Number 74 -- Supplement (Pdf)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
In Guilan Province, Iran with Two New Species Record for Iran Mites Fauna 1309-1321 Linzer Biol
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Linzer biologische Beiträge Jahr/Year: 2017 Band/Volume: 0049_2 Autor(en)/Author(s): Karami Fatemeh, Hajizadeh Jalil, Ostovan Hadi Artikel/Article: Fauna of Ascoidea (except Ameroseiidae) in Guilan province, Iran with two new species record for Iran mites fauna 1309-1321 Linzer biol. Beitr. 49/2 1309-1321 11.12.2017 Fauna of Ascoidea (except Ameroseiidae) in Guilan province, Iran with two new species record for Iran mites fauna Fatemeh KARAMI, Jalil HAJIZADEH & Hadi OSTOVAN A b s t r a c t : A faunistic study of superfamily Ascoidea (Acari: Mesostigmata) except family Ameroseiidae in Guilan province, Northern Iran was carried out during 2015-2016. During this study 13 species of seven genera belong to two families Ascidae and Melicharidae were collected and identified. Four species namely Asca aphidioides (LINNAEUS), Zerconopsis michaeli EVANS & HYATT, Antennoseius (Antennoseius) bacatus ATHIAS-HENRIOT from family Ascidae and Proctolaelaps scolyti EVANS from family Melicharidae are new records for the mites fauna of Guilan Province. Proctolaelaps fiseri SAMŠIŇÁK (Melicharidae) and Zerconopsis remiger (KRAMER) (Ascidae) are new for Iran mites fauna. Expanded descriptions including illustrations of the adult female of Proctolaelaps fiseri and Zerconopsis remiger, respectively are provided based on the Iranian material. K e y w o r d s : Fauna, Ascoidea, Mesostigmata, New records, Iran. Introduction The superfamily Ascoidea is richly represented in tropical, temperate, and arctic alpine regions, where many of its members are free-living predators of nematodes and micro- arthropods in soil or humus and suspended arboreal litter habitats. -
Curriculum Vitae Bradley Evan Carlson, Ph.D
Curriculum Vitae Bradley Evan Carlson, Ph.D. Byron K. Trippet Assistant Professor of Biology Wabash College Crawfordsville, IN 47933 Email: [email protected] Telephone: (765) 361-6460 Website: carlsonecolab.weebly.com Professional Experience 2014 - present Byron K. Trippet Assistant Professor of Biology, Wabash College Education 2009-2014 PhD in Ecology, minor in Statistics, The Pennsylvania State University, University Park, PA Advisor: Dr. Tracy Langkilde Dissertation: The evolutionary ecology of intraspecific trait variation in larval amphibians 2008 B.S. in Biology, Bethel University, St. Paul, MN Summa cum laude, Honors Graduate Thesis: Temperature and desiccation effects on the antipredator behavior of Centruroides vittatus (Scorpiones: Buthidae) Research Interests Evolutionary ecology – phenotypic diversity, local adaptation, trait integration Behavioral ecology – phenotypic plasticity, predator-prey interactions, personality traits Community ecology – trait-mediated indirect interactions, predation, aquatic ecology Zoology – herpetology, arachnology, comparative morphology Publications (*co-author was undergraduate) Kashon*, EAF, and BE Carlson. 2018. Consistently bolder turtles maintain higher body temperatures in the field but may experience greater predation risk. Behavioral Ecology and Sociobiology 72:9. Carlson, BE, and T Langkilde. 2017. Body size variation in aquatic consumers causes pervasive community effects, independent of mean body size. Ecology and Evolution 7:9978-9990. Lambert, MR, Carlson, BE, Smylie, MS, and L Swierk. 2017. Ontogeny of sexual dichromatism in the explosively breeding Wood Frog. Herpetological Conservation and Biology 12:447-456. Media coverage: InsideEcology.com (https://insideecology.com/2018/02/12/amphibians-that-change-colour/) Carlson, BE, and T Langkilde. 2016. The role of resources in microgeographic variation in Red- spotted Newt (Notophthalmus v. viridescens) morphology. Journal of Herpetology 50:442-448. -
Sexual Selection Research on Spiders: Progress and Biases
Biol. Rev. (2005), 80, pp. 363–385. f Cambridge Philosophical Society 363 doi:10.1017/S1464793104006700 Printed in the United Kingdom Sexual selection research on spiders: progress and biases Bernhard A. Huber* Zoological Research Institute and Museum Alexander Koenig, Adenauerallee 160, 53113 Bonn, Germany (Received 7 June 2004; revised 25 November 2004; accepted 29 November 2004) ABSTRACT The renaissance of interest in sexual selection during the last decades has fuelled an extraordinary increase of scientific papers on the subject in spiders. Research has focused both on the process of sexual selection itself, for example on the signals and various modalities involved, and on the patterns, that is the outcome of mate choice and competition depending on certain parameters. Sexual selection has most clearly been demonstrated in cases involving visual and acoustical signals but most spiders are myopic and mute, relying rather on vibrations, chemical and tactile stimuli. This review argues that research has been biased towards modalities that are relatively easily accessible to the human observer. Circumstantial and comparative evidence indicates that sexual selection working via substrate-borne vibrations and tactile as well as chemical stimuli may be common and widespread in spiders. Pattern-oriented research has focused on several phenomena for which spiders offer excellent model objects, like sexual size dimorphism, nuptial feeding, sexual cannibalism, and sperm competition. The accumulating evidence argues for a highly complex set of explanations for seemingly uniform patterns like size dimorphism and sexual cannibalism. Sexual selection appears involved as well as natural selection and mechanisms that are adaptive in other contexts only. Sperm competition has resulted in a plethora of morpho- logical and behavioural adaptations, and simplistic models like those linking reproductive morphology with behaviour and sperm priority patterns in a straightforward way are being replaced by complex models involving an array of parameters. -
Mesostigmata No
16 (1) · 2016 Christian, A. & K. Franke Mesostigmata No. 27 ............................................................................................................................................................................. 1 – 41 Acarological literature .................................................................................................................................................... 1 Publications 2016 ........................................................................................................................................................................................... 1 Publications 2015 ........................................................................................................................................................................................... 9 Publications, additions 2014 ....................................................................................................................................................................... 17 Publications, additions 2013 ....................................................................................................................................................................... 18 Publications, additions 2012 ....................................................................................................................................................................... 20 Publications, additions 2011 ...................................................................................................................................................................... -
Kirill Glebovich Mikhailov: on the Occasion of His 60Th Birthday
Zootaxa 5006 (1): 006–012 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Biography ZOOTAXA Copyright © 2021 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.5006.1.4 http://zoobank.org/urn:lsid:zoobank.org:pub:B883A8B0-F324-400F-B670-304511C53963 Kirill Glebovich Mikhailov: On the occasion of his 60th Birthday YURI M. MARUSIK1 & VICTOR FET2 1Institute for Biological Problems of the North, Portovaya Street 18, Magadan 685000, Russia Department of Zoology & Entomology, University of the Free State, Bloemfontein 9300, South Africa [email protected]; https://orcid.org/0000-0002-4499-5148 2Department of Biological Sciences, Marshall University, Huntington, West Virginia 25755-2510, USA [email protected]; https://orcid.org/0000-0002-1016-600X Kirill Glebovich Mikhailov was born on 29 July 1961 in Moscow, Russia. Both of his parents, Gleb K. Mikhailov (1929–2021) and Galina R. Mikhailova (1926–2019), were research scientists. Kirill’s father was an expert in the history of mechanics, and mother, a biologist. Since early childhood Kirill was raised mainly by his maternal grandparents, Ro- man P. Nosov and Antonina V. Nosova. Kirill’s grandfather, a CPSU official and a career administrator at the Ministry of Energetics, retired from his post in 1965 to take care of the grandson. Kirill’s grandmother, an obstetrician by profession, received disability at a military plant during the WWII in evacuation, and was a housewife after the war. In 1978, Kirill began his studies at the Division of Biology (Biologicheskii Fakul’tet) of the Moscow State University (below, MSU). Even earlier, as a schoolboy, Kirill used to buy books on zoology, especially separate issues of the Fauna of the USSR and Keys to the Fauna of the USSR, then relatively cheap and available. -
Giant Spiders Cast Webs Over River Using Super Biomaterial 17 September 2010
Giant spiders cast webs over river using super biomaterial 17 September 2010 access journal for the communication of all peer- reviewed scientific and medical research published by the Public Library of Science. Caerostris darwini, a giant orb spider and namesake of Charles Darwin, weaves a web of tremendous strength and size never before seen. Photo courtesy of Matjaz Gregoric. (PhysOrg.com) -- The antithesis of the itsy-bitsy spider, Caerostris darwini, a giant orb spider and namesake of Charles Darwin, weaves a web of super strength never before seen, says Dr. Todd Blackledge, Leuchtag Endowed Chair at The University of Akron. This close-up view of a giant orb spider web spanning a Blackledge, an associate professor of biology; Ingi river demonstrates the tremendous strength and elasticity of this type of silk. Photo courtesy of Matjaz Kuntner. Agnarsson, Blackledge’s former postdoctoral researcher at UA and current assistant professor and director of Museum of Zoology at the University of Puerto Rico; and Matjaž Kuntner, In their PLoS ONE paper, Agnarsson, Kuntner and chair of the Institute of Biology at the Scientific Blackledge report on the testing of material Research Centre, Slovenian Academy of Sciences properties of Darwin’s bark spider. The authors and Arts, reveal this new spider species from predicted that the expansive webs would be spun Madagascar and its incredibly expansive web. using extraordinary silk and they proved their prediction correct. First, the researchers considered “Darwin’s bark spider or C. darwini,” as it is that spider silks already combine high strength with referenced, makes one of the largest known webs elasticity, demonstrate exceptional toughness and and suspends the giant webs across rivers and are able to absorb three times more energy than lakes, according to the researchers. -
Kirill Glebovich Mikhailov: on the Occasion of His 60Th Birthday
Zootaxa 5006 (1): 006–012 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Biography ZOOTAXA Copyright © 2021 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.5006.1.4 http://zoobank.org/urn:lsid:zoobank.org:pub:B883A8B0-F324-400F-B670-304511C53963 Kirill Glebovich Mikhailov: On the occasion of his 60th Birthday YURI M. MARUSIK1 & VICTOR FET2 1Institute for Biological Problems of the North, Portovaya Street 18, Magadan 685000, Russia Department of Zoology & Entomology, University of the Free State, Bloemfontein 9300, South Africa �[email protected]; https://orcid.org/0000-0002-4499-5148 2Department of Biological Sciences, Marshall University, Huntington, West Virginia 25755-2510, USA �[email protected]; https://orcid.org/0000-0002-1016-600X Kirill Glebovich Mikhailov was born on 29 July 1961 in Moscow, Russia. Both of his parents, Gleb K. Mikhailov (1929–2021) and Galina R. Mikhailova (1926–2019), were research scientists. Kirill’s father was an expert in the history of mechanics, and mother, a biologist. Since early childhood Kirill was raised mainly by his maternal grandparents, Ro- man P. Nosov and Antonina V. Nosova. Kirill’s grandfather, a CPSU official and a career administrator at the Ministry of Energetics, retired from his post in 1965 to take care of the grandson. Kirill’s grandmother, an obstetrician by profession, received disability at a military plant during the WWII in evacuation, and was a housewife after the war. In 1978, Kirill began his studies at the Division of Biology (Biologicheskii Fakul’tet) of the Moscow State University (below, MSU). Even earlier, as a schoolboy, Kirill used to buy books on zoology, especially separate issues of the Fauna of the USSR and Keys to the Fauna of the USSR, then relatively cheap and available. -
ZOOLOGY Exploring the Biodiversity of Colorado and Theworld
CHAPTER 4 — ZOOLOGY Exploring the Biodiversity of Colorado and the World CHAPTER 4 ZOOLOGY Exploring the Biodiversity of Colorado and the World Jeffrey T. Stephenson, Before the Museum Paula E. Cushing, The first collections of specimens that make up what is now the Denver John R. Demboski, and Museum of Nature & Science were actually established well before the Frank-T. Krell founding of the institution in 1900, the selection of a board of trustees, or the construction of a building to house and exhibit the specimens. Edwin Carter (1830–1900) (Fig. 4.1) collected Colorado birds and mammals from the 1860s through the 1890s. Born in New York in 1830, Carter arrived in Colorado in 1859 hoping to make it rich in the goldfields, but he soon became interested in the region’s natural history. He learned hide tanning and, as his prospects for hitting the mother lode faded, he earned his living selling buckskin clothing that he handcrafted. Carter supplemented these earnings by mar- keting foodstuffs and other provisions to the growing population of successful and (mostly) unsuccessful prospectors flooding the region. His interest in nature turned to concern as he observed dwindling numbers of mammals and birds, owing largely to habitat destruction and overhunting. Period photographs of the area’s mining district show a landscape largely denuded of vegetation. By the 1870s, Carter noted that many animal species were becoming scarce. The state’s forests were being devastated, ranches and farms were replacing open prairie, and some species, including the last native bison in Colorado, were on the verge of extirpation or extinction. -
Field Evaluation of a Gall Mite for Biological Control of False Cleavers
Field Evaluation of a Gall Mite for Biological Control of False Cleavers Canola Agronomic Research Program Project #AG-2002-20 Final Report A.S. McClay, Ph.D. McClay Ecoscience 15 Greenbriar Crescent Sherwood Park, AB T8H 1H8 TABLE OF CONTENTS LIST OF TABLES.......................................................................................................................... ii LIST OF FIGURES .......................................................................................................................iii 1 Abstract................................................................................................................................... 1 2 Background and Objectives .................................................................................................... 1 3 Experimental Methods............................................................................................................ 2 3.1 Importation...................................................................................................................... 2 3.2 Colony establishment...................................................................................................... 3 3.3 Virus testing.................................................................................................................... 4 3.4 Canola plots.................................................................................................................... 4 3.5 Dispersal plots................................................................................................................ -
Arachnologische Arachnology
Arachnologische Gesellschaft E u Arachnology 2015 o 24.-28.8.2015 Brno, p Czech Republic e www.european-arachnology.org a n Arachnologische Mitteilungen Arachnology Letters Heft / Volume 51 Karlsruhe, April 2016 ISSN 1018-4171 (Druck), 2199-7233 (Online) www.AraGes.de/aramit Arachnologische Mitteilungen veröffentlichen Arbeiten zur Faunistik, Ökologie und Taxonomie von Spinnentieren (außer Acari). Publi- ziert werden Artikel in Deutsch oder Englisch nach Begutachtung, online und gedruckt. Mitgliedschaft in der Arachnologischen Gesellschaft beinhaltet den Bezug der Hefte. Autoren zahlen keine Druckgebühren. Inhalte werden unter der freien internationalen Lizenz Creative Commons 4.0 veröffentlicht. Arachnology Logo: P. Jäger, K. Rehbinder Letters Publiziert von / Published by is a peer-reviewed, open-access, online and print, rapidly produced journal focusing on faunistics, ecology Arachnologische and taxonomy of Arachnida (excl. Acari). German and English manuscripts are equally welcome. Members Gesellschaft e.V. of Arachnologische Gesellschaft receive the printed issues. There are no page charges. URL: http://www.AraGes.de Arachnology Letters is licensed under a Creative Commons Attribution 4.0 International License. Autorenhinweise / Author guidelines www.AraGes.de/aramit/ Schriftleitung / Editors Theo Blick, Senckenberg Research Institute, Senckenberganlage 25, D-60325 Frankfurt/M. and Callistus, Gemeinschaft für Zoologische & Ökologische Untersuchungen, D-95503 Hummeltal; E-Mail: [email protected], [email protected] Sascha -
Hungarian Acarological Literature
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Directory of Open Access Journals Opusc. Zool. Budapest, 2010, 41(2): 97–174 Hungarian acarological literature 1 2 2 E. HORVÁTH , J. KONTSCHÁN , and S. MAHUNKA . Abstract. The Hungarian acarological literature from 1801 to 2010, excluding medical sciences (e.g. epidemiological, clinical acarology) is reviewed. Altogether 1500 articles by 437 authors are included. The publications gathered are presented according to authors listed alphabetically. The layout follows the references of the paper of Horváth as appeared in the Folia entomologica hungarica in 2004. INTRODUCTION The primary aim of our compilation was to show all the (scientific) works of Hungarian aca- he acarological literature attached to Hungary rologists published in foreign languages. Thereby T and Hungarian acarologists may look back to many Hungarian papers, occasionally important a history of some 200 years which even with works (e.g. Balogh, 1954) would have gone un- European standards can be considered rich. The noticed, e.g. the Haemorrhagias nephroso mites beginnings coincide with the birth of European causing nephritis problems in Hungary, or what is acarology (and soil zoology) at about the end of even more important the intermediate hosts of the the 19th century, and its second flourishing in the Moniezia species published by Balogh, Kassai & early years of the 20th century. This epoch gave Mahunka (1965), Kassai & Mahunka (1964, rise to such outstanding specialists like the two 1965) might have been left out altogether. Canestrinis (Giovanni and Riccardo), but more especially Antonio Berlese in Italy, Albert D. -
Diversity and Distribution of Mites (Acari: Ixodida, Mesostigmata, Trombidiformes, Sarcoptiformes) in the Svalbard Archipelago
Article Diversity and Distribution of Mites (Acari: Ixodida, Mesostigmata, Trombidiformes, Sarcoptiformes) in the Svalbard Archipelago Anna Seniczak 1,*, Stanisław Seniczak 2, Marla D. Schwarzfeld 3 and Stephen J. Coulson 4,5 and Dariusz J. Gwiazdowicz 6 1 Department of Natural History, University Museum of Bergen, University of Bergen, Postboks 7800, 5020 Bergen, Norway 2 Department Evolutionary Biology, Faculty of Biological Sciences, Kazimierz Wielki University, J.K. Chodkiewicza 30, 85-064 Bydgoszcz, Poland; [email protected] 3 Canadian National Collection of Insects, Arachnids and Nematodes, Agriculture and Agri-food Canada, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada; [email protected] 4 Swedish Species Information Centre, Swedish University of Agricultural Sciences, SLU Artdatabanken, Box 7007, 75007 Uppsala, Sweden; [email protected] 5 Department of Arctic Biology, University Centre in Svalbard, P.O. Box 156, 9171 Longyearbyen, Svalbard, Norway 6 Faculty of Forestry, Poznań University of Life Sciences, Wojska Polskiego 71c, 60-625 Poznań, Poland; [email protected] * Correnspondence: [email protected] Received: 21 July 2020; Accepted: 19 August 2020; Published: 25 August 2020 Abstract: Svalbard is a singular region to study biodiversity. Located at a high latitude and geographically isolated, the archipelago possesses widely varying environmental conditions and unique flora and fauna communities. It is also here where particularly rapid environmental changes are occurring, having amongst the fastest increases in mean air temperature in the Arctic. One of the most common and species-rich invertebrate groups in Svalbard is the mites (Acari). We here describe the characteristics of the Svalbard acarofauna, and, as a baseline, an updated inventory of 178 species (one Ixodida, 36 Mesostigmata, 43 Trombidiformes, and 98 Sarcoptiformes) along with their occurrences.