How the Techniques of Molecular Biology Are Developed from Natural Systems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Evolution of Genomic Expression
C H A P T E R 5 Evolution of Genomic Expression Bernardo Lemos, Christian R. Landry, Pierre Fontanillas, Susan P. Renn, Rob Kulathinal, Kyle M. Brown, and Daniel L. Hartl Introduction Genomic regulation is key to cellular differentiation, tissue morphogenesis, and development. Increasing evidence indicates that evolutionary diversity of phenotypes—from cellular to organismic—may also be, in large part, the result of variation in the regulation of genomic expression. In this chapter we explore the complexity of gene regulation from the perspective of single genes and whole genomes. The first part describes the major factors affecting gene expression levels, from rates of gene transcrip- tion—as mediated by promoter–enhancer interactions and chromatin mod- ifications—to rates of mRNA degradation. This description underscores the multiple levels at which genomic expression can be regulated as well as the complexity and variety of mechanisms used. We then briefly describe the major experimental and computational biology techniques for analyzing gene expression variation and its underlying causes. The final section reviews our understanding of the role of regulatory variation in evolution, including the molecular evolution and population genetics of noncoding DNA, as well as the inheritance and phenotypic evolution of levels of mRNA abundance. The Complex Regulation of Genomic Expression The regulation of gene expression is a complex and dynamic process. It is not a simple matter to turn a gene on and off, let alone precisely regulate its level of expression. Regulation can be accomplished through various mech- anisms at nearly every step of the process of gene expression. Furthermore, each mechanism may require a variety of elements, including DNA sequences, RNA molecules, and proteins, acting in combination to deter- 2 Chapter Five Evolution of Genomic Expression 3 mine the final amount, timing, and location of functional gene product. -
INTRODUCTION Sirna and Rnai
J Korean Med Sci 2003; 18: 309-18 Copyright The Korean Academy ISSN 1011-8934 of Medical Sciences RNA interference (RNAi) is the sequence-specific gene silencing induced by dou- ble-stranded RNA (dsRNA). Being a highly specific and efficient knockdown tech- nique, RNAi not only provides a powerful tool for functional genomics but also holds Institute of Molecular Biology and Genetics and School of Biological Science, Seoul National a promise for gene therapy. The key player in RNAi is small RNA (~22-nt) termed University, Seoul, Korea siRNA. Small RNAs are involved not only in RNAi but also in basic cellular pro- cesses, such as developmental control and heterochromatin formation. The inter- Received : 19 May 2003 esting biology as well as the remarkable technical value has been drawing wide- Accepted : 23 May 2003 spread attention to this exciting new field. V. Narry Kim, D.Phil. Institute of Molecular Biology and Genetics and School of Biological Science, Seoul National University, San 56-1, Shillim-dong, Gwanak-gu, Seoul 151-742, Korea Key Words : RNA Interference (RNAi); RNA, Small interfering (siRNA); MicroRNAs (miRNA); Small Tel : +82.2-887-8734, Fax : +82.2-875-0907 hairpin RNA (shRNA); mRNA degradation; Translation; Functional genomics; Gene therapy E-mail : [email protected] INTRODUCTION established yet, testing 3-4 candidates are usually sufficient to find effective molecules. Technical expertise accumulated The RNA interference (RNAi) pathway was originally re- in the field of antisense oligonucleotide and ribozyme is now cognized in Caenorhabditis elegans as a response to double- being quickly applied to RNAi, rapidly improving RNAi stranded RNA (dsRNA) leading to sequence-specific gene techniques. -
Molecular Biology and Applied Genetics
MOLECULAR BIOLOGY AND APPLIED GENETICS FOR Medical Laboratory Technology Students Upgraded Lecture Note Series Mohammed Awole Adem Jimma University MOLECULAR BIOLOGY AND APPLIED GENETICS For Medical Laboratory Technician Students Lecture Note Series Mohammed Awole Adem Upgraded - 2006 In collaboration with The Carter Center (EPHTI) and The Federal Democratic Republic of Ethiopia Ministry of Education and Ministry of Health Jimma University PREFACE The problem faced today in the learning and teaching of Applied Genetics and Molecular Biology for laboratory technologists in universities, colleges andhealth institutions primarily from the unavailability of textbooks that focus on the needs of Ethiopian students. This lecture note has been prepared with the primary aim of alleviating the problems encountered in the teaching of Medical Applied Genetics and Molecular Biology course and in minimizing discrepancies prevailing among the different teaching and training health institutions. It can also be used in teaching any introductory course on medical Applied Genetics and Molecular Biology and as a reference material. This lecture note is specifically designed for medical laboratory technologists, and includes only those areas of molecular cell biology and Applied Genetics relevant to degree-level understanding of modern laboratory technology. Since genetics is prerequisite course to molecular biology, the lecture note starts with Genetics i followed by Molecular Biology. It provides students with molecular background to enable them to understand and critically analyze recent advances in laboratory sciences. Finally, it contains a glossary, which summarizes important terminologies used in the text. Each chapter begins by specific learning objectives and at the end of each chapter review questions are also included. -
Actin Gene Requires Myod1, Carg-Box Binding Factor, and Spl
Downloaded from genesdev.cshlp.org on October 3, 2021 - Published by Cold Spring Harbor Laboratory Press Muscle-specific expression of the cardiac -actin gene requires MyoD1, CArG-box binding factor, and Spl Vittorio Sartorelli, Keith A. Webster, 1 and Larry Kedes 2 Program in Molecular Biology and Genetics, Institute for Genetic Medicine, and Departments of Biochemistry and Medicine, University of Southern California School of Medicine, Los Angeles, California 90033 USA Expression of the human cardiac ~-actin gene (HCA) depends on the interactions of multiple transcriptional regulators with promoter elements. We report here that the tissue-specific expression of this promoter is determined by the simultaneous interaction of at least three specific protein-DNA complexes. The myogenic determinant gene MyoD1 activated the transcription of transfected HCA-CAT promoter constructs in nonmuscle cells, including CV-1 and HeLa cells. Gel mobility-shift and footprinting assays revealed that MyoD1 specifically interacted with a single consensus core sequence, CANNTG, at -50. Previously characterized sites interact with a protein identical with or related to the serum response factor (SRF) at - 100 and Spl at -70. All three elements must be intact to support transcription in muscle cells: site-specific mutation within any one of these three elements eliminated transcriptional expression by the promoter. Furthermore, expression of the promoter in embryonic Drosophila melanogaster cells that lack MyoD1 and Spl is strictly dependent on all three sites remaining intact and on the presence of exogenously supplied Spl and MyoD1. These experiments suggest that the presence of three sequence-specific binding proteins, including MyoD1, and their intact target DNA sequences are minimal requirements for muscle-specific expression of the HCA gene. -
Chapter 12 Gene Expression and Regulation
PYF12 3/21/05 8:04 PM Page 191 Chapter 12 Gene expression and regulation Bacterial genomes usually contain several thousand different genes. Some of the gene products are required by the cell under all growth conditions and are called house- keeping genes. These include the genes that encode such proteins as DNA poly- merase, RNA polymerase, and DNA gyrase. Many other gene products are required under specific growth conditions. These include enzymes that synthesize amino acids, break down specific sugars, or respond to a specific environmental condition such as DNA damage. Housekeeping genes must be expressed at some level all of the time. Frequently, as the cell grows faster, more of the housekeeping gene products are needed. Even under very slow growth, some of each housekeeping gene product is made. The gene prod- ucts required for specific growth conditions are not needed all of the time. These genes are frequently expressed at extremely low levels, or not expressed at all when they are not needed and yet made when they are needed. This chapter will examine gene regulation or how bacteria regulate the expression of their genes so that the genes that are being expressed meet the needs of the cell for a specific growth condition. Gene regulation can occur at three possible places in the production of an active gene product. First, the transcription of the gene can be regulated. This is known as transcriptional regulation. When the gene is transcribed and how much it is transcribed influences the amount of gene product that is made. Second, if the gene encodes a protein, it can be regulated at the translational level. -
(12) United States Patent (10) Patent No.: US 7.923,221 B1 Cabilly Et Al
US007.923221B1 (12) United States Patent (10) Patent No.: US 7.923,221 B1 Cabilly et al. (45) Date of Patent: *Apr. 12, 2011 (54) METHODS OF MAKING ANTIBODY HEAVY 4,512.922 A 4, 1985 Jones et al. AND LIGHT CHAINS HAVING SPECIFICITY 4,518,584 A 5, 1985 Mark 4,565,785 A 1/1986 Gilbert et al. FORADESIRED ANTIGEN 4,599,197 A 7, 1986 Wetzel 4,634,665 A 1/1987 Axel et al. (75) Inventors: Shmuel Cabilly, Monrovia, CA (US); 4,642,334 A 2f1987 Moore et al. Herbert L. Heyneker, Burlingame, CA 4,668,629 A 5/1987 Kaplan 4,704,362 A 11/1987 Itakura et al. (US); William E. Holmes, Pacifica, CA 4,713,339 A 12/1987 Levinson et al. (US); Arthur D. Riggs, LaVerne, CA 4,766,075 A 8, 1988 Goeddeletal. (US); Ronald B. Wetzel, San Francisco, 4,792.447 A 12/1988 Uhr et al. CA (US) 4,816,397 A * 3/1989 Boss et al. ...................... 435/68 4,816,567 A 3/1989 Cabilly et al. (73) Assignees: Genentech, Inc, South San Francisco, 4,965,196 A 10, 1990 Levinson et al. 5,081,235 A 1/1992 Shively et al. CA (US); City of Hope, Duarte, CA 5,098,833. A 3/1992 Lasky et al. (US) 5,116,964 A 5/1992 Capon et al. 5,137,721 A 8, 1992 Dallas (*) Notice: Subject to any disclaimer, the term of this 5,149,636 A 9, 1992 Axel et al. patent is extended or adjusted under 35 5,179,017 A 1/1993 Axel et al. -
IGA 8/E Chapter 8
8 RNA: Transcription and Processing WORKING WITH THE FIGURES 1. In Figure 8-3, why are the arrows for genes 1 and 2 pointing in opposite directions? Answer: The arrows for genes 1 and 2 indicate the direction of transcription, which is always 5 to 3. The two genes are transcribed from opposite DNA strands, which are antiparallel, so the genes must be transcribed in opposite directions to maintain the 5 to 3 direction of transcription. 2. In Figure 8-5, draw the “one gene” at much higher resolution with the following components: DNA, RNA polymerase(s), RNA(s). Answer: At the higher resolution, the feathery structures become RNA transcripts, with the longer transcripts occurring nearer the termination of the gene. The RNA in this drawing has been straightened out to illustrate the progressively longer transcripts. 3. In Figure 8-6, describe where the gene promoter is located. Chapter Eight 271 Answer: The promoter is located to the left (upstream) of the 3 end of the template strand. From this sequence it cannot be determined how far the promoter would be from the 5 end of the mRNA. 4. In Figure 8-9b, write a sequence that could form the hairpin loop structure. Answer: Any sequence that contains inverted complementary regions separated by a noncomplementary one would form a hairpin. One sequence would be: ACGCAAGCUUACCGAUUAUUGUAAGCUUGAAG The two bold-faced sequences would pair and form a hairpin. The intervening non-bold sequence would be the loop. 5. How do you know that the events in Figure 8-13 are occurring in the nucleus? Answer: The figure shows a double-stranded DNA molecule from which RNA is being transcribed. -
Were Ancestral Proteins Less Specific?
bioRxiv preprint doi: https://doi.org/10.1101/2020.05.27.120261; this version posted May 30, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Were ancestral proteins less specific? 1 1,2,3 1,2* Lucas C. Wheeler and Michael J. Harms 2 1. Institute of Molecular Biology, University of Oregon, Eugene OR 97403 3 2. Department of Chemistry and Biochemistry, University of Oregon, Eugene OR 97403 4 3. Department of Ecology and Evolutionary Biology, University of Colorado, Boulder 5 CO 80309 6 7 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.05.27.120261; this version posted May 30, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Abstract 8 Some have hypothesized that ancestral proteins were, on average, less specific than their 9 descendants. If true, this would provide a universal axis along which to organize protein 10 evolution and suggests that reconstructed ancestral proteins may be uniquely powerful tools 11 for protein engineering. Ancestral sequence reconstruction studies are one line of evidence 12 used to support this hypothesis. Previously, we performed such a study, investigating the 13 evolution of peptide binding specificity for the paralogs S100A5 and S100A6. -
Molecular Biology Eukaryotic Gene Additional Readings Prokaryotic Gene Bibliography
Gene - AccessScience from McGraw-Hill Education http://accessscience.com/content/gene/284400 (http://accessscience.com/) Article by: Sturtevant, Alfred H. Formerly, Biology Division, California Institute of Technology, Pasadena, California. Winkler, Malcolm E. Department of Microbiology and Molecular Genetics, University of Texas, Houston, Texas. Marmur, Julius Department of Biochemistry, Albert Einstein College of Medicine of Yeshiva University, New York, New York. Publication year: 2014 DOI: http://dx.doi.org/10.1036/1097-8542.284400 (http://dx.doi.org/10.1036/1097-8542.284400) Content Molecular biology Eukaryotic gene Additional Readings Prokaryotic gene Bibliography The basic unit in inheritance. There is no general agreement as to the exact usage of the term “gene” since several criteria that have been used for its definition have been shown not to be equivalent. The nature of this difficulty will be indicated after a description of the earlier position. The facts of mendelian inheritance indicate the presence of discrete hereditary units that replicate at each cell division, producing remarkably exact copies of themselves, and that in some highly specific way determine the characteristics of the individuals that bear them. The evidence also shows that each of these units may at times mutate to give a new equally stable unit (called an allele), which has more or less similar but not identical effects on the characters of its bearers. See also: Allele (/content/allele/024000); Mendelism (/content/mendelism/414500) These hereditary units are the genes, and the criteria for the recognition that certain genes are alleles have been that they (1) arise from one another by a single mutation, (2) have similar effects on the characters of the organism, and (3) occupy the same locus in the chromosome. -
Species Delimitation in Sea Anemones (Anthozoa: Actiniaria): from Traditional Taxonomy to Integrative Approaches
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 November 2019 doi:10.20944/preprints201911.0118.v1 Paper presented at the 2nd Latin American Symposium of Cnidarians (XVIII COLACMAR) Species delimitation in sea anemones (Anthozoa: Actiniaria): From traditional taxonomy to integrative approaches Carlos A. Spano1, Cristian B. Canales-Aguirre2,3, Selim S. Musleh3,4, Vreni Häussermann5,6, Daniel Gomez-Uchida3,4 1 Ecotecnos S. A., Limache 3405, Of 31, Edificio Reitz, Viña del Mar, Chile 2 Centro i~mar, Universidad de Los Lagos, Camino a Chinquihue km. 6, Puerto Montt, Chile 3 Genomics in Ecology, Evolution, and Conservation Laboratory, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, P.O. Box 160-C, Concepción, Chile. 4 Nucleo Milenio de Salmonidos Invasores (INVASAL), Concepción, Chile 5 Huinay Scientific Field Station, P.O. Box 462, Puerto Montt, Chile 6 Escuela de Ciencias del Mar, Pontificia Universidad Católica de Valparaíso, Avda. Brasil 2950, Valparaíso, Chile Abstract The present review provides an in-depth look into the complex topic of delimiting species in sea anemones. For most part of history this has been based on a small number of variable anatomic traits, many of which are used indistinctly across multiple taxonomic ranks. Early attempts to classify this group succeeded to comprise much of the diversity known to date, yet numerous taxa were mostly characterized by the lack of features rather than synapomorphies. Of the total number of species names within Actiniaria, about 77% are currently considered valid and more than half of them have several synonyms. Besides the nominal problem caused by large intraspecific variations and ambiguously described characters, genetic studies show that morphological convergences are also widespread among molecular phylogenies. -
Gene Expression Most Genes Are Not Expressed at a Particular Time
BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 14: Gene expression and regulation http://compbio.uchsc.edu/hunter/bio5099 [email protected] Gene expression Some gene products are necessary only some of the time, e.g. – In response to environmental stimuli, e.g. • Presence (or absence) of certain foods or toxins • Temperature change (heat shock, freezing) – In response to life events, e.g. • Reproduction • Fending off predators or pathogens Expression of a gene is creation of its product – Gene expression is regulated. – [NB: recall transcription is always 5' → 3'] Most genes are not expressed at a particular time Particularly true of multicellular organisms. e.g. Heart genes are not expressed in brain cells Even in prokaryotes, many genes are not expressed under “regular” circumstances – Of the 4279 genes in E. coli, only about 2600 (~60%) are expressed in standard laboratory conditions – Only about 350 genes are expressed at more than 100 copies (i.e. molecules!) per cell, making up 90% of the total protein. Transcription and translation are energetically expensive. Don't do them unless you have to. 1 Some genes are always expressed Certain key genes are made at all times under all circumstances. – E.g. Ribosomal proteins, tRNAs, RNA polymerase, glycolysis enzymes – These are called constitutive genes. Other genes are made only at certain times or in certain conditions. – These are under the control of regulatory apparatus, and can be expressed in widely varying amounts (called levels) – These genes are called inducible genes. Two ways to regulate metabolism We saw last week that metabolism could be regulated by changing the activity of an enzyme (e.g. -
Introduction: the Powers of Association
Copyrighted Material CHAPTER ONE Introduction: The Powers of Association In the summer of 2000, as the rainy season started, I made my way to the poor Dakar suburb of Th iaroye to meet a family with multiple cases of sickle cell anemia. Th ere were no paved sidewalks and my shoes sank in the mud when I jumped off the rusty minibus in a line of other hurried passengers. Stray sewer water bubbled from an opening in the street, creating small puddles of grey that were now being abluted by the downpour. Mr. Seck, the man I had come to see, had his niece keep watch for me, “the American from the hospital.” She surveyed me like sport as I divided my attention between the faulty gutters and locating the house. When we entered the compound, Seck welcomed me with a hard handshake. Th e whole family joined around, every one extending an arm, to introduce themselves with the familiarity and cheer an American usually reserves for a loved one. Doctors in town had recently diagnosed two of Seck’s children, ages eight and twelve, with HbSC sickle cell anemia, a less serious, heterozygous form of the more common homozygous HbSS disease. Both forms of the illness pro duce the hallmark symptom of this hemoglobin disorder: the vascular pain of arterial vessels clogged with sticky, damaged red blood cells, commonly called “the sickle cell crisis.” Th e children were prescribed folic acid for fi ft een days a month and Doliprane, the local name of acetaminophen, for pain when needed.