Muscle Tissue
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A New Edible Film to Produce in Vitro Meat
foods Article A New Edible Film to Produce In Vitro Meat Nicole Orellana 1, Elizabeth Sánchez 1, Diego Benavente 2, Pablo Prieto 2, Javier Enrione 3 and Cristian A. Acevedo 1,4,* 1 Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile; [email protected] (N.O.); [email protected] (E.S.) 2 Departamento de Ingeniería en Diseño, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile; [email protected] (D.B.); [email protected] (P.P.) 3 Biopolymer Research and Engineering Lab, Facultad de Medicina, Universidad de Los Andes, Monseñor Álvaro del Portillo 12455, Las Condes, Santiago 7550000, Chile; [email protected] 4 Departamento de Física, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile * Correspondence: [email protected] Received: 23 January 2020; Accepted: 10 February 2020; Published: 13 February 2020 Abstract: In vitro meat is a novel concept of food science and biotechnology. Methods to produce in vitro meat employ muscle cells cultivated on a scaffold in a serum-free medium using a bioreactor. The microstructure of the scaffold is a key factor, because muscle cells must be oriented to generate parallel alignments of fibers. This work aimed to develop a new scaffold (microstructured film) to grow muscle fibers. The microstructured edible films were made using micromolding technology. A micromold was tailor-made using a laser cutting machine to obtain parallel fibers with a diameter in the range of 70–90 µm. Edible films were made by means of solvent casting using non-mammalian biopolymers. -
Single-Cell Analysis Uncovers Fibroblast Heterogeneity
ARTICLE https://doi.org/10.1038/s41467-020-17740-1 OPEN Single-cell analysis uncovers fibroblast heterogeneity and criteria for fibroblast and mural cell identification and discrimination ✉ Lars Muhl 1,2 , Guillem Genové 1,2, Stefanos Leptidis 1,2, Jianping Liu 1,2, Liqun He3,4, Giuseppe Mocci1,2, Ying Sun4, Sonja Gustafsson1,2, Byambajav Buyandelger1,2, Indira V. Chivukula1,2, Åsa Segerstolpe1,2,5, Elisabeth Raschperger1,2, Emil M. Hansson1,2, Johan L. M. Björkegren 1,2,6, Xiao-Rong Peng7, ✉ Michael Vanlandewijck1,2,4, Urban Lendahl1,8 & Christer Betsholtz 1,2,4 1234567890():,; Many important cell types in adult vertebrates have a mesenchymal origin, including fibro- blasts and vascular mural cells. Although their biological importance is undisputed, the level of mesenchymal cell heterogeneity within and between organs, while appreciated, has not been analyzed in detail. Here, we compare single-cell transcriptional profiles of fibroblasts and vascular mural cells across four murine muscular organs: heart, skeletal muscle, intestine and bladder. We reveal gene expression signatures that demarcate fibroblasts from mural cells and provide molecular signatures for cell subtype identification. We observe striking inter- and intra-organ heterogeneity amongst the fibroblasts, primarily reflecting differences in the expression of extracellular matrix components. Fibroblast subtypes localize to discrete anatomical positions offering novel predictions about physiological function(s) and regulatory signaling circuits. Our data shed new light on the diversity of poorly defined classes of cells and provide a foundation for improved understanding of their roles in physiological and pathological processes. 1 Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Centre, Blickagången 6, SE-14157 Huddinge, Sweden. -
Emphasizing Task-Specific Hypertrophy to Enhance Sequential Strength and Power Performance
Journal of Functional Morphology and Kinesiology Review Emphasizing Task-Specific Hypertrophy to Enhance Sequential Strength and Power Performance S. Kyle Travis 1,* , Ai Ishida 1 , Christopher B. Taber 2 , Andrew C. Fry 3 and Michael H. Stone 1 1 Center of Excellence for Sport Science and Coach Education, Department of Sport, Exercise, Recreation, and Kinesiology, East Tennessee State University, Johnson City, TN 37604, USA; [email protected] (A.I.); [email protected] (M.H.S.) 2 Department of Physical Therapy and Human Movement Science, Sacred Heart University, Fairfield, CT 06825, USA; [email protected] 3 Jayhawk Athletic Performance Laboratory, Department of Health, Sport, and Exercise Sciences, University of Kansas, Lawrence, KS 66046, USA; [email protected] * Correspondence: [email protected] Received: 20 August 2020; Accepted: 21 October 2020; Published: 27 October 2020 Abstract: While strength is indeed a skill, most discussions have primarily considered structural adaptations rather than ultrastructural augmentation to improve performance. Altering the structural component of the muscle is often the aim of hypertrophic training, yet not all hypertrophy is equal; such alterations are dependent upon how the muscle adapts to the training stimuli and overall training stress. When comparing bodybuilders to strength and power athletes such as powerlifters, weightlifters, and throwers, while muscle size may be similar, the ability to produce force and power is often inequivalent. Thus, performance differences go beyond structural changes and may be due to the muscle’s ultrastructural constituents and training induced adaptations. Relative to potentiating strength and power performances, eliciting specific ultrastructural changes should be a variable of interest during hypertrophic training phases. -
Skeletal Muscle
Muscle Tissue Dr. Patrick C. Nahirney Oct. 27, 2014 Island Medical Program, UVic Department of Cellular & Physiological Studies, UBC Objectives 1. Compare and contrast the 3 general types of muscle 2. Describe muscle fascicles, muscle fibers, myofibrils, myofilaments & sarcomeres in skeletal muscle 3. Describe epimysium, perimysium & endomysium 4. Relate arrangement of myofilaments, sarcoplasmic reticulum, T-tubules & triads to function in contraction 5. Outline myogenesis (muscle fiber development) 6. Describe neuromuscular junction and muscle spindle Images from Sections 4.2 & 4.3, Pages 73 & 74, Ovalle & Nahirney, Netter’s Essential Histology, 2nd Edition. Used with permission. Copyright © 2013 Elsevier Inc. All rights reserved. Muscle Tissue Classified into 3 categories based on structure, function & location • Skeletal Muscle: (Striated, Voluntary) - Attached to skeleton - 40% body wt. • Cardiac Muscle: (Striated, Involuntary) - In myocardium of heart • Smooth Muscle: (No striations, Involuntary) - In hollow tubes & viscera Images from Sections 4.3, 8.6 & 13.11, Pages 74, 179 & 296, Ovalle & Nahirney, Netter’s Essential Histology, 2nd Edition. Used with permission. Copyright © 2013 Elsevier Inc. All rights reserved. Skeletal Muscle 1° Function: Generate Force for Movement Skeletal muscle fibers: • Long cylindrical cells with tapered ends - 50-200 µm in diam and up to several cm long • Multinucleated with nuclei in peripheral position • Cytoplasm packed with myofibrils (cylindrical bundles of filaments) along length of fiber (highly -
A Smooth Sustained Muscle Cell Contraction
A Smooth Sustained Muscle Cell Contraction ConsecratedhitchilyIf lapidific and or libellously, planar and numeric Chanderjit how Stephen historic usually isbureaucratizing Jon?nidificating Solute his or some brimful,spectrometry samfoos Walter disembowelledso never vendibly! demobilized retiredly any orsonatina! keel The strongest muscle contractions are normally achieved by A increasing stimulus above. Smooth skeletal cardiac both cardiac and skeletal both cardiac and smooth. Asm cells are made is that it a cell? Skeletal muscles only pull in waste direction For customer reason is always note in pairs When one muscle in each pair contracts to stay a joint for other its breach then contracts and pulls in the opposite quarter to straighten the locker out again. Chapter 14 Muscle Contraction Michael D Mann PhD. The initial transient phase is followed by a sustained contraction. A sarcomere is Athe wavy lines on core cell trail seen get a microscope. Which type of muscle works automatically? When a muscle is to illicit a three load isotonic conditions after stimulation starts. Smooth Muscle storage is accomplished by sustained contractions of ring-like bands of increase muscle called sphincters. When shivering produces random skeletal muscle contractions to generate heat. Smooth muscle than is associated with numerous organs and tissue. The smooth muscles are one as linings of the gastrointestinal tract that. Smooth muscle cells can remain pregnant a rash of contraction for long periods. Within myocytes caused by the organization of myofibrils to become constant tension. Tetanus continued sustained smooth contraction due its rapid stimulation wave summation. Layers of more muscle may act together miss one unit to guide simultaneous. -
Skeletal Muscle Tissue and Muscle Organization
Chapter 9 The Muscular System Skeletal Muscle Tissue and Muscle Organization Lecture Presentation by Steven Bassett Southeast Community College © 2015 Pearson Education, Inc. Introduction • Humans rely on muscles for: • Many of our physiological processes • Virtually all our dynamic interactions with the environment • Skeletal muscles consist of: • Elongated cells called fibers (muscle fibers) • These fibers contract along their longitudinal axis © 2015 Pearson Education, Inc. Introduction • There are three types of muscle tissue • Skeletal muscle • Pulls on skeletal bones • Voluntary contraction • Cardiac muscle • Pushes blood through arteries and veins • Rhythmic contractions • Smooth muscle • Pushes fluids and solids along the digestive tract, for example • Involuntary contraction © 2015 Pearson Education, Inc. Introduction • Muscle tissues share four basic properties • Excitability • The ability to respond to stimuli • Contractility • The ability to shorten and exert a pull or tension • Extensibility • The ability to continue to contract over a range of resting lengths • Elasticity • The ability to rebound toward its original length © 2015 Pearson Education, Inc. Functions of Skeletal Muscles • Skeletal muscles perform the following functions: • Produce skeletal movement • Pull on tendons to move the bones • Maintain posture and body position • Stabilize the joints to aid in posture • Support soft tissue • Support the weight of the visceral organs © 2015 Pearson Education, Inc. Functions of Skeletal Muscles • Skeletal muscles perform -
Possibilities for an in Vitro Meat Production System Innovative Food
Innovative Food Science and Emerging Technologies 11 (2010) 13–22 Contents lists available at ScienceDirect Innovative Food Science and Emerging Technologies journal homepage: www.elsevier.com/locate/ifset Review Possibilities for an in vitro meat production system I. Datar, M. Betti ⁎ Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5 article info abstract Article history: Meat produced in vitro has been proposed as a humane, safe and environmentally beneficial alternative to Received 28 June 2009 slaughtered animal flesh as a source of nutritional muscle tissue. The basic methodology of an in vitro meat Accepted 11 October 2009 production system (IMPS) involves culturing muscle tissue in a liquid medium on a large scale. Each Editor Proof Receive Date 26 October 2009 component of the system offers an array of options which are described taking into account recent advances in relevant research. A major advantage of an IMPS is that the conditions are controlled and manipulatable. Keywords: Limitations discussed include meeting nutritional requirements and large scale operation. The direction of In vitro meat further research and prospects regarding the future of in vitro meat production will be speculated. Myocyte culturing Industrial relevance: The development of an alternative meat production system is driven by the growing Meat substitutes demand for meat and the shrinking resources available to produce it by current methods. Implementation of an in vitro meat production system (IMPS) to complement existing meat production practices creates the opportunity for meat products of different characteristics to be put onto the market. In vitro produced meat products resembling the processed and comminuted meat products of today will be sooner to develop than those resembling traditional cuts of meat. -
Muscle Structural Assembly and Functional Consequences Marco Narici1,*, Martino Franchi1 and Constantinos Maganaris2
© 2016. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2016) 219, 276-284 doi:10.1242/jeb.128017 REVIEW Muscle structural assembly and functional consequences Marco Narici1,*, Martino Franchi1 and Constantinos Maganaris2 ABSTRACT appointed Professor of Surgery and Anatomy at the University The relationship between muscle structure and function has been a of Padua. Just 6 years after his appointment at Padua University, matter of investigation since the Renaissance period. Extensive use Vesalius published his treatise De Humani Corporis Fabrica of anatomical dissections and the introduction of the scientific method (1543) in seven books (Libri Septem) (Fig. 1A). In his treatise, enabled early scholars to lay the foundations of muscle physiology Vesalius gives a highly detailed description of each muscle of and biomechanics. Progression of knowledge in these disciplines led the human body, through a series of artistic illustrations of ‘ ’ ’ to the current understanding that muscle architecture, together with muscle men (Fig. 1B), attributed to Titian s pupil Jan Stephen ’ muscle fibre contractile properties, has a major influence on muscle van Calcar. Vesalius drawings and descriptions provided mechanical properties. Recently, advances in laser diffraction, optical accurate anatomical details of muscle insertions, position and microendoscopy and ultrasonography have enabled in vivo actions but not of the arrangement of muscle fibres because the investigations into the behaviour of human muscle fascicles and technique he used of engraving on woodblocks followed by printing sarcomeres with varying joint angle and muscle contraction intensity. probably did not enable him to achieve sufficient accuracy to With these technologies it has become possible to identify the length illustrate muscle fibres. -
An Important Regulator of Muscle Cell Fusion Francesco Girardi
TGFbeta signalling pathway in muscle regeneration : an important regulator of muscle cell fusion Francesco Girardi To cite this version: Francesco Girardi. TGFbeta signalling pathway in muscle regeneration : an important regulator of muscle cell fusion. Cellular Biology. Sorbonne Université, 2019. English. NNT : 2019SORUS114. tel-02944744 HAL Id: tel-02944744 https://tel.archives-ouvertes.fr/tel-02944744 Submitted on 21 Sep 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Sorbonne Université Ecole doctorale Complexité du Vivant Centre of Research in Myology Signaling Pathways & Striated Muscles TGFβ signalling pathway in muscle regeneration: an important regulator of muscle cell fusion Par Francesco GIRARDI Thèse de doctorat en Biologie Cellulaire et Moléculaire Dirigée par Fabien LE GRAND Présentée et soutenue publiquement le 19 septembre 2019 Devant un jury composé de : Président : Pr. Claire Fournier-Thibault Rapporteurs : Dr. Pierre-Yves Rescan Dr. Jerome Feige Examinateurs : Dr. Glenda Comai Dr. Philippos Mourikis Directeur de thèse : Dr. Fabien Le Grand TABLE OF CONTENTS SUMMARY I RÉSUMÉ II LIST OF ABBREVIATIONS III INTRODUCTION 1 I. Skeletal Muscle 1 1. Embryonic Myogenesis 2 1.1. Skeletal muscle formation 2 1.2. Molecular regulators of embryonic myogenesis 4 2. -
Development of an in Vitro Myogenesis Assay Anna Arnaud University of Arkansas, Fayetteville
University of Arkansas, Fayetteville ScholarWorks@UARK Biomedical Engineering Undergraduate Honors Biomedical Engineering Theses 5-2015 Development of an in vitro myogenesis assay Anna Arnaud University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/bmeguht Recommended Citation Arnaud, Anna, "Development of an in vitro myogenesis assay" (2015). Biomedical Engineering Undergraduate Honors Theses. 13. http://scholarworks.uark.edu/bmeguht/13 This Thesis is brought to you for free and open access by the Biomedical Engineering at ScholarWorks@UARK. It has been accepted for inclusion in Biomedical Engineering Undergraduate Honors Theses by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Development of an in vitro myogenesis assay An Undergraduate Honors College Thesis in the Department of Biomedical Engineering College of Engineering University of Arkansas Fayetteville, AR by Anna J Arnaud 1 2 Abstract The objective of this study was to explore the interaction between mouse C2C12 cells and the extracellular matrix, particularly the process of myoblasts converting to myocytes. This study aimed to create a myogenesis assay that presents a process to effectively monitor the development of mouse C2C12 myoblasts into differentiated skeletal myotubes through detection of the protein MyoD. Myogenesis, the development of muscle tissue, occurs when muscle progenitor cells, myoblasts, fuse to form multinucleated myotubes, followed by cell fusion and resulting in a myofiber capable of contraction. An in vitro myogenesis assay would enable further research to efficiently test the effect of various growth factors and other parameters on skeletal muscle development, a field with numerous clinical applications. -
Effect of Satellite Cell Ablation on Low-Frequency-Stimulated Fast-To-Slow fibre-Type Transitions in Rat Skeletal Muscle
J Physiol 572.1 (2006) pp 281–294 281 Effect of satellite cell ablation on low-frequency-stimulated fast-to-slow fibre-type transitions in rat skeletal muscle KarenJ.B.Martins1, Tessa Gordon2,3,DirkPette5, Walter T. Dixon4,GeorgeR.Foxcroft4, Ian M. MacLean1 and Charles T. Putman1,3 1Exercise Biochemistry Laboratory, Faculty of Physical Education and Recreation, 2Division of Physical Medicine and Rehabilitation, 3The Centre for Neuroscience, Faculty of Medicine and Dentistry, 4Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, AB, Canada T6G 2H9 5 Department of Biology, Faculty of Science, University of Konstanz, Konstanz D-78457, Germany The purpose of this study was to determine whether satellite cell ablation within rat fast-twitch musclesexposedtochroniclow-frequencystimulation(CLFS)wouldlimitfast-to-slowfibre-type transitions.Twenty-ninemaleWistarratswererandomlyassignedtooneofthreegroups.Satellite cells of the left tibialis anterior were ablated by weekly exposure to a 25 Gy dose of γ-irradiation during 21 days of CLFS (IRR-Stim), whilst a second group received only 21 days of CLFS (Stim). A third group received weekly doses of γ-irradiation (IRR). Non-irradiated right legs served as internal controls. Continuous infusion of 5-bromo-2-deoxyuridine (BrdU) revealed that CLFS induced an 8.0-fold increase in satellite cell proliferation over control (mean ± S.E.M.: 23.9 ± 1.7 versus 3.0 ± 0.5 mm−2, P < 0.0001) that was abolished by γ-irradiation. M-cadherin and myogenin staining were also elevated 7.7- and 3.8-fold (P < 0.0001), respectively, in Stim compared with control, indicating increases in quiescent and terminally differentiating satellite cells; these increases were abolished by γ-irradiation. -
Quantitative Model for Predicting Lymph Formation and Muscle Compressibility in Skeletal Muscle During Contraction and Stretch
Quantitative model for predicting lymph formation and muscle compressibility in skeletal muscle during contraction and stretch Laura Causey, Stephen C. Cowin, and Sheldon Weinbaum1 Department of Biomedical Engineering, The City College of New York, New York, NY 10031 Contributed by Sheldon Weinbaum, April 20, 2012 (sent for review March 2, 2012) Skeletal muscle is widely perceived as nearly incompressible despite perimysial compartments. It is the purpose of this paper to develop the fact that blood and lymphatic vessels within the endomysial and a theoretical framework and simplified anatomical model for perimysial spaces undergo significant changes in diameter and performing just such an analysis. length during stretch and contraction. These fluid shifts between Perhaps the most extensive experimental investigation of the fascicle and interstitial compartments have proved extremely diffi- volume changes mentioned above is attributable to Mazzoni et al. cult to measure. In this paper, we propose a theoretical framework (5) who studied entire cross-sections of the rat spinotrapezius based on a space-filling hexagonal fascicle array to provide pre- muscle, a muscle comparable to a portion of the trapezius muscle in humans. These investigators made detailed measurements of dictions of the displacement of blood and lymph into and out of the fi muscle’s endomysium and perimysium during stretch and contrac- the cross-sectional area of individual muscle bers, the thickness tion. We also use this model to quantify the distribution of blood and of the interstitial (perimysial) space between fascicles, and the initial lymphatic (IL) vessels within a fascicle and its perimysial space cross-sectional area of the ILs in planes transverse to the primary using data for the rat spinotrapezius muscle.