annual Meeting Orlando, Florida Copyright © September 2012 American Association of Neuromuscular & Electrodiagnostic Medicine 2621 Superior Drive NW Rochester, MN 55901 Printed by Johnson Printing Company, Inc. 1 Please be aware that some of the medical devices or pharmaceuticals discussed in this handout may not be cleared by the FDA or cleared by the FDA for the specific use described by the authors and are “off-label” (i.e., a use not described on the product’s label). “Off-label” devices or pharmaceuticals may be used if, in the judgment of the treating physician, such use is medically indicated to treat a patient’s condition. Information regarding the FDA clearance status of a particular device or pharmaceutical may be obtained by reading the product’s package labeling, by contacting a sales representative or legal counsel of the manufacturer of the device or pharmaceutical, or by contacting the FDA at 1-800-638-2041. 2 LOWER EXTREMITY FOCAL NEUROPATHIES Lower Extremity Focal Neuropathies Table of Contents Course Committees & Course Objectives 4 Faculty 5 Basic and Special Nerve Conduction Studies of the Lower Limbs 7 Arturo A. Leis, MD Common Peroneal Neuropathy and Foot Drop 19 S.H. Subramony, MD Mononeuropathies Affecting Tibial Nerve and its Branches 23 Vettaikorumakankav Vedanarayanan, MD, MBBS Femoral, Obturator, and Lateral Femoral Cutaneous Neuropathies 27 Mark A. Ross, MD CME Questions 33 No one involved in the planning of this CME activity had any relevant financial relationships to disclose. -
Contents VII
Contents VII Contents Preface .............................. V 3.2 Supply of the Connective Tissue ....... 28 List of Abbreviations ................... VI Diffusion ......................... 28 Picture Credits ........................ VI Osmosis .......................... 29 3.3 The “Creep” Phenomenon ............ 29 3.4 The Muscle ....................... 29 Part A Muscle Chains 3.5 The Fasciae ....................... 30 Philipp Richter Functions of the Fasciae .............. 30 Manifestations of Fascial Disorders ...... 30 Evaluation of Fascial Tensions .......... 31 1 Introduction ..................... 2 Causes of Musculoskeletal Dysfunctions .. 31 1.1 The Significance of Muscle Chains Genesis of Myofascial Disorders ........ 31 in the Organism ................... 2 Patterns of Pain .................... 32 1.2 The Osteopathy of Dr. Still ........... 2 3.6 Vegetative Innervation of the Organs ... 34 1.3 Scientific Evidence ................. 4 3.7 Irvin M. Korr ...................... 34 1.4 Mobility and Stability ............... 5 Significance of a Somatic Dysfunction in the Spinal Column for the Entire Organism ... 34 1.5 The Organism as a Unit .............. 6 Significance of the Spinal Cord ......... 35 1.6 Interrelation of Structure and Function .. 7 Significance of the Autonomous Nervous 1.7 Biomechanics of the Spinal Column and System .......................... 35 the Locomotor System .............. 7 Significance of the Nerves for Trophism .. 35 .............. 1.8 The Significance of Homeostasis ....... 8 3.8 Sir Charles Sherrington 36 Inhibition of the Antagonist or Reciprocal 1.9 The Nervous System as Control Center .. 8 Innervation (or Inhibition) ............ 36 1.10 Different Models of Muscle Chains ..... 8 Post-isometric Relaxation ............. 36 1.11 In This Book ...................... 9 Temporary Summation and Local, Spatial Summation .................. 36 Successive Induction ................ 36 ......... 2ModelsofMyofascialChains 10 3.9 Harrison H. Fryette ................. 37 2.1 Herman Kabat 1950: Lovett’s Laws ..................... -
Muscle Length of the Hamstrings Using Ultrasonography Versus Musculoskeletal Modelling
Journal of Functional Morphology and Kinesiology Article Muscle Length of the Hamstrings Using Ultrasonography Versus Musculoskeletal Modelling Eleftherios Kellis * , Athina Konstantinidou and Athanasios Ellinoudis Laboratory of Neuromechanics, Department of Physical Education and Sport Sciences at Serres, Aristotle University of Thessaloniki, 62100 Serres, Greece; [email protected] (A.K.); [email protected] (A.E.) * Correspondence: [email protected] Abstract: Muscle morphology is an important contributor to hamstring muscle injury and malfunc- tion. The aim of this study was to examine if hamstring muscle-tendon lengths differ between various measurement methods as well as if passive length changes differ between individual hamstrings. The lengths of biceps femoris long head (BFlh), semimembranosus (SM), and semitendinosus (ST) of 12 healthy males were determined using three methods: Firstly, by identifying the muscle attach- ments using ultrasound (US) and then measuring the distance on the skin using a flexible ultrasound tape (TAPE-US). Secondly, by scanning each muscle using extended-field-of view US (EFOV-US) and, thirdly, by estimating length using modelling equations (MODEL). Measurements were performed with the participant relaxed at six combinations of hip (0◦, 90◦) and knee (0◦, 45◦, and 90◦) flexion angles. The MODEL method showed greater BFlh and SM lengths as well as changes in length than US methods. EFOV-US showed greater ST and SM lengths than TAPE-US (p < 0.05). SM length change across all joint positions was greater than BFlh and ST (p < 0.05). Hamstring length predicted using regression equations is greater compared with those measured using US-based methods. The EFOV-US method yielded greater ST and SM length than the TAPE-US method. -
Axis Scientific 9-Part Foot with Muscles, Ligaments, Nerves & Arteries A-105857
Axis Scientific 9-Part Foot with Muscles, Ligaments, Nerves & Arteries A-105857 DORSAL VIEW LATERAL VIEW 53. Superficial Fibular (Peroneal) Nerve 71. Fibula 13. Fibularis (Peroneus) Longus Tendon 17. Anterior Talofibular Ligament 09. Fibularis (Peroneus) 72. Lateral Malleolus Tertius Tendon 21. Kager’s Fat Pad 07. Superior Extensor 15. Superior Fibular Retinaculum (Peroneal) Retinaculum 51. Deep Fibular Nerve 52. Anterior Tibial Artery 19. Calcaneal (Achilles) Tendon 16. Inferior Fibular 02. Tibialis Anterior Tendon (Peroneal) Retinaculum 42. Intermedial Dorsal 08. Inferior Extensor 73. Calcaneus Bone Cutaneous Nerve Retinaculum 43. Lateral Dorsal Cutaneous Nerve 44. Dorsalis Pedis Artery 11. Extensor Digitorum 32. Abductor Digiti Minimi Muscle Brevis Muscle 04. Extensor Hallucis Longus Tendon 48. Medial Tarsal Artery 06. Extensor Digitorum 10. Extensor Hallucis Longus Tendons Brevis Muscle 41. Medial Dorsal Cutaneous Nerve 49. Dorsal Metatarsal Artery 45. Deep Fibular (Peroneal) Nerve MEDIAL VIEW 22. Flexor Digitorum 46. Arcuate Artery Longus Muscle 68. Tibia 12. Dorsal Interossei Muscle 21. Kager’s Fat Pad 48. Medial Tarsal Artery 69. Medial Malleolus 27. Tibialis Posterior 81. Nail Tendon 18. Flexor Retinaculum 29. Abductor Hallucis Muscle 36. Flexor Muscle POSTERIOR VIEW PLANTAR VIEW 01. Tibialis Anterior Muscle 03. Extensor Hallucis 70. Interosseous Longus Muscle Membrane 23. Flexor Digitorum 05. Extensor Digitorum Longus Tendons Longus Muscle 26. Tibialis Posterior Muscle 14. Fibularis (Peroneus) 20. Soleus Muscle Brevis Muscle 24. Flexor Hallucis Longus Muscle 25. Flexor Hallucis Longus Tendon 67. Proper Plantar 66. Proper Plantar Digital Artery Digital Nerve 65. Proper Plantar Digital Nerve 80. Sesamoid Bone 31. Flexor Digitorum Brevis Tendons 19. Calcaneal (Achilles) Tendon 36. Flexor Muscle 29. -
Illuminating the Iliacus
THE GENTLE LIFESTYLE developingcore strength practicaltips for a happylife i Ff f- i JO-IL--rra-,*= i f,I"RtshingHow to avoid injury o Vnel T \.'E. I LOrnwi A littlecove of paradise l[luminatingthe o IACUSBy Liz Koch Some muscles just seem to grab our attention and dominate our awareness while stretching: anterior superior ,1" quads, hamstrings and abdominals are all too iliacspine I ,_\l - ____=_ | familiar. But ask anyone where their iliacus anterior ---\- muscle is and the response most often will be inferior iliacspine one of uncertainty. And yet the iliacus directly influences range of motion within the hip sockets rectus femoris and maintains pelvic integrity so essential to tendon flexibility and strength. gluteusminimus Liningthe internalpelvic girdle the iliacusopens like a muscle, fan, creatinga healthybowl-like structure for all and attachment site on greater abdominalorgans and viscera.lt is the well-functioning trochanter iliacusthat maintainsfull-centered sockets for the femur ball and helpsstabilise the sacraliliac joints by counter- balancingthe largeand powerfulgluteus maximus muscles(buttock muscles). site ol attachment of fibrocartilagenous posterior The lliacusis a abdominalwall muscle pubic symphysis originatingfrom the superiorpart of the iliacfossa (the insideof your hip).lt is innervatedby the femoralnerve in ischiumand inferior the abdomen(at lumbar2 and 3) and its' fibrespass ischial tuberosity pubic inferiorlyand mediallybeneath the inguinalligament. ramus Sharinga tendon at the lessertrocanter of the femur (i.e. pubofemoral ligament the innerleg), with the psoas muscle,the iliacusis part of the core ilio-psoasmuscle group. Togetherthe psoasand iliacusform a full stablepelvic bowl and centeredhip jointsfor maximumrotation and Recentlytwo women who attendedan llio-psoasretreat freedomof leg movement.Health or diseasein one will returnedhome and immediatelyconceived.