BROMELI ANA PUBLISHED by the NEW YORK BROMELIAD SOCIETY (Visit Our Website
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Leaf Anatomy and C02 Recycling During Crassulacean Acid Metabolism in Twelve Epiphytic Species of Tillandsia (Bromeliaceae)
Int. J. Plant Sci. 154(1): 100-106. 1993. © 1993 by The University of Chicago. All rights reserved. 1058-5893/93/5401 -0010502.00 LEAF ANATOMY AND C02 RECYCLING DURING CRASSULACEAN ACID METABOLISM IN TWELVE EPIPHYTIC SPECIES OF TILLANDSIA (BROMELIACEAE) VALERIE S. LOESCHEN,* CRAIG E. MARTIN,' * MARIAN SMITH,t AND SUZANNE L. EDERf •Department of Botany, University of Kansas, Lawrence, Kansas 66045-2106; and t Department of Biological Sciences, Southern Illinois University, Edwardsville, Illinois 62026-1651 The relationship between leaf anatomy, specifically the percent of leaf volume occupied by water- storage parenchyma (hydrenchyma), and the contribution of respiratory C02 during Crassulacean acid metabolism (CAM) was investigated in 12 epiphytic species of Tillandsia. It has been postulated that the hydrenchyma, which contributes to C02 exchange through respiration only, may be causally related to the recently observed phenomenon of C02 recycling during CAM. Among the 12 species of Tillandsia, leaves of T. usneoides and T. bergeri exhibited 0% hydrenchyma, while the hydrenchyma in the other species ranged from 2.9% to 53% of leaf cross-sectional area. Diurnal malate fluctuation and nighttime atmospheric C02 uptake were measured in at least four individuals of each species. A significant excess of diurnal malate fluctuation as compared with atmospheric C02 absorbed overnight was observed only in T. schiedeana. This species had an intermediate proportion (30%) of hydrenchyma in its leaves. Results of this study do not support the hypothesis that C02 recycling during CAM may reflect respiratory contributions of C02 from the tissue hydrenchyma. Introduction tions continue through fixation of internally re• leased, respired C02 (Szarek et al. -
General Information Bromeliaceae Family
General Information Bromeliads are a unique and fascinating family of hundreds of extremely diversified and exotic plants, which are amazingly adaptable, tough and relatively easy to grow. People often say that Bromeliads thrive on neglect. The species can tolerate a huge variety of growing conditions including heat, light, air and moisture. No Bromeliads are native to Australia and therefore have all been imported and introduced here. The plants are native to the Southern States of the USA, Central America and deep into South America, with regions like Florida, Mexico, the West Indies, parts of Brazil and as far south as Chile having many and various species. One very primitive species is also found in Africa and has survived since the two continents separated. Bromeliaceae Family The entire bromeliad family called Bromeliaceae, is divided into three subfamilies containing many genera, with the Bromelioideae and Tillandsioideae subfamilies being the most popular bromeliads for enthusiasts and collectors. The subfamily Bromelioideae is distributed from Mexico to Argentina and has the greatest number of genera. They are mostly epiphytic, tank-type plants with spiny leaves and berry-like fruit containing wet seeds. The subfamily Pitcairnioideae are the most primitive bromeliads, descended from the grass family. Nearly all are terrestrial. Most have spiny leaves. The seeds are dry and usually winged. The subfamily Tillandsioideae has few genera, but includes about half of the species of bromeliads. Growing throughout the Americas, they are mostly epiphytes. All have spineless leaves. Seeds are dry, with feathery "parachutes" and are blown and float in the wind. The most notable and commercially developed of the family is the edible pineapple (Ananus comosus). -
Filogenia De Tillandsia Subgen. Diaphoranthema Y Evolución De La Autogamia Y La Poliembrionía
Tesis Doctoral Filogenia de Tillandsia subgen. Diaphoranthema y evolución de la autogamia y la poliembrionía Donadío, Sabina 2013-03-21 Este documento forma parte de la colección de tesis doctorales y de maestría de la Biblioteca Central Dr. Luis Federico Leloir, disponible en digital.bl.fcen.uba.ar. Su utilización debe ser acompañada por la cita bibliográfica con reconocimiento de la fuente. This document is part of the doctoral theses collection of the Central Library Dr. Luis Federico Leloir, available in digital.bl.fcen.uba.ar. It should be used accompanied by the corresponding citation acknowledging the source. Cita tipo APA: Donadío, Sabina. (2013-03-21). Filogenia de Tillandsia subgen. Diaphoranthema y evolución de la autogamia y la poliembrionía. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Cita tipo Chicago: Donadío, Sabina. "Filogenia de Tillandsia subgen. Diaphoranthema y evolución de la autogamia y la poliembrionía". Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. 2013-03-21. Dirección: Biblioteca Central Dr. Luis F. Leloir, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Contacto: [email protected] Intendente Güiraldes 2160 - C1428EGA - Tel. (++54 +11) 4789-9293 Universidad de Buenos Aires Facultad de Ciencias Exactas y Naturales Departamento de Ecología, Genética y Evolución Filogenia de Tillandsia subgen. Diaphoranthema y evolución de la autogamia y la poliembrionía Tesis presentada para optar al título de Doctor de la Universidad de Buenos Aires en el área: CIENCIAS BIOLOGICAS Sabina Donadío Director de tesis: Dr. Raúl Ernesto Pozner Directora Asistente: Dra. Liliana Mónica Giussani Consejera de estudios: Dra. Viviana A. -
THE BROMELIAD BLADE November 2017
THE BROMELIAD BLADE November 2017 Newsletter of the The San Diego Bromeliad Society Bromeliad Blade November 2017 s VOLUME LII NUMBER 11 Then finally, after an over-sized lunch at Hometown Buffet, we continued President’s plant hunting at Rainforest Flora, where I picked up a few interesting Tillandsia hybrids. The fun part, of Corner course, was spending quality time By Scott Sandel with the members of our society who were on the bus. It was a lot of fun, and special thanks go out to Eloise I hope you all are enjoying the waning days of fall. With the Lau for arranging the bus, weather getting cooler, we are researching the route and the best supposed to look for tasks in the place to eat, and for bringing garden and with our bromeliad Halloween-themed Tillandsia raffle collection, such as cleaning, sorting prizes for the ride back to San and preparing for our plants Diego. Further thank-yous go to Al hardening-off for the season. But no Evans Jr. and to Dave Kennedy who – of course not! Some of us hopped will fill in for me at the November on a bus and went shopping for new meeting, since I’ll be in plants. Who wants to conventional, Nicaragua. Thanks guys! Have a well-behaved and judicious great November meeting with the anyway? Some of the coolest new presentation by Andrew Wilson on plants were those I saw in others’ the arid Tillandsias of Argentina. It’s shopping carts. Funny how that an interesting program, and I am sad works, isn’t it? At any rate, I did to miss it. -
Network Scan Data
Selbyana 15: 132-149 CHECKLIST OF VENEZUELAN BROMELIACEAE WITH NOTES ON SPECIES DISTRIBUTION BY STATE AND LEVELS OF ENDEMISM BRUCE K. HOLST Missouri Botanical Garden, P.O. Box 299, St. Louis, Missouri 63166-0299, USA ABSTRACf. A checklist of the 24 genera and 364 native species ofBromeliaceae known from Venezuela is presented, including their occurrence by state and indications of which are endemic to the country. A comparison of the number of genera and species known from Mesoamerica (southern Mexico to Panama), Colombia, Venezuela, the Guianas (Guyana, Suriname, French Guiana), Ecuador, and Peru is presented, as well as a summary of the number of species and endemic species in each Venezuelan state. RESUMEN. Se presenta un listado de los 24 generos y 364 especies nativas de Bromeliaceae que se conocen de Venezuela, junto con sus distribuciones por estado y una indicaci6n cuales son endemicas a Venezuela. Se presenta tambien una comparaci6n del numero de los generos y especies de Mesoamerica (sur de Mexico a Panama), Colombia, Venezuela, las Guayanas (Guyana, Suriname, Guyana Francesa), Ecuador, y Peru, y un resumen del numero de especies y numero de especies endemicas de cada estado de Venezuela. INTRODUCTION Bromeliaceae (Smith 1971), and Revision of the Guayana Highland Bromeliaceae (Smith 1986). The checklist ofVenezuelan Bromeliaceae pre Several additional country records were reported sented below (Appendix 1) adds three genera in works by Smith and Read (1982), Luther (Brewcaria, Neoregelia, and Steyerbromelia) and (1984), Morillo (1986), and Oliva-Esteva and 71 species to the totals for the country since the Steyermark (1987). Author abbreviations used last summary of Venezuelan bromeliads in the in the checklist follow Brummit and Powell Flora de Venezuela series which contained 293 (1992). -
February 2017 P.O
S.F.V.B.S. SAN FERNANDO VALLEY BROMELIAD SOCIETY FEBRUARY 2017 P.O. BOX 16561, ENCINO, CA 91416-6561 sfvbromeliad.homestead.com [email protected] Elected OFFICERS & Volunteers Pres: Bryan Chan and Carole Scott V.P.: John Martinez Secretary: Leni Koska Treasurer: Mary Chan Membership: Joyce Schumann Advisors/Directors: Steve Ball, Bryan Chan, Richard Kaz –fp, Mike Wisnev Sunshine Chair: Georgia Roiz, Web: Mike Wisnev, Editors: Mike Wisnev & Mary K., Snail Mail: Nancy P-Hapke next meeting: Saturday Feb. 4, 2017 @ 10:00 am Sepulveda Garden Center 16633 Magnolia Blvd. Encino, California 91316 AGENDA 9:30 – SET UP & SOCIALIZE 11:15 - Refreshment Break and Show and Tell: 10:00 - Door Prize – one member who Will the following members please provide arrives before 10:00 gets a Bromeliad refreshments this month: Stacey Phelps, Chris 10:05 -Welcome Visitors and New Members. Rogers, Georgia Roiz, Joyce Schumann Make announcements and Introduce Speaker &Rosemary Polito, ,Carole Scott, Jane Shultz, Raquel Smith, Peter Speciale, Scott 10:15 –SpeakerTom Glavich Spreckman, Vuthya Suor Program: “The High Drakensberg in and anyone else who has a snack they would like Summer” Tom Glavich is a long time grower of to share. If you can’t contribute this month don’t bulbs and succulent plants including some stay away…. just bring a snack next time you bromeliads. He is a member of the Board of come. Directors of the Cactus and Succulent Society of Questions about refreshments? Call Mary K. America and author of the Beginner's Guide series (818-705-4728) Leave message - she will call back. -
Water Relations of Bromeliaceae in Their Evolutionary Context
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Apollo Botanical Journal of the Linnean Society, 2016, 181, 415–440. With 2 figures Think tank: water relations of Bromeliaceae in their evolutionary context JAMIE MALES* Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK Received 31 July 2015; revised 28 February 2016; accepted for publication 1 March 2016 Water relations represent a pivotal nexus in plant biology due to the multiplicity of functions affected by water status. Hydraulic properties of plant parts are therefore likely to be relevant to evolutionary trends in many taxa. Bromeliaceae encompass a wealth of morphological, physiological and ecological variations and the geographical and bioclimatic range of the family is also extensive. The diversification of bromeliad lineages is known to be correlated with the origins of a suite of key innovations, many of which relate directly or indirectly to water relations. However, little information is known regarding the role of change in morphoanatomical and hydraulic traits in the evolutionary origins of the classical ecophysiological functional types in Bromeliaceae or how this role relates to the diversification of specific lineages. In this paper, I present a synthesis of the current knowledge on bromeliad water relations and a qualitative model of the evolution of relevant traits in the context of the functional types. I use this model to introduce a manifesto for a new research programme on the integrative biology and evolution of bromeliad water-use strategies. The need for a wide-ranging survey of morphoanatomical and hydraulic traits across Bromeliaceae is stressed, as this would provide extensive insight into structure– function relationships of relevance to the evolutionary history of bromeliads and, more generally, to the evolutionary physiology of flowering plants. -
Anatomy of the Floral Scape of Bromeliaceae1 SUZANA LÚCIA PROENÇA2,3 and MARIA DAS GRAÇAS SAJO2
Revista Brasil. Bot., V.31, n.3, p.399-408, jul.-set. 2008 Anatomy of the floral scape of Bromeliaceae1 SUZANA LÚCIA PROENÇA2,3 and MARIA DAS GRAÇAS SAJO2 (received: July 04, 2007; accepted: June 05, 2008) ABSTRACT – (Anatomy of the floral scape of Bromeliaceae). This paper describes the anatomy of the floral scape for 12 species of Bromeliaceae, belonging to the subfamilies Bromelioideae, Tillandsioideae and Pitcairnioideae. Although all the scapes have a similar organization, there are variations in the structure of the epidermis, cortex and vascular cylinder. Such variations are described for the studied scapes and, when considered together they can help to identify the species. These aspects are described for each scape and discussed under a taxonomic point of view. Key words - anatomy, Bromeliaceae, floral scape RESUMO – (Anatomia do escapo floral de Bromeliaceae). Este trabalho descreve a anatomia do escapo floral de doze espécies de Bromeliaceae pertencentes às subfamílias Bromelioideae, Tillandsioideae e Pitcairnioideae e tem como objetivo ampliar o conhecimento anatômico da família e desse órgão em particular. Embora todos os escapos apresentem uma organização similar, observam-se variações na estrutura da epiderme, do córtex e do cilindro vascular. Tais variações são descritas para os escapos estudados e, quando são analisadas em conjunto, podem auxiliar na identificação das espécies. Esses aspectos são descritos para cada um dos escapos e discutidos dentro de um contexto taxonômico. Palavras-chave - anatomia, Bromeliaceae, escapo floral Introduction There are few studies on the floral scape anatomy of Bromeliaceae, the more important is Tomlinson’s revision Bromeliaceae comprises about 2,600 Neotropical (1969) of the results of Mez (1896 apud Tomlinson 1969), species, except for Pitcairnia feliciana (A. -
Third Quarter (PDF)
Bromeliaceae VOLUME XLVIII Third Quarter 2014 31 The Bromeliad Society of Queensland Inc. P.O. Box 565, Fortitude Valley Queensland, Australia 4006 Home Page www.bromsqueensland.com.au OFFICERS PRESIDENT Barry Kable 3824 5931 VICE PRESIDENT John Olsen 3856 0265 TREASURER John Olsen SECRETARY Barbara Murray COMMITTEE Peter Ball, Mal Cameron, Michelle Cameron, Chris Coulthard, Jennifer Coulthard, Glenn Bernoth, Rob Murray, Fred Thomson, Olive Trevor, David Vine, and Roland Anthony MEMBERSHIP SECRETARY Roy Pugh (07) 3263 5057 LIBRARIAN Evelyn Rees SHOW CONVENOR Pam Butler BROMELIACEAE EDITORS John Olsen, Chris Coulthard & Jennifer Coulthard BSQ WEBMASTER Rob Murray ASSISTANT WEBMASTER Peter Ball FIELD DAY COORDINATORS Ruth Kimber & Bev Mulcahy SEED BANK COORDINATOR Peter Ball SUPPER STEWARDS Selga Boothby & Sharon Born PLANT SALES Margaret Kraa & Lee Thornycroft ASSISTANT SALES Michelle Cameron COMPETITION STEWARDS Pat Barlow & Fred Thomson NEWSLETTER COORDINATOR Rob Murray ASSISTANT SHOW CONVENER Peter Ball HALL COORDINATOR David Rees RAFFLE COORDINATOR Lesley Gibbs EXHIBITION COORDINATOR Glenn Bernoth Email Addresses: [email protected] [email protected] [email protected] GENERAL MEETINGS OF THE Society are held on the 3rd Thursday of each month except for December, at the Uniting Hall, 52 Merthyr Road, New Farm, Brisbane, commencing 7:30 pm. ANNUAL GENERAL MEETING is held immediately before the February General Meeting Front Cover: Aechmea strip on strip Rear Cover: Display of Neoregelias taken at show The Bromeliad Society of Queensland Inc., gives permission to all Bromeliad Societies to reprint articles in their journals provided proper acknowledgement is given to the original author and Bromeliaceae. This permission does not apply to any other person or organisation without the prior permission of the author. -
The Genus Guzmania (Bromeliaceae) in Venezuela
The genus Guzmania (Bromeliaceae) in Venezuela Compiled by Yuribia Vivas Fundación Instituto Botánico de Venezuela Bruce Holst & Harry Luther Marie Selby Botanical Gardens The genus Guzmania was described by Hipólito Ruiz and José Pavón in 1802 in the "Flora Peruviana et Chilensis." The type species is Guzmania tricolor Ruiz & Pav. The name honors Spanish naturalist Anastasio Guzmán, a student of South American plants and animals (Grant & Zijlstra 1998). Species of Guzmania are distributed from the southern USA (Florida) and Mexico to Brazil and Peru, including the Most species of Guzmania are found in cloud forests at middle elevations. Antilles; they are largely absent from lowland Amazonia. Photograph by Yuribia Vivas. Figure modified from Smith & Downs, Flora Neotropica. Guzmania is placed in the subfamily Tillandsioideae, and is distinguished from other members of the subfamily (Vriesea,Tillandsia, Catopsis, Racinaea, Alcantarea, Mezobromelia, and Werauhia) by having polystichously arranged flowers (that is, arranged in many planes on the inflorescence axis), white, whitish, yellow, or greenish petals that lack nectar scales, and having generally reddish brown-colored seeds. In general aspect, Guzmania is difficult to distinguish from Mezobromelia since both are polystichously flowered and may have similar color schemes, but the presence of nectar scales in Mezobromelia and absence inGuzmania separates them. Approximately 200 species and 17 varieties of Guzmania are known, making it the third largest genus in the subfamily, after Tillandsia and Vriesea. The table below is a listing of Guzmania in Venezuela, with synonymy, types, phenology, and distribution. Column two contains photographs of live plants and the third column, type specimens. Click on the photos for enlarged images. -
Carbon Isotope Ratio and the Extent of Daily CAM
NPH_489.fm Page 75 Tuesday, September 3, 2002 9:12 AM Research CarbonBlackwell Science, Ltd isotope ratio and the extent of daily CAM use by Bromeliaceae Simon Pierce1, Klaus Winter2 and Howard Griffiths1 1University of Cambridge, Department of Plant Sciences, Downing Street, Cambridge, CB2 3EA, UK; 2Smithsonian Tropical Research Institute, Apartado 2072, Balboa, Panama City, Republic of Panama Summary δ13 Author for correspondence: • Use of carbon isotope ratio ( C) to resolve photosynthetic pathways (C3, C4 or S. Pierce CAM) has limitations imposed by the use of intermediate photosynthetic modes by Tel: +44 114222 4702 certain plant taxa. Fax: +44 114222 0002 δ13 E-mail: [email protected] • Diel gas-exchange patterns, leaf C values and nocturnal tissue acidification were determined for 50 Bromeliaceae. Received: 21 February 2002 • δ13C values for well watered plants reflected the proportion of daily CO uptake Accepted: 17 June 2002 2 δ13 occurring at night. Thirteen per cent of species with C values typical of C3 plants (i.e. from −22.6 to −31.5‰) showed nocturnal acidification and either a small pro- portion (< 10%) of daily CO2 uptake occurring nocturnally or internal CO2 recycling during part of the night. None altered CAM expression in response to short-term drought, but the contribution of CAM to daily carbon gain became proportionally more important as C3 CO2 uptake failed. • Surveys of plant communities using solely the carbon isotope technique under- estimate the number of CAM-equipped plants. Key words: Bromeliad, carbon pathway, crassulacean acid metabolism (CAM), δ13C, epiphyte, photosynthesis. © New Phytologist (2002) 156: 75–83 (i.e. -
Natural Hybrids of Tillandsia Argentina and a Few Others Previously Published As Species
PRE-PUBLISHED ARTICLE Natural hybrids of Tillandsia argentina and a few others previously published as species . Eric Gouda - University Utrecht Botanic Gardens, Budapestlaan 17, 3584 CD, Utrecht, Netherlands. [email protected] Some Tillandsia species easily form hybrids with other Tillandsia species and some like Tillandsia complanata Bentham (1846) even hybridize with species of other genera. Tillandsia argentina Wright (1907) is one that easily forms hybrids with other species. So probably there is a lack of physiological barriers between this and other species that probably did not occur in the past in the same distributional area. It is known that unrelated Tillandsia species that do not grow in the same area can easily be crossed with each other, because there are no physiological or biotic or abiotic barriers which are needed to avoid hybridizing. As biotic factors you can think of pollinators that do not visit both species or different flowering time during the year, and as an abiotic factor different elevation. Species from other genera are less compatible, so those hybrids occurs less often, but in the case of Tillandsia complanata it is known that it does hybridize with Guzmania monostachia (L.) Rusby ex Mez (1896) and has been described as Guzmania barbiei Rauh (1985). Derek Butcher noted that Harry Luther already suggested in September 2004 that this is a natural hybrid between those species and that Joachim Saul reported never having been able find the species of it in the vicinity of the type locality. Now what about Tillandsia argentina? Rauh and Weber both described several Tillandsia species that turned out to be hybrids and were very rare because, to my knowledge, they were not found again and thus known onlyfrom the type locality.