Integration in a Convex Linear Topological Space*
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
On Absolute Continuity∗
journal of mathematical analysis and applications 222, 64–78 (1998) article no. AY975804 On Absolute Continuity∗ Zolt´an Buczolich† Department of Analysis, Eotv¨ os¨ Lorand´ University, Muzeum´ krt. 6–8, H–1088, Budapest, Hungary View metadata, citation and similar papers at core.ac.ukand brought to you by CORE provided by Elsevier - Publisher Connector Washek F. Pfeffer ‡ Department of Mathematics, University of California, Davis, California 95616 Submitted by Brian S. Thomson Received June 5, 1997 We prove that in any dimension a variational measure associated with an additive continuous function is σ-finite whenever it is absolutely continu- ous. The one-dimensional version of our result was obtained in [1] by a dif- ferent technique. As an application, we establish a simple and transparent relationship between the Lebesgue integral and the generalized Riemann integral defined in [7, Chap. 12]. In the process, we obtain a result (The- orem 4.1) involving Hausdorff measures and Baire category, which is of independent interest. As variations defined by BV sets coincide with those defined by figures [8], we restrict our attention to figures. The set of all real numbers is denoted by , and the ambient space of this paper is m where m 1 is a fixed integer. In m we use exclusively the metric induced by the maximum≥ norm . The usual inner product of · x; y m is denoted by x y, and 0 denotes the zero vector of m. For an ∈ · x m and ε>0, we let ∈ B x y m x y <ε : ε = ∈ x − *The results of this paper were presented to the Royal Belgian Academy on June 3, 1997. -
Absolute Continuity for Operator Valued Completely Positive Maps on C
CORE Metadata, citation and similar papers at core.ac.uk Provided by Bilkent University Institutional Repository JOURNAL OF MATHEMATICAL PHYSICS 50, 022102 ͑2009͒ Absolute continuity for operator valued completely algebras-ءpositive maps on C ͒ ͒ Aurelian Gheondea1,a and Ali Şamil Kavruk2,b 1Department of Mathematics, Bilkent University, Bilkent, Ankara 06800, Turkey and Institutul de Matematică al Academiei Române, C. P. 1-764, 014700 Bucureşti, Romania 2Department of Mathematics, University of Houston, Houston, Texas 77204-3476, USA ͑Received 15 October 2008; accepted 16 December 2008; published online 11 February 2009͒ Motivated by applicability to quantum operations, quantum information, and quan- tum probability, we investigate the notion of absolute continuity for operator valued algebras, previously introduced by Parthasarathy-ءcompletely positive maps on C ͓in Athens Conference on Applied Probability and Time Series Analysis I ͑Springer- Verlag, Berlin, 1996͒, pp. 34–54͔. We obtain an intrinsic definition of absolute continuity, we show that the Lebesgue decomposition defined by Parthasarathy is the maximal one among all other Lebesgue-type decompositions and that this maxi- mal Lebesgue decomposition does not depend on the jointly dominating completely positive map, we obtain more flexible formulas for calculating the maximal Le- besgue decomposition, and we point out the nonuniqueness of the Lebesgue de- composition as well as a sufficient condition for uniqueness. In addition, we con- sider Radon–Nikodym derivatives for absolutely continuous completely positive maps that, in general, are unbounded positive self-adjoint operators affiliated to a certain von Neumann algebra, and we obtain a spectral approximation by bounded Radon–Nikodym derivatives. An application to the existence of the infimum of two completely positive maps is indicated, and formulas in terms of Choi’s matrices for the Lebesgue decomposition of completely positive maps in matrix algebras are obtained. -
Chapter 7 Separation Properties
Chapter VII Separation Axioms 1. Introduction “Separation” refers here to whether or not objects like points or disjoint closed sets can be enclosed in disjoint open sets; “separation properties” have nothing to do with the idea of “separated sets” that appeared in our discussion of connectedness in Chapter 5 in spite of the similarity of terminology.. We have already met some simple separation properties of spaces: the XßX!"and X # (Hausdorff) properties. In this chapter, we look at these and others in more depth. As “more separation” is added to spaces, they generally become nicer and nicer especially when “separation” is combined with other properties. For example, we will see that “enough separation” and “a nice base” guarantees that a space is metrizable. “Separation axioms” translates the German term Trennungsaxiome used in the older literature. Therefore the standard separation axioms were historically named XXXX!"#$, , , , and X %, each stronger than its predecessors in the list. Once these were common terminology, another separation axiom was discovered to be useful and “interpolated” into the list: XÞ"" It turns out that the X spaces (also called $$## Tychonoff spaces) are an extremely well-behaved class of spaces with some very nice properties. 2. The Basics Definition 2.1 A topological space \ is called a 1) X! space if, whenever BÁC−\, there either exists an open set Y with B−Y, CÂY or there exists an open set ZC−ZBÂZwith , 2) X" space if, whenever BÁC−\, there exists an open set Ywith B−YßCÂZ and there exists an open set ZBÂYßC−Zwith 3) XBÁC−\Y# space (or, Hausdorff space) if, whenever , there exist disjoint open sets and Z\ in such that B−YC−Z and . -
The Absolutely Continuous Spectrum of the Almost Mathieu Operator
THE ABSOLUTELY CONTINUOUS SPECTRUM OF THE ALMOST MATHIEU OPERATOR ARTUR AVILA Abstract. We prove that the spectrum of the almost Mathieu operator is absolutely continuous if and only if the coupling is subcritical. This settles Problem 6 of Barry Simon’s list of Schr¨odinger operator problems for the twenty-first century. 1. Introduction This work is concerned with the almost Mathieu operator H = Hλ,α,θ defined on ℓ2(Z) (1.1) (Hu)n = un+1 + un−1 +2λ cos(2π[θ + nα])un where λ = 0 is the coupling, α R Q is the frequency and θ R is the phase. This is the6 most studied quasiperiodic∈ \ Schr¨odinger operator, arisin∈ g naturally as a physical model (see [L3] for a recent historical account and for the physics back- ground). We are interested in the decomposition of the spectral measures in atomic (corre- sponding to point spectrum), singular continuous and absolutely continuous parts. Our main result is the following. Main Theorem. The spectral measures of the almost Mathieu operator are abso- lutely continuous if and only if λ < 1. | | 1.1. Background. Singularity of the spectral measures for λ 1 had been pre- viously established (it follows from [LS], [L1], [AK]). Thus| | the ≥ Main Theorem reduces to showing absolute continuity of the spectral measures for λ < 1, which is Problem 6 of Barry Simon’s list [S3]. | | We recall the history of this problem (following [J]). Aubry-Andr´econjectured the following dependence on λ of the nature of the spectral measures: arXiv:0810.2965v1 [math.DS] 16 Oct 2008 (1) (Supercritical regime) For λ > 1, spectral measures are pure point, (2) (Subcritical regime) For λ| <| 1, spectral measures are absolutely continu- ous. -
Absolute Continuity of Poisson Random Fields
Publ. RIMS, Kyoto Univ. 26 (1990), 629-647 Absolute Continuity of Poisson Random Fields By Yoichiro TAKAHASHI* § 0. Introduction Let R be a locally compact Hausdorff space with countable basis. Given a nonatomic nonnegative Radon measure 2. on R, we denote the Poisson measure (or random fields or point processes) with intensity 1 by TT^. Theorem. Let X and p be two nonatomic infinite nonnegative Radon measures on R. Then the Poisson measures KZ and TCP are mutually absolutely continuous if and only if (a) 2 and p are mutually absolutely continuous and (b) the Hellinger distance d(p, 1} between 1 and p is finite: (1) d(p Furthermore, the Hellinger distance D(xp, m) between KP and KI is then given by the formula /o\ D(rr T \^ ' The main purpose of the present note is to give a proof to Theorem above. In the last section we shall apply Theorem to the problem of giving the precise definition of the Fisher information or, equivalently, of giving a statistically natural Riemannian metric for an "infinite dimensional statistical model", which consists of mutually absolutely continuous Poisson measures. Remark, (i) Assume (a) and denote d (3) A- P Y~ dl ' Then the Radon-Nikodym derivative ^ is positive and finite ^-almost everywhere Communicated by H. Araki, October 23, 1989. * Department of Pure and Applied Sciences, College of Arts and Sciences, University of Tokyo, Komaba, Tokyo 153, Japan. 630 YOICHIRO TAKAHASHI and the condition (b) means that (10 V0~-1<EEL\R, X). In fact, by definition, (ii) The case where R is an Euclidean space is already studied by A.V. -
On the Existence of Monotone Pure Strategy Equilibria in Bayesian Games
On the Existence of Monotone Pure Strategy Equilibria in Bayesian Games Philip J. Reny Department of Economics University of Chicago January 2006 Abstract We extend and strengthen both Athey’s (2001) and McAdams’(2003) results on the existence of monotone pure strategy equilibria in Bayesian games. We allow action spaces to be compact locally-complete metrizable semilatttices and can handle both a weaker form of quasisupermodularity than is employed by McAdams and a weaker single-crossing property than is required by both Athey and McAdams. Our proof — which is based upon contractibility rather than convexity of best reply sets — demonstrates that the only role of single-crossing is to help ensure the existence of monotone best replies. Finally, we do not require the Milgrom-Weber (1985) absolute continuity condition on the joint distribution of types. 1. Introduction In an important paper, Athey (2001) demonstrates that a monotone pure strategy equilib- rium exists whenever a Bayesian game satis…es a Spence-Mirlees single-crossing property. Athey’s result is now a central tool for establishing the existence of monotone pure strat- egy equilibria in auction theory (see e.g., Athey (2001), Reny and Zamir (2004)). Recently, McAdams (2003) has shown that Athey’sresults, which exploit the assumed total ordering of the players’one-dimensional type and action spaces, can be extended to settings in which type and action spaces are multi-dimensional and only partially ordered. This permits new existence results in auctions with multi-dimensional signals and multi-unit demands (see McAdams (2004)). At the heart of the results of both Athey (2001) and McAdams (2003) is a single-crossing assumption. -
Topics in Analysis 1 — Real Functions
Topics in analysis 1 | Real functions Onno van Gaans Version May 21, 2008 Contents 1 Monotone functions 2 1.1 Continuity . 2 1.2 Differentiability . 2 1.3 Bounded variation . 2 2 Fundamental theorem of calculus 2 2.1 Indefinite integrals . 2 2.2 The Cantor function . 2 2.3 Absolute continuity . 2 3 Sobolev spaces 2 3.1 Sobolev spaces on intervals . 3 3.2 Application to differential equations . 6 3.3 Distributions . 10 3.4 Fourier transform and fractional derivatives . 16 4 Stieltjes integral 20 4.1 Definition and properties . 20 4.2 Langevin's equation . 28 4.3 Wiener integral . 32 5 Convex functions 33 1 1 Monotone functions 1.1 Continuity 1.2 Differentiability 1.3 Bounded variation 2 Fundamental theorem of calculus 2.1 Indefinite integrals 2.2 The Cantor function 2.3 Absolute continuity 3 Sobolev spaces When studying differential equations it is often convenient to assume that all functions in the equation are several times differentiable and that their derivatives are continuous. If the equation is of second order, for instance, one usually assumes that the solution should be two times continuously differentiable. There are several reasons to allow functions with less smoothness. Let us consider two of them. Suppose that u00(t) + αu0(t) + βu(t) = f(t) describes the position u(t) of a particle at time t, where f is some external force acting on the particle. If the force is contiuous in t, one expects the solution u to be twice continuously differentiable. If the functions f has jumps, the second derivative of u will not be continuous and, more than that, u0 will probably not be differentiable at the points where f is discon- tinuous. -
On Compactness in Locally Convex Spaces
Math. Z. 195, 365-381 (1987) Mathematische Zeitschrift Springer-Verlag 1987 On Compactness in Locally Convex Spaces B. Cascales and J. Orihuela Departamento de Analisis Matematico, Facultad de Matematicas, Universidad de Murcia, E-30.001-Murcia-Spain 1. Introduction and Terminology The purpose of this paper is to show that the behaviour of compact subsets in many of the locally convex spaces that usually appear in Functional Analysis is as good as the corresponding behaviour of compact subsets in Banach spaces. Our results can be intuitively formulated in the following terms: Deal- ing with metrizable spaces or their strong duals, and carrying out any of the usual operations of countable type with them, we ever obtain spaces with their precompact subsets metrizable, and they even give good performance for the weak topology, indeed they are weakly angelic, [-14], and their weakly compact subsets are metrizable if and only if they are separable. The first attempt to clarify the sequential behaviour of the weakly compact subsets in a Banach space was made by V.L. Smulian [26] and R.S. Phillips [23]. Their results are based on an argument of metrizability of weakly compact subsets (see Floret [14], pp. 29-30). Smulian showed in [26] that a relatively compact subset is relatively sequentially compact for the weak to- pology of a Banach space. He also proved that the concepts of relatively countably compact and relatively sequentially compact coincide if the weak-* dual is separable. The last result was extended by J. Dieudonn6 and L. Schwartz in [-9] to submetrizable locally convex spaces. -
The Converse Envelope Theorem∗
The converse envelope theorem∗ Ludvig Sinander Northwestern University 14 July 2021 Abstract I prove an envelope theorem with a converse: the envelope formula is equivalent to a first-order condition. Like Milgrom and Segal’s (2002) envelope theorem, my result requires no structure on the choice set. I use the converse envelope theorem to extend to abstract outcomes the canonical result in mechanism design that any increasing allocation is implementable, and apply this to selling information. 1 Introduction Envelope theorems are a key tool of economic theory, with important roles in consumer theory, mechanism design and dynamic optimisation. In blueprint form, an envelope theorem gives conditions under which optimal decision- making implies that the envelope formula holds. In textbook accounts,1 the envelope theorem is typically presented as a consequence of the first-order condition. The modern envelope theorem of Milgrom and Segal (2002), however, applies in an abstract setting in which the first-order condition is typically not even well-defined. These authors therefore rejected the traditional intuition and developed a new one. In this paper, I re-establish the intuitive link between the envelope formula arXiv:1909.11219v4 [econ.TH] 14 Jul 2021 and the first-order condition. I introduce an appropriate generalised first-order ∗I am grateful to Eddie Dekel, Alessandro Pavan and Bruno Strulovici for their guidance and support. This work has profited from the close reading and insightful comments of Gregorio Curello, Eddie Dekel, Roberto Saitto, Quitzé Valenzuela-Stookey, Alessandro Lizzeri and four anonymous referees, and from comments by Piotr Dworczak, Matteo Escudé, Benny Moldovanu, Ilya Segal and audiences at Northwestern and the 2021 Kansas Workshop in Economic Theory. -
Section 11.3. Countability and Separability
11.3. Countability and Separability 1 Section 11.3. Countability and Separability Note. In this brief section, we introduce sequences and their limits. This is applied to topological spaces with certain types of bases. Definition. A sequence {xn} in a topological space X converges to a point x ∈ X provided for each neighborhood U of x, there is an index N such that n ≥ N, then xn belongs to U. The point x is a limit of the sequence. Note. We can now elaborate on some of the results you see early in a senior level real analysis class. You prove, for example, that the limit of a sequence of real numbers (under the usual topology) is unique. In a topological space, this may not be the case. For example, under the trivial topology every sequence converges to every point (at the other extreme, under the discrete topology, the only convergent sequences are those which are eventually constant). For an ad- ditional example, see Bonus 1 in my notes for Analysis 1 (MATH 4217/5217) at: http://faculty.etsu.edu/gardnerr/4217/notes/3-1.pdf. In a Hausdorff space (as in a metric space), points can be separated and limits of sequences are unique. Definition. A topological space (X, T ) is first countable provided there is a count- able base at each point. The space (X, T ) is second countable provided there is a countable base for the topology. 11.3. Countability and Separability 2 Example. Every metric space (X, ρ) is first countable since for all x ∈ X, the ∞ countable collection of open balls {B(x, 1/n)}n=1 is a base at x for the topology induced by the metric. -
On Separability of the Functional Space with the Open-Point and Bi-Point-Open Topologies, Arxiv:1602.02374V2[Math.GN] 12 Feb 2016
On separability of the functional space with the open-point and bi-point-open topologies, II Alexander V. Osipov Ural Federal University, Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, 16, S.Kovalevskaja street, 620219, Ekaterinburg, Russia Abstract In this paper we continue to study the property of separability of functional space C(X) with the open-point and bi-point-open topologies. We show that for every perfect Polish space X a set C(X) with bi-point-open topology is a separable space. We also show in a set model (the iterated perfect set model) that for every regular space X with countable network a set C(X) with bi-point-open topology is a separable space if and only if a dispersion character ∆(X)= c. Keywords: open-point topology, bi-point-open topology, separability 2000 MSC: 54C40, 54C35, 54D60, 54H11, 46E10 1. Introduction The space C(X) with the topology of pointwise convergence is denoted by Cp(X). It has a subbase consisting of sets of the form [x, U]+ = {f ∈ C(X): f(x) ∈ U}, where x ∈ X and U is an open subset of real line R. arXiv:1604.04609v1 [math.GN] 15 Apr 2016 In paper [3] was introduced two new topologies on C(X) that we call the open-point topology and the bi-point-open topology. The open-point topology on C(X) has a subbase consisting of sets of the form [V,r]− = {f ∈ C(X): f −1(r) V =6 ∅}, where V is an open subset ofTX and r ∈ R. -
Absolute Continuity of the Integrated Density of States for the Almost Mathieu Operator with Non-Critical Coupling
ABSOLUTE CONTINUITY OF THE INTEGRATED DENSITY OF STATES FOR THE ALMOST MATHIEU OPERATOR WITH NON-CRITICAL COUPLING ARTUR AVILA AND DAVID DAMANIK Abstract. We show that the integrated density of states of the almost Math- ieu operator is absolutely continuous if and only if the coupling is non-critical. We deduce for subcritical coupling that the spectrum is purely absolutely continuous for almost every phase, settling the measure-theoretical case of Problem 6 of Barry Simon’s list of Schr¨odinger operator problems for the twenty-first century. 1. Introduction This work is concerned with the almost Mathieu operator H = Hλ,α,θ defined on `2(Z) (1) (Hu)n = un+1 + un−1 + 2λ cos(2π[θ + nα])un where λ 6= 0 is the coupling, α ∈ R\Q is the frequency, and θ ∈ R is the phase. This is the most heavily studied quasiperiodic Schr¨odinger operator, arising naturally as a physical model (see [22] for a recent historical account and for the physics background). We are interested in the integrated density of states, which can be defined as the limiting distribution of eigenvalues of the restriction of H = Hλ,α,θ to large finite intervals. This limiting distribution (which exists by [7]) turns out to be a θ independent continuous increasing surjective function N = Nλ,α : R → [0, 1]. The support of the probability measure dN is precisely the spectrum Σ = Σλ,α. Another important quantity, the Lyapunov exponent L = Lλ,α, is connected to the integrated density of states by the Thouless formula L(E) = R ln |E − E0| dN(E0).