Pengaruh Komposisi Bahan, Tekanan

Total Page:16

File Type:pdf, Size:1020Kb

Pengaruh Komposisi Bahan, Tekanan Jurnal Keramik dan Gelas Indonesia Vol.29 No.2 Desember 2020 : 82 - 91 SINTESIS DIKALSIUM FOSFAT ANHIDRAT UNTUK PREKURSOR BAHAN KERAMIK APATIT DARI BAHAN ALAM Synthesis of Anhydrous Dicalcium Phosphate for Precursor of Natural Ceramic Apatite Material M. Syaifun Nizar*, M. Syaifun Nizar*, Rizky Berliana W*, Kristanto Wahyudi* *) Kontributor Utama, **) Kontributor Anggota Balai Besar Keramik Jln. Jend Ahmad Yani No 392, Bandung, Indonesia Naskah masuk : 26 November 2020, Revisi: 30 Desember 2020, Diterima: 11 januari 2021 ABSTRAK ahan dikalsium fosfat merupakan salah satu bahan apatit yang digunakan untuk prekursor pembuatan bahan apatit lain seperti trikalsium B fosfat, tetrakalsium fosfat, dan hidroksiapatit. Bahan apatit tersebut memiliki kegunaan yang cukup luas di bidang medis dan industri farmasi. Penelitian ini bertujuan untuk menyiapkan bahan dikalsium fosfat dari bahan baku mineral kapur alam dengan metode yang mudah diterapkan untuk skala produksi industri. Dikalsium fosfat dibuat dengan cara presipitasi basah pencampuran asam fosfat dan slaked lime atau kalsium hidroksida dengan pengaturan suhu reaksi sekitar 60⁰C dan pH 3-4 dan pengeringan dilakukan pada suhu sekitar 180⁰C. Bahan yang dihasilkan diuji kandungan mineral dengan XRD dan EDX. Perhitungan semi kuantitatif bahan hasil sintesis mengandung lebih dari 90% dikalsium fosfat anhidrat, sisanya adalah mineral apatit lain. Bahan dikalsium fosfat ini sudah bisa digunakan sebagai prekursor pembuatan bahan apatit . Kata Kunci: kapur, asam fosfat, apatit, dikalsium fosfat anhidrat, prekursor ABSTRACT icalcium phosphate is one of the apatite materials used for precursors to synthesize other apatite D materials such as tricalcium phosphate, tetracalcium phosphate, and hydroxyapatite. Apatite materials are widely used in the medical field and pharmaceutical industry. This study aims to prepare dicalcium phosphate from natural limestone as a precursor for apatite with an easy-to-apply method for industrial scale. Wet precipitation process was performed to prepare dicalcium phosphate from phosphoric acid and slaked lime or calcium hydroxide with reaction temperature control at around 60⁰C and at pH of 3-4, then drying is carried out at about 180⁰C. The product is characterized for its mineral content by XRD and EDX. Semi-quantitative calculation of the synthesized material 82 Sintesis Dikalsium Fosfat Anhidrat..... M. Syaifun Nizar, dkk contains more than 90% dicalcium phosphate andhydrous, the rest is other apatite minerals. It can be used as a precursor for apatite production. Keywords: slaked lime, phosphoric acid ,apatite, dicalcium phosphate anhydrous, precursor. I. PENDAHULUAN menghasilkan nilai tambah yang tinggi Dikalsium fosfat anhidrat (DCPA) karena saat ini di Indonesia merupakan salah satu keluarga permintaan untuk bahan biomaterial senyawa apatit. Bahan apatit lainnya dan fine chemical untuk farmasi masih yaitu trikalsium fosfat, tetrakalsium ketergantungan dari bahan impor [5]. fosfat dan hidroksiapatit [1]. Bahan dikalsium fosfat digunakan Penggunaan bahan tersebut di dunia untuk industri pangan, kimia, medis medis dan farmasi saat ini sudah dan farmasi, akan tetapi aplikasi yang cukup luas, misalnya untuk bahan menunjukkan peningkatan nilai semen tulang, scaffold tulang, tambah yang signifikan adalah untuk pembuatan tulang buatan, obat, dan keperluan medis dan farmasi. Maka juga drug carrier [2]. Beberapa semen dari itu perlu dikembangkan teknologi gigi dan scaffold menggunakan bahan yang sesuai untuk mengembangkan dikalsium fosfat sebagai salah satu industri medis dan farmasi berbasis komponennya bersamaan dengan kapur yang menghasilkan bahan- komponen apatit lain karena memiliki bahan dengan taraf sesuai standar karakteristik bio-resorbable yang tinggi medis dan farmasi. sehingga bersifat bio-kompatibel dan Senyawa dikalsium fosfat memiliki juga osteo-kompatibel [3][4]. Di perbandingan Ca/P 1:1, sehingga industri farmasi, bahan dikalsium bahan ini dapat digunakan sebagai fosfat digunakan sebagai perekat dan prekursor senyawa apatit lain dengan pengisi pada tablet dan kapsul. cara menambahkan kadar kalsium Batu kapur yang melimpah di agar memiliki perbandingan molar Indonesia berpotensi sebagai bahan lebih tinggi dari Ca/P 1:1 yang sesuai baku untuk sintesis material yang dengan senyawa apatit yang digunakan pada industri biomaterial diinginkan [6]. Teknologi pembuatan dan farmasi. Pengolahannya produk apatit sebelumnya 83 Jurnal Keramik dan Gelas Indonesia Vol.29 No.2 Desember 2020 : 82 - 91 menggunakan umpan bahan baku ke menyiapkan teknologi pembuatan dalam reaktor yang berbeda-beda prekursor DCPA sebagai bahan dasar untuk setiap produk apatit, sedangkan untuk pembuatan bahan apatit lain dengan menerapkan teknologi pada dengan penyederhanaan teknologi tulisan ini umpan bahan baku biasa sintesis yang sudah ada, dimana dibuat sederhana atau hanya satu teknologi sebelumnya bahan baku macam saja akan tetapi keluaran apatit dapat berbeda-beda garam produk apatit bisa bervariasi, untuk kalsium dan sumber fosfatnya untuk membuat produk apatit dibuat dengan tiap produk apatit yang berbeda, yaitu satu alur jalur produksi yang unik penyederhanaan sumber bahan baku untuk setiap produk. Teknologi ini untuk membuat prekursor yang bisa tidak hanya menghasilkan satu jenis diolah untuk sintesis produk apatit lain bahan, akan tetapi mendorong sehingga line produksi pembuatan terciptanya industri bahan-bahan apatit dapat dibuat paralel untuk dapat medis dan farmasi yang lain [7]. membuat berbagai macam produk Bahan dikalsium fosfat merupakan apatit berbeda dengan teknologi saat salah satu bahan dasar yang dapat ini dengan line produksi satu produk dijadikan prekursor untuk bahan fine apatit satu line produksi. chemical berbasis kapur atau bahan II. METODOLOGI PENELITIAN apatit. Dengan mengatur proses produksi yang dimodifikasi sesuai Bahan yang digunakan untuk dengan kebutuhan, teknologi pembuatan dikalsium fosfat adalah pembuatan dikalsium fosfat ini dapat slaked lime dari kapur alam yang dijadikan landasan untuk pembuatan berasal dari Cirebon dan Padalarang bahan apatit lain [7]. Masing-masing dengan kemurnian diatas 68% kadar bahan apatit tersebut memiliki fungsi berat, dan asam fosfat teknis dengan dan karakterstik yang berbeda-beda kadar 85% berat. Bahan slaked lime yang dapat digunakan sesuai dengan diukur kadar air untuk menentukan kebutuhan aplikasi yang akan jumlah perbandingan mol jumlah asam diterapkan akan tetapi proses dasar fosfat yang akan dicampurkan. Rata- pembuatannya secara garis besar rata pengukuran kadar air slaked lime dapat dihimpun dan dikelompokan berkisar antara 68-77% menjadi dasar sesuai dengan keperluan. Tujuan dari perhitungan jumlah asam fosfat yang penelitian ini adalah untuk akan dipakai. Asam fosfat yang dipakai 84 Sintesis Dikalsium Fosfat Anhidrat..... M. Syaifun Nizar, dkk memiliki kadar 85% berat yang Setelah kering bahan tersebut diayak diencerkan dengan akuades menjadi 4 sampai dengan 200 mesh. kali volume. Jumlah mol kalsium dan Reaksi kimia pada saat titrasi fosfat dihitung dengan perbandingan adalah sebagai berikut : Ca/P 1:1. Kalsium hidroksida H3PO4 + Ca(OH)2 → CaHPO4↓+ 2H2O [10] dicampurkan dengan asam fosfat Produk reaksi tersebut dikarakterisasi dengan cara titrasi asam fosfat dengan menggunakan X-ray diffraction untuk kecepatan yang lambat, reaksi titrasi melihat fasa mineral dan menghitung ini terjadi proses presipitasi basah secara semi kuantitatif kadar dikalsium pada suhu 60oC-80oC [8] pH 3-4 dan fosfat. Uji Energy Dispersive X-ray 10-11 [9] dengan pengadukan selama dilakukan untuk mengetahui 6 jam. Setelah diaduk, campuran perbandingan Ca/P bahan dikalsium tersebut diendapkan selama 12 jam fosfat hasil sintesis. Sampel bahan lalu dikeringkan pada suhu 180oC. DCPA komersial diuji juga sebagai perbandingan. Gambar 1. Diagram alur proses pembuatan dikalsium fosfat pada temperatur 180oC tanpa III. HASIL DAN PEMBAHASAN dicampur dengan asam fosfat sebagai Sampel nomor 1 adalah sampel sampel kontrol, untuk melihat kalsium hidroksida yang dikeringkan perubahan kandungan bahan kalsium 85 Jurnal Keramik dan Gelas Indonesia Vol.29 No.2 Desember 2020 : 82 - 91 yang dipanaskan dan juga melihat menggunakan pendekatan semi perubahan kalsium hidroksida yang kuantitatif metode Rietvield dari berubah menjadi CaCO3. Pada Tabel difraktogram XRD. 1 dihitung kandungan mineralnya Tabel 1. Hasil perhitungan semi-kuantitatif XRD. Kuantitas Fasa Mineral (% berat) No Sampel CaCO3 CaOH2 DCPD DCPA CaO 1 63,05 35,34 0,75 0,55 0,3 2 60,00 38,00 1,00 1,00 - 3 45,61 52,10 1,86 0,49 - 4 - 0,16 1,41 98,23 - Sampel no 1 mengandung fasa hidrat 2H2O yang akan hilang karena kalsit 63,05% karena bahan kalsium pemanasan menjadi dikalsium fosfat hidroksida kehilangan air sehingga anhidrat. Struktur kristal keduanya berubah menjadi kalsit. Fasa kalsium berbeda, dikalsium fosfat dihidrat hidroksida masih tersisa sebanyak berstruktur kristal monoklinik 35,34%. Proses pengeringan dapat sedangkan dikalsium fosfat anhidrat mengurangi kadar air cukup signifikan. berstruktur triklinik. Oleh karena itu, Analisis sampel kontrol ini untuk keduanya memiliki difraktogram XRD melihat perbandingan apakah ada yang berbeda. kalsium hidroksida yang tersisa pada Sampel No.3 merupakan hasil sampel yang dicampur dengan asam sintesis dari campuran perbandingan fosfat. mol sesuai stoikiometri Ca/P 1:1, pH Sampel nomor 2 merupakan yang terukur pada akhir reaksi sekitar sampel komersial dikalsium fosfat. 10-11 atau bersifat basa. Pada Tabel 1 Sampel ini diuji untuk melihat
Recommended publications
  • Effect of the Addition of Alginate And/Or Tetracycline on Brushite Cement Properties
    molecules Article Effect of the Addition of Alginate and/or Tetracycline on Brushite Cement Properties Claudia Morilla 1,2,3, Elianis Perdomo 4, Ana Karla Hernández 1, Ramcy Regalado 1, Amisel Almirall 1, Gastón Fuentes 1,2,* , Yaima Campos Mora 1,2, Timo Schomann 2,3 , Alan Chan 3 and Luis J. Cruz 2 1 Biomaterials Center, University of Havana, La Habana 10400, Cuba; [email protected] (C.M.); [email protected] (A.K.H.); [email protected] (R.R.); [email protected] (A.A.); [email protected] (Y.C.M.) 2 Translational Nanobiomaterials and Imaging Group, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; [email protected] (T.S.); [email protected] (L.J.C.) 3 Percuros B.V., 2333 CL Leiden, The Netherlands; [email protected] 4 Faculty of Automatic and Biomedical Engineering, Technological University of Havana, La Habana 11300, Cuba; [email protected] * Correspondence: [email protected] or [email protected] Abstract: Calcium phosphate cements have the advantage that they can be prepared as a paste that sets in a few minutes and can be easily adapted to the shape of the bone defect, which facilitates its clinical application. In this research, six formulations of brushite (dicalcium phosphate dihydrated) cement were obtained and the effect of the addition of sodium alginate was analyzed, such as its capacity as a tetracycline release system. The samples that contain sodium alginate set in 4 or 5 min Citation: Morilla, C.; Perdomo, E.; and showed a high percentage of injectability (93%).
    [Show full text]
  • Calcium Phosphate Bioceramics: a Review of Their History, Structure, Properties, Coating Technologies and Biomedical Applications
    Review Calcium Phosphate Bioceramics: A Review of Their History, Structure, Properties, Coating Technologies and Biomedical Applications Noam Eliaz * and Noah Metoki Biomaterials and Corrosion Lab, Department of Materials Science and Engineering, Tel-Aviv University, Ramat Aviv 6997801, Israel; [email protected] * Correspondence: [email protected]; Tel.: +972-3-640-7384 Academic Editor: Patrice Laquerriere Received: 11 February 2017; Accepted: 22 March 2017; Published: 24 March 2017 Abstract: Calcium phosphate (CaP) bioceramics are widely used in the field of bone regeneration, both in orthopedics and in dentistry, due to their good biocompatibility, osseointegration and osteoconduction. The aim of this article is to review the history, structure, properties and clinical applications of these materials, whether they are in the form of bone cements, paste, scaffolds, or coatings. Major analytical techniques for characterization of CaPs, in vitro and in vivo tests, and the requirements of the US Food and Drug Administration (FDA) and international standards from CaP coatings on orthopedic and dental endosseous implants, are also summarized, along with the possible effect of sterilization on these materials. CaP coating technologies are summarized, with a focus on electrochemical processes. Theories on the formation of transient precursor phases in biomineralization, the dissolution and reprecipitation as bone of CaPs are discussed. A wide variety of CaPs are presented, from the individual phases to nano-CaP, biphasic and triphasic CaP formulations, composite CaP coatings and cements, functionally graded materials (FGMs), and antibacterial CaPs. We conclude by foreseeing the future of CaPs. Keywords: bioceramics; biomineralization; bone cement; calcium phosphate; coating; composites; drug delivery; electrochemical deposition; functionally graded materials; nano-hydroxyapatite 1.
    [Show full text]
  • Role of Strontium on the Crystallization of Calcium Hydrogen Phosphate Dihydrate (CHPD)
    Journal of Minerals & Materials Characterization & Engineering , Vol. 10, No.7, pp.625-636, 2011 jmmce.org Printed in the USA. All rights reserved Role of Strontium on the Crystallization of Calcium Hydrogen Phosphate Dihydrate (CHPD) K. Suguna 1, 2 , C. Sekar 3* 1 Department of Physics, Sri Sarada College for Women, Salem -636 016, TN, India. 2 Department of Physics, Periyar University, Salem- 636 011, TN, India. 3 Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi-630003, TN, India. *Corresponding Author: [email protected] ABSTRACT Calcium hydrogen phosphate dihydrate (CHPD, CaHPO 4· 2H2O) or brushite is found quite frequently in urinary calculi (stones) . Crystallization of brushite has been carried out in sodium metasilicate (SMS) gel with and without adding ‘Sr’ as additive. In pure system, dicalcium phosphate anhydrous (DCPA, CaHPO 4) or monetite and hydroxyapatite (HA, Ca 5(PO 4)3(OH)) grew along with brushite. The presence of Sr suppressed the formation of HA and enhanced the number and size of monetite crystals and changed the morphology of brushite crystals from needle shape to octopus-like shape. The samples were characterized by powder & single crystal X-ray diffraction (XRD), scanning electron microscopy (SEM), X- ray fluorescence spectroscopy (XRF), Fourier transform infrared spectroscopy (FTIR) and thermal analyses (TG-DTA) . Keywords: Brushite , Crystal growth, Sr additive, SEM. 1. INTRODUCTION Calcium phosphates have been studied extensively because of their occurrence in normal and pathological calcifications. Due to their excellent biocompatibility, it is a well-known bioactive material suitable for bone and hard tissue replacement [1] . Hydroxyapatite (HA, Ca 5(PO 4)3(OH), octacalcium phosphate (OCP,Ca 8H2(PO 4)6·5(H 2O)), tricalcium phosphate ( β- TCP, Ca 3(PO 4)2), dicalcium phosphate dihydrate or calcium hydrogen phosphate dihydrate (CHPD, CaHPO 4·2H 2O), dicalcium phosphate anhydrous (DCPA, CaHPO4), tetracalcium [2] phosphate (TTCP, Ca 4(PO 4)2O) and amorphous calcium phosphate (ACP) are different 625 626 K.
    [Show full text]
  • Inhibitors and Promoters of Stone Formation
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Kidney International, Vol. 13 (1978), pp. 361—3 71 Inhibitors and promoters of stone formation HERBERT FLEISCH Department of Pathophysiology, University of Berne, Berne, Switzerland Currently, three main mechanisms are thought to Crystal growth and crystal aggregation be important in the formation of urinary stones: 1) In the past, attention was devoted mostly to the the relationship between the concentration of the formation and growth of crystals. Recently, interest precipitating substances in urine and the solubility of has been directed to an area which, until now, had the mineral phase formed, 2) the role of promoters of been neglected: the crystal aggregation. This term crystallization and aggregation, and 3) the part describes the process of crystals binding one to an- played by inhibitors of crystal formation and aggre- other, resulting in the formation of larger clusters. In gation (Fig. 1). vitro, aggregation of both calcium oxalate [16, 17] Saturation of urine and calcium phosphate crystals [18] occurs readily when the solution is supersaturated. Aggregation It is now widely accepted that even in normal could be the mechanism which distinguishes simple people, urine is ordinarily supersaturated with re- crystalluria, which occurs in most normal people, spect to calcium oxalate [1—6], octocalcium phos- from stone formation. This line of thought is phate [2, 3], hydroxyapatite [1, 2], and sometimes strengthened by the finding that while usually only with respect to brushite [1, 7, 8]. The degree of individual calcium oxalate crystals are found in nor- supersaturation is usually higher in patients with mal people, stone-formers often excrete large aggre- urinary stones [2—4, 7—10].
    [Show full text]
  • Dicalcium Phosphate As a Mineral Supplement for Dairy Cows
    BULLETIN 455 AUGUST, 1930 Dicalcium Phosphate as a Mineral Supplement for Dairy Cows C. C. Hayden, C. F. Monroe, and C. H. Crawford OHIO AGRICULTURAL EXPERIMENT STATION Wooster, Ohio CONTENTS Introduction . • . • . • • . • • . • • • • • • . •.......•••.•.•••••••••••••• , • • . • • . • .. 3 Review of Other Work . .. .. .. 3 Metabolism Experiments . • . 3 Feeding Trials . 5 Experiment . 7 Plan ........................................................... 7 Cows Used ....................................................... 7 Care and Feeding . 7 Mineral Used . 8 Results ............................................................ 8 Milk Production ................................................. 8 Total Production ............................................ 9 Total Production Corrected to 4 Per Cent Fat Basis . 10 Corrected for Length of Lactation . • . 10 Corrected for Age . 11 Other Comparisons . 12 Periods Before and After Feeding Minerals Compared . 12 First and Second Lactations of Heifers Compared . 13 Summary of Milk Production . 13 Health of the Herd . 15 Condition of the Cows . 15 Breeding . • . 15 Diseases . ....................................... 16 General Discussion .................................................. 16 Summary and Conclusions ........................................... 18 References Cited .................................................... 19 Appendix • • . • • . • • • • . • . • . • • • . .•.•...••••••••••• , , • , , • , ....... 21 (1) Trumbull County Experiment Farm barn where the experiment was conducted DICALCIUM
    [Show full text]
  • Kidney Disease and Your Diet
    Kidney Disease and Your Diet Kidney Disease and Your Diet Department of Nutrition Services Kidney and Urinary Program 1 Kidney Disease and Your Diet PD 3085 (Rev 2015-10) File: peyles 2 Kidney Disease and Your Diet Inside this book Page About your kidneys 1 Protein 3 Potassium 6 Phosphorus 11 Sodium (Salt) 17 Herb and Spice Guide 21 Fluids 22 Staying a Healthy Weight 24 Bread, Grains and Other Starches 26 Fats 27 Sugar and Sugar Containing Food 28 Your Daily Choices 29 Sample Menu Plan 30 Tips on Eating Out 32 Reading Labels 39 3 Kidney Disease and Your Diet About your kidneys Your kidneys are shaped like kidney beans. Each one is the size of your fist. A kidney has about 1 million tiny filters inside. What do kidneys do? Kidneys have 3 main jobs . They filter and remove waste from blood and make urine. kidney = = filter out wastes in urine They control the salt and water balance in your body. They produce hormones that help make red blood cells and keep your bones healthy. What happens when kidneys have a disease? Kidney disease affects all the jobs that healthy kidneys do. Kidneys with a disease do not remove waste out of your body very well. Wastes start to build up in your body. Where does the waste come from? Waste comes from the food we eat. Our food is made up of proteins, fat and starches. When we eat food, the body digests it. The blood absorbs the digested food and takes it to all the cells to be used.
    [Show full text]
  • Chemical Specific Parameters May 2019
    Regional Screening Level (RSL) Chemical-specific Parameters Supporting Table April 2019 Contaminant Molecular Weight Volatility Parameters Melting Point Density Diffusivity in Air and Water Partition Coefficients Water Solubility Tapwater Dermal Parameters H` HLC H` and HLC VP VP MP MP Density Density Dia Diw Dia and Diw Kd Kd Koc Koc log Kow log Kow S S B τevent t* Kp Kp Analyte CAS No. MW MW Ref (unitless) (atm-m3/mole) Ref mmHg Ref C Ref (g/cm3) Ref (cm2/s) (cm2/s) Ref (L/kg) Ref (L/kg) Ref (unitless) Ref (mg/L) Ref (unitless) (hr/event) (hr) (cm/hr) Ref Acephate 30560-19-1 1.8E+02 PHYSPROP 2.0E-11 5.0E-13 EPI 1.7E-06 PHYSPROP 8.8E+01 PHYSPROP 1.4E+00 CRC89 3.7E-02 8.0E-06 WATER9 (U.S. EPA, 2001) 1.0E+01 EPI -8.5E-01 PHYSPROP 8.2E+05 PHYSPROP 2.1E-04 1.1E+00 2.7E+00 4.0E-05 EPI Acetaldehyde 75-07-0 4.4E+01 PHYSPROP 2.7E-03 6.7E-05 PHYSPROP 9.0E+02 PHYSPROP -1.2E+02 PHYSPROP 7.8E-01 CRC89 1.3E-01 1.4E-05 WATER9 (U.S. EPA, 2001) 1.0E+00 EPI -3.4E-01 PHYSPROP 1.0E+06 PHYSPROP 1.3E-03 1.9E-01 4.5E-01 5.3E-04 EPI Acetochlor 34256-82-1 2.7E+02 PHYSPROP 9.1E-07 2.2E-08 PHYSPROP 2.8E-05 PHYSPROP 1.1E+01 PubChem 1.1E+00 PubChem 2.2E-02 5.6E-06 WATER9 (U.S.
    [Show full text]
  • A Laboratory Study to Determine the Caries Lesion Remineralizing Potential of Novel Fluoride- and Calcium-Containing Toothpastes
    A laboratory study to determine the caries lesion remineralizing potential of novel fluoride- and calcium-containing toothpastes Frank Lippert, PhD*; Karmjeet K. Gill, BDS Indiana University School of Dentistry, Oral Health Research Institute, 415 Lansing St, Indianapolis, IN 46202 Corresponding author: Frank Lippert Indiana University School of Dentistry Oral Health Research Institute 415 Lansing St Indianapolis, IN 46202 [email protected] +1-317-274-3983 Author information: Dr. Lippert is an Associate Professor, Department of Cariology, Operative Dentistry and Dental Public Health, School of Dentistry, Indiana University, Indianapolis, IN. Dr. Lippert is also Director of the Remineralization Research Program, Oral Health Research Institute, School of Dentistry, Indiana University, Indianapolis, IN. Dr. Gill is a volunteer at the Oral Health Research Institute, School of Dentistry, Indiana University, Indianapolis, IN. Author contributions: FL designed the study, analyzed and interpreted the data, and co-authored the manuscript. KKG conducted the study, analyzed and interpreted the data, and co-authored the manuscript. FL and KKG approved the submission of the present manuscript. _______________________________________________ This is the author's manuscript of the article published in final edited form as: Lippert, F., & Gill, K. K. (2019). Carious lesion remineralizing potential of fluoride- and calcium-containing toothpastes: A laboratory study. The Journal of the American Dental Association, 150(5), 345–351. https://doi.org/10.1016/j.adaj.2018.11.022 Abstract Background. We conducted a laboratory study to determine the caries lesion remineralization and fluoridation potential of novel fluoride- and calcium-containing toothpastes. Methods. We created early caries lesions in bovine enamel specimens and assigned them to seven treatment groups based on their surface Vickers microhardness: Clinpro Tooth Crème, CTx4 Gel 1100, Enamelon Fluoride Toothpaste, MI Paste ONE, Crest Cavity Protection, and two fluoride-dose controls (low-F, high-F).
    [Show full text]
  • A Review on Calcium Pyrophosphate and Other Related Phosphate Nano Bio-Materials and Their Applications
    4R4ev. Adv. Mater. Sci. 48 (2017) 44-57 S. R. Vasant and M. J. Joshi A REVIEW ON CALCIUM PYROPHOSPHATE AND OTHER RELATED PHOSPHATE NANO BIO-MATERIALS AND THEIR APPLICATIONS Sonal R. Vasant1 and M. J. Joshi2 1Government Engineering College, Rajkot, Gujarat, India 2Department of Physics, Saurashtra University, Rajkot, Gujarat, India Received: July 29, 2016 Abstract. Over the past few decades, a little word with big potential has been rapidly insinuating into the world’s consciousness, nano. The nano-scale structures permit the control of funda- mental properties of the materials without changing their chemical structure. Living organisms can create amazing ways to produce high performance materials that involve not only creation of implants, replacing bone tissues and organs, but also synthesis of biologically active materials promoting the fullest restoration of tissues and maintenance of necessary functions of an organ- ism. In the biomaterial research field, nowadays, a great attention is given to bone substitute materials, particularly, calcium phosphate based bio-materials play important roles in clinical applications as it possesses high bio-compatibility and excellent ability to undergo varying de- grees of resorbability. These materials show a positive interaction with living tissue that includes differentiation of immature cells towards bone cells and also have chemical bonding to the bone along the interface, thought to be triggered by the adsorption of bone growth-mediating proteins at the bio-materials surface. In the present review paper an attempt is made to cover properties and applications of various phosphate nano bio-materials like calcium phosphate, calcium polyphosphate, calcium pyrophosphate etc over a time span right from 1920 to 2016.
    [Show full text]
  • A Thesis Entitled Development of High Strength Dicalcium Phosphate
    A Thesis entitled Development of High Strength Dicalcium Phosphate Anhydrous Cement with Nanosilica Sol by Timothy John Franklin Luchini Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Master of Science Degree in Mechanical Engineering _________________________________________ Dr. Sarit Bhaduri, Committee Chair _________________________________________ Dr. Ioan Marinescu, Committee Member _________________________________________ Dr. Mehdi Pourazady, Committee Member _________________________________________ Dr. Huan Zhou, Committee Member _________________________________________ Dr. Patricia R. Komuniecki, Dean College of Graduate Studies The University of Toledo December 2012 Copyright 2012, Timothy John Franklin Luchini This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of Development of High Strength Dicalcium Phosphate Anhydrous Cement with Nanosilica Sol by Timothy John Franklin Luchini Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Master of Science Degree in Mechanical Engineering The University of Toledo December 2012 Dicalcium Phosphate Anhydrous (DCPA, Monetite) based materials have large potential as bone repair substitutes and drug delivery systems due to high bioactivity and known solubility in body fluid, and they could provide useful scaffolds in tissue engineering and orthopedic applications. Clinicians increasingly need bone scaffolds
    [Show full text]
  • New Knowledge of Chondrocalcinosis
    J Clin Pathol: first published as 10.1136/jcp.31.Suppl_12.214 on 1 January 1978. Downloaded from J. clin. Path., 31, Suppl. (Roy. Coll. Path.), 12, 214-222 New knowledge of chondrocalcinosis PAUL DIEPPE From the Department ofMedicine, University ofBristol There are three varieties of cartilage-hyaline, parathyroidism, haemachromatosis, hypothy- elastic, and fibrocartilage. Hyaline cartilage is the roidism, hypophosphataxia, hypomagnesaemia, precursor of bone. In the adult it is mainly found at gout(?), diabetes mellitus (?), Wilson's disease (?), bone ends, forming the load-bearing surface of ochronosis (?)). synovial joints. Extra-articular fibrocartilages such as those of the trachea and ribs often calcify with Historical perspective advancing age. Articular cartilage, however, usually remains free from mineral deposits. The term Intra-articular calcification has been recognisedforat 'chondrocalcinosis' may be defined as a pathological least a century. It was mentioned by Garrod (1876) state characterised by the precipitation of insoluble and by Adams (1872). With the advent of joint calcium salts in articular and periarticular cartilage. radiography there were a number of reports of The presence of chondrocalcinosis can be proved calcification of knee menisci (Pearson and Davin, only by crystallographic examination. Its presence 1921). Wolke (1935) described five cases from 2569 may be inferred by radiological examination or the knee radiographs. Zit'nan and Sifaj (1957) described discovery of crystals in synovial fluid. In addition, 12 cases, and they later identified familial cases with articular chondrocalcinosis is sometimes accom- polyarticular lesions and an associated arthritis by copyright. panied by arthritis. There are therefore three (2itnian and Silaj, 1976). separate phenomena associated with chondrocal- While 2ithan and Sifaj surveyed joint radiographs cinosis-radiological changes, crystals in synovial Hollander and McCarty (1961) examined joint fluid, and arthritis.
    [Show full text]
  • 2019 Trace Minerals
    United States Department of Agriculture Agricultural Marketing Service | National Organic Program Document Cover Sheet https://www.ams.usda.gov/rules-regulations/organic/national-list/petitioned Document Type: ☐ National List Petition or Petition Update A petition is a request to amend the USDA National Organic Program’s National List of Allowed and Prohibited Substances (National List). Any person may submit a petition to have a substance evaluated by the National Organic Standards Board (7 CFR 205.607(a)). Guidelines for submitting a petition are available in the NOP Handbook as NOP 3011, National List Petition Guidelines. Petitions are posted for the public on the NOP website for Petitioned Substances. ☒ Technical Report A technical report is developed in response to a petition to amend the National List. Reports are also developed to assist in the review of substances that are already on the National List. Technical reports are completed by third-party contractors and are available to the public on the NOP website for Petitioned Substances. Contractor names and dates completed are available in the report. Trace Minerals Livestock 1 Identification of Petitioned Substance 2 3 “Trace minerals” is a term for multiple nutritional elements added to livestock, poultry, and companion 4 animal diets in micro quantities only (i.e., measured in milligrams per pound or small units) (AAFCO 5 2019). While the Association of American Feed Control Officials (AAFCO) lists only cobalt, copper, iodine, 6 iron, manganese, and zinc as trace minerals added to animal feeds (AAFCO 2019), this technical report also 7 discusses chromium, molybdenum, and selenium, which are all commonly found in commercial trace 8 mineral products on the market for inclusion in animal feeds.
    [Show full text]