2/28 Lecture 18.3-4

Total Page:16

File Type:pdf, Size:1020Kb

2/28 Lecture 18.3-4 Astronomy 218 The Spectacular Deaths of Massive Stars End of a Massive Star By the time the helium shell burning ignites, the core is effectively decoupled from the envelope. The star’s remaining life is less than the Kelvin-Helmholtz timescale, τ ~ U/L ~ GM2/RL ~ 104 years. The visible luminosity is largely provided by the helium shell. 0.01 R 1000 R In the core, Tc > 500 MK lead ☉ ☉ to neutrino-pair production, allowing the luminosity of the core to escape primarily as neutrinos. Successive burning stages proceed rapidly to form an iron core with lighter element shells. High Energy Photons γ-rays are photons with wavelengths λ < 10−11 m, carrying energies of 100 keV or more. This corresponds to kT for a temperature of 1.1 GK. At temperatures of 0.5 GK or more, the tail of the photon distribution has sufficient energy (1.02 MeV) to transform into a electron-positron pair. Usually the positron will annihilate with an electron, producing γ-rays, but rarely a neutrino-antineutrino pair is produced. These radiate freely from the core, cooling it. For T > 1.2 GK the tail of the photon field is sufficient to photo-disintegrate neon, 20Ne + γ → 16O + α, igniting neon burning. This occurs at a lower temperature than the T > 1.5 GK required for oxygen burning. Inside a Massive Star This diagram shows the history of a 22 M☉ star. The green and red shadings show convective regions. Blue marks nuclear Rauscher, Heger, Hoffman & Woosley 2002 energy generation. Purple marks nuclear energy loss. Carbon, Neon, Oxygen and Silicon burning, leave a core of Iron. Nuclear burning stages The nuclear burning stages in the life of a 20 M☉ star. Stage Fuel Products Tc Lumin. Duration (100 MK) (100 L☉) H Burning H He 0.3 600 10 Myr He Burning He C 2 1000 1 Myr C Burning C O, Ne, Na, Mg 9 1400 103 yr Ne Burning Ne O, Mg 16 1500 200 days O Burning O Mg to S 20 1500 500 days Si Burning Si Fe peak 30 1500 10 days Collapse up to Th >30 0.3 s Why Stop at Iron? Fission Fusion For T > 3 GK, the photon field is sufficient to photodisintegrate most nuclei. This causes silicon burning. Photodisintegrations balance captures resulting in Nuclear Statistical Equilibrium (NSE). This favors iron, the most tightly bound nucleus. Iron core ⇒ no fusion to generate energy to balance gravitational collapse. Supernova! Sk 202-69 SN 1987a © Anglo-Australian Observatory Supernova Taxonomy Observationally, there are 2 types (7 subtypes) based on their spectra and light curves. Physically, there are 2 3 4 mechanisms, thermonuclear Cappellaro & Turatto (white dwarf) 2001 core collapse (massive star) collapsar (very massive star) pair production (very very massive star) 6 from 1, 1 from another The core collapse Super Luminous Supernova mechanism results in Ia White Dwarf supernovae with quite II-L Red Supergiant varied spectra and light II-P Blue Supergiant curves. Ib Wolf-Rayet Star Each CCSN is unique because of variations in the massive star’s mass and envelope which surrounds the central engine. In contrast, the Type Ia SN are remarkable similar, suggesting a mechanism with little variation. Supernova at 320 Years The supernova Cassiopeia A: Type IIb SN deposits 1044 J (the equivalent of 1028 MTons TNT) of Kinetic Energy into the ISM. X-ray (NASA/CXC/SAO) Optical (MDM Obs.) Supernovae are ~ 10 pc a major heating source in the ISM, responsible for coronal gas and star formation. Radio (VLA) Infrared (ISO) Old Supernovae Supernova remnants sweep up the interstellar medium as they spread, which gradually slows the ejecta. Thus old remnants lose their spherical shape as they encounter irregularities in the interstellar medium, including other supernova remnants. Vela SNR is Vela 8° on the sky. supernova The Vela remnant pulsar sits at the center of the Vela SNR, marking this as the grave of Exploded ~ a massive star. 9000 BCE Pulsar Winds In many supernova remnants that result from core collapse supernovae, the initial 1044 J carried by the blast wave is augmented over the course of thousands of years by 1043 J of pulsar magnetic dipole radiation and pulsar winds. Most CCSN SNRs combine shell and PW nebulae. The Crab nebula is an example where the shell remnant is missing leaving only the PW nebula. Central Source Even with complex morphology of supernova remnants it is generally possible to reconstruct their origin. Positive and negative photographs of the Crab Nebula 14 years apart show the the gaseous filaments moving away from the site of the explosion. Invisible Supernova As bright as supernova are, you might think they can be seen whenever they occur nearby, but this is untrue. As young stars, O & B stars occur predominantly in the Galactic Disk. In the disk, the UV and optical light that carries much of their light is heavily extinguished by interstellar dust, making some supernova invisible. The young supernova remnant G1.9+0.3A lies in the direction of the Galactic Center, in the Sagittarius. From X-ray and radio observations, we know its angular expansion rate and size, we can calculate an age of 140 years, but no SN was seen. Wind Interactions Supernovae begin interacting with their environment almost immediately. The initial interactions are with their own stellar wind. In the case of SN1987A, the first interaction was a light echo illuminating a hourglass shaped wind. The UV flash of the supernova ionized gas in the waist of the hourglass and along both funnels. The supernova shock is now striking the central ring, which was ejected 20,000 years earlier. Textbook Supernova A Core-Collapse Supernova is the inevitable death knell of a massive star. E = 1046 J comes from the creation of a neutron star. Neutrinos carry away the binding energy of the neutron star, heating the stellar envelope and driving the Hillebrandt, Janka, explosion. Müller/Sci. Am. Observing Neutrinos We are now able to observe neutrinos using a number of different methods. These detectors will allow an amazing view of the next galactic supernova. SN 1987a 1045 W Failed Supernova? 2 Because there is a maximum mass for a 1.8 ] NS, we expect collapse . O of a massive enough star to lead instead to a 1.6 black hole. 1.4 Without the neutron 12-WH07 D-Series 15-WH07 star radiating neutrinos, Proto-NS Mass [M 1.2 B-Series 20-WH07 the core collapse 25-WH07 mechanism fails. 1 0 500 1000 1500 2000 Mass loss & metallicity Time After Bounce [ms] are important to this limit. and very Massive stars may lose much of their envelope leaving the He or C/O core visible, re-enabling CCSN. Collapsar About once per day, a bright burst of highly beamed γ-rays comes to the Earth. Observations have recently tied some of these GRBs to peculiar, hyper- energetic SN Ic. One proposed model is a collapsar, where an accretion disk forms around a newly formed black hole in a failed supernova (M > 30 M☉), producing a jet which we see as the GRB. Heavy Element Ejecta Hughes, Rakowski, Burrows & Slane 2000 The ejecta from core-collapse supernovae are rich in many elements from oxygen to calcium and iron/cobalt/nickel. They may also be responsible for half of the elements heavier than iron. Fresh Nuclei Observations of core collapse supernovae reveal freshly made nuclear species. γ-ray telescopes reveal the characteristic γ-ray lines of 56 57 Ni (t½ = 6 days), Ni (t½ 56 = 36 hrs), Co (t½ = 77 57 days), Co (t½ = 272 days) 44 COMPTEL/NASA and Ti (t½ = 60 yrs). NuSTAR NASA/JPL-Caltech/CXC/SAO The supernova’s light curve in the later, linear phase is 56 56 powered by the conversion of ~0.1 M☉ of Ni to Co and ultimately 56Fe. Almost half of terrestrial iron was made in this way, a direct product of a star’s death. rich in heavy elements Not just iron, but many elements are made in these explosions. Others, made during stellar evolution, are released into the interstellar medium. Umeda & Nomoto 2003 Rauscher, Heger, Hoffman & Woosley 2002 Accretion Power White dwarves, neutron stars and black holes that are part of binary star systems exhibit a range of afterlives impossible for their solitary counterparts. The unifying power source for this range of objects is matter accreted from a binary companion. The wind of a companion can be the accretion source. Companions that fill their Roche lobes provide the largest & steadiest accretion rates. Loading a White Dwarf The result of accretion onto a white dwarf Nomoto, Saio, Kato & Hachisu 2007 depends on the accretion rate and WD mass. For high accretion rates, a Red Giant-like envelope re-forms. For the right accretion Novae rate, accreted H and He burn steadily to C & O, causing the WD to grow. For lesser accretion rates, a layer of H builds on the surface. As accretion continues, the pressure at the base of the accreted layer grows until it ignites. Finding Novae T. Credner 12/99 About 40 novae occur each year in our galaxy and they are frequently discovered by amateurs. Novae are classified as cataclysmic variables. The binary systems that make up cataclysmic variables are typically very tight (a ~ R☉) with periods of < 1 day. Classical Nova The ignition of the degenerate hydrogen layer causes a thermonuclear runaway, a 1038 J (1022 Megaton) Hydrogen bomb. The star to rapidly brighten as much as a million-fold. S2006 S1998 P1995 Starrfield, Iliadis, Hix, … 2009 The enhanced luminosity fades 2-3 magnitudes in < 25 days for a fast nova while a slow nova may take more than 80 days to decline.
Recommended publications
  • Arxiv:1901.01410V3 [Astro-Ph.HE] 1 Feb 2021 Mental Information Is Available, and One Has to Rely Strongly on Theoretical Predictions for Nuclear Properties
    Origin of the heaviest elements: The rapid neutron-capture process John J. Cowan∗ HLD Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks St., Norman, OK 73019, USA Christopher Snedeny Department of Astronomy, University of Texas, 2515 Speedway, Austin, TX 78712-1205, USA James E. Lawlerz Physics Department, University of Wisconsin-Madison, 1150 University Avenue, Madison, WI 53706-1390, USA Ani Aprahamianx and Michael Wiescher{ Department of Physics and Joint Institute for Nuclear Astrophysics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556, USA Karlheinz Langanke∗∗ GSI Helmholtzzentrum f¨urSchwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany and Institut f¨urKernphysik (Theoriezentrum), Fachbereich Physik, Technische Universit¨atDarmstadt, Schlossgartenstraße 2, 64298 Darmstadt, Germany Gabriel Mart´ınez-Pinedoyy GSI Helmholtzzentrum f¨urSchwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany; Institut f¨urKernphysik (Theoriezentrum), Fachbereich Physik, Technische Universit¨atDarmstadt, Schlossgartenstraße 2, 64298 Darmstadt, Germany; and Helmholtz Forschungsakademie Hessen f¨urFAIR, GSI Helmholtzzentrum f¨urSchwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany Friedrich-Karl Thielemannzz Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland and GSI Helmholtzzentrum f¨urSchwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany (Dated: February 2, 2021) The production of about half of the heavy elements found in nature is assigned to a spe- cific astrophysical nucleosynthesis process: the rapid neutron capture process (r-process). Although this idea has been postulated more than six decades ago, the full understand- ing faces two types of uncertainties/open questions: (a) The nucleosynthesis path in the nuclear chart runs close to the neutron-drip line, where presently only limited experi- arXiv:1901.01410v3 [astro-ph.HE] 1 Feb 2021 mental information is available, and one has to rely strongly on theoretical predictions for nuclear properties.
    [Show full text]
  • Arxiv:2008.04340V2 [Astro-Ph.HE] 7 Dec 2020
    SLAC-PUB-17548 Exciting Prospects for Detecting Late-Time Neutrinos from Core-Collapse Supernovae Shirley Weishi Li,1, 2, 3, ∗ Luke F. Roberts,4, y and John F. Beacom1, 2, 5, z 1Center for Cosmology and AstroParticle Physics (CCAPP), Ohio State University, Columbus, OH 43210 2Department of Physics, Ohio State University, Columbus, OH 43210 3SLAC National Accelerator Laboratory, Menlo Park, CA, 94025 4National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 5Department of Astronomy, Ohio State University, Columbus, OH 43210 (Dated: December 7, 2020) The importance of detecting neutrinos from a Milky Way core-collapse supernova is well known. An under-studied phase is proto-neutron star cooling. For SN 1987A, this seemingly began at about 2 s, and is thus probed by only 6 of the 19 events (and only theν ¯e flavor) in the Kamiokande-II and IMB detectors. With the higher statistics expected for present and near-future detectors, it should be possible to measure detailed neutrino signals out to very late times. We present the first comprehensive study of neutrino detection during the proto-neutron star cooling phase, considering a variety of outcomes, using all flavors, and employing detailed detector physics. For our nominal model, the event yields (at 10 kpc) after 10 s|the approximate duration of the SN 1987A signal| far exceed the entire SN 1987A yield, with '250ν ¯e events (to 50 s) in Super-Kamiokande, '110 νe events (to 40 s) in DUNE, and '10 νµ; ντ ; ν¯µ; ν¯τ events (to 20 s) in JUNO.
    [Show full text]
  • Implication for the Core-Collapse Supernova Rate from 21 Years of Data of the Large Volume Detector
    IMPLICATION FOR THE CORE-COLLAPSE SUPERNOVA RATE FROM 21 YEARS OF DATA OF THE LARGE VOLUME DETECTOR The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Agafonova, N. Y., M. Aglietta, P. Antonioli, V. V. Ashikhmin, G. Badino, G. Bari, R. Bertoni, et al. “IMPLICATION FOR THE CORE-COLLAPSE SUPERNOVA RATE FROM 21 YEARS OF DATA OF THE LARGE VOLUME DETECTOR.” The Astrophysical Journal 802, no. 1 (March 20, 2015): 47. © 2015 The American Astronomical Society As Published http://dx.doi.org/10.1088/0004-637x/802/1/47 Publisher IOP Publishing Version Final published version Citable link http://hdl.handle.net/1721.1/97081 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The Astrophysical Journal, 802:47 (9pp), 2015 March 20 doi:10.1088/0004-637X/802/1/47 © 2015. The American Astronomical Society. All rights reserved. IMPLICATION FOR THE CORE-COLLAPSE SUPERNOVA RATE FROM 21 YEARS OF DATA OF THE LARGE VOLUME DETECTOR N. Y. Agafonova1, M. Aglietta2, P. Antonioli3, V. V. Ashikhmin1, G. Badino2,7, G. Bari3, R. Bertoni2, E. Bressan4,5, G. Bruno6, V. L. Dadykin1, E. A. Dobrynina1, R. I. Enikeev1, W. Fulgione2,6, P. Galeotti2,7, M. Garbini3, P. L. Ghia8, P. Giusti3, F. Gomez2, E. Kemp9, A. S. Malgin1, A. Molinario2,6, R. Persiani3, I. A. Pless10, A. Porta2, V. G. Ryasny1, O. G. Ryazhskaya1, O. Saavedra2,7, G.
    [Show full text]
  • Dependence of Failed Supernova on Progenitor Models
    Dependence of failed supernova on progenitor models Kazuki Onogi,Hideyuki Suzuki Tokyo University of Science,Noda Chiba 278-8510,Japan Failed supernova We study the ejection of mass during stellar core-collapse when the stalled shock does not revive and a black hole forms. Phenomenon Neutrino emission during the protoneutron star phase reduces the gravitational mass of the core, resulting in an outward going sound pulse that steepens into a shock as it travels out through the star. Purpose Identify the dependence on neutrino emission and progenitor model Method and models We use 1D stellar evolution code MESA and 1D time-dependent hydrodynamic simulation which can treat neutrino mass loss parametrically. We use exponential neutrino cooling model which is same as Fernandez(2017) MG: gravitational mass of protoneutron star MB:the baryonic mass of protoneutron star BEC: the binding energy of a cold neutron star , M* ��# = 0.084 M⊙ τc: neutrino cooling time(~3s) M⊙ This model emit most of the energy as neutrino Stop the neutrino emission once in �4. the black hole form � = 0.1�, � = 2.0� 4 9:; ⨀ Results Fig 1 is a velocity profile of the star. It shows the shock propagate toward the surface of the star. The protoneutron star is also extremely hot and thus behaves in different manner from cold neutron stars. change the paremeter neutrino cooling time �? ,maximum Fig 1:shock propagation mass of neutron star systematically (0.1s ≤ �? ≤ 5.0s, 2.2M⊙ ≤ �9:; ≤ 2.8M⊙) �9:; = 2.6�⨀ Fig2 shows the velocity profile with different τc after shock breakout. the case, �? = 5.0s shows lower energy because the time reaching to the maximum mass of netron star is around 5s.
    [Show full text]
  • Topics in Core-Collapse Supernova Theory: the Formation of Black Holes and the Transport of Neutrinos
    Topics in Core-Collapse Supernova Theory: The Formation of Black Holes and the Transport of Neutrinos Thesis by Evan Patrick O'Connor In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy California Institute of Technology Pasadena, California 2012 (Defended May 21, 2012) ii c 2012 Evan Patrick O'Connor All Rights Reserved iii Acknowledgements First and foremost, I have the pleasure of acknowledging and thanking my advisor, Christian Ott, for his commitment and contribution to my research over the last four years. Christian, your attention to detail, desire for perfection, exceptional physical insight, and unwavering stance against the phrase direct black hole formation are qualities I admire and strive to reproduce in my own research. From our very first meeting, Christian has been an staunch advocate for open science, a philosophy that he has instilled in me throughout my time at Caltech and one that I plan on maintaining in my future career. I also thank the love of my life. Erin, there are so many reasons to be thankful to you. You are the best part of each and every day. On the science front, thank you for all our neutrino discussions, enlightening me on so many different aspects of neutrinos, and keeping my theoretical meanderings grounded in experimental reality. I am indebted to you for all your support, encouragement, per- sistence, and love throughout the writing of this thesis and I look forward to repaying that debt soon. Thank you to my family, as always, your constant encouragement and support in everything I do is greatly appreciated.
    [Show full text]
  • THE FORMATION of STELLAR BLACK HOLES 1. Introduction
    THE FORMATION OF STELLAR BLACK HOLES I.F. Mirabel1,2* 1. Institute of Astronomy and Space Physics. CONICET-Universidad de Buenos Aires. Ciudad Universitaria, 1428 Buenos Aires, Argentina 2. Laboratoire AIM-Paris-Saclay, CEA/DSM/Irfu−CNRS, CEA-Saclay, pt courrier 131, 91191 Gif-sur-Yvette, France * Correspondence to Félix Mirabel: [email protected] Keywords: black holes, binary back holes, gravitational waves, X-ray binaries Abstract: It is believed that stellar black holes (BHs) can be formed in two different ways: Either a massive star collapses directly into a BH without a supernova (SN) explosion, or an explosion occurs in a proto-neutron star, but the energy is too low to completely unbind the stellar envelope, and a large fraction of it falls back onto the short-lived neutron star (NS), leading to the delayed formation of a BH. Theoretical models set progenitor masses for BH formation by implosion, namely, by complete or almost complete collapse, but observational evidences have been elusive. Here are reviewed the observational insights on BHs formed by implosion without large natal kicks from: (1) the kinematics in three dimensions of space of five Galactic BH X-ray binaries (BH-XRBs), (2) the diversity of optical and infrared observations of massive stars that collapse in the dark, with no luminous SN explosions, possibly leading to the formation of BHs, and (3) the sources of gravitational waves produced by mergers of stellar BHs so far detected with LIGO. Multiple indications of BH formation without ejection of a significant amount of matter and with no natal kicks obtained from these different areas of observational astrophysics, and the recent observational confirmation of the expected dependence of BH formation on metallicity and redshift, are qualitatively consistent with the high merger rates of binary black holes (BBHs) inferred from the first detections with LIGO.
    [Show full text]
  • Characterizing EM-Bright Gravitational Wave Sources in Non-Stationary Interferometer Noise
    KSPA 2017 Program: Astrophysics with Gravitational Wave Detections Project Summaries 1: Novel tests of general relativity The primary tests of general relativity (GR) conducted by the LIGO collaboration parametrize possible departures from GR as deviations at fixed post-Newtonian orders. While some theories of modified GR predict deviations at particular pN orders, others do not. The goal of this project will be to implement alternative models for deviations from GR, which will be able to constrain arbitrary deviations in the amplitude and phase of gravitational waves. • Robust parameter estimation for compact binaries with ground-based gravitational-wave observations using the LALInference software library (arXiv:1409.7215) • Tests of general relativity with GW150914 (arXiv:1602.03841) • Modeling Calibration Errors in CBC Waveforms (LIGO-T1400682) 2: Characterizing EM-bright gravitational wave sources in non-stationary interferometer noise The merger of two neutron stars or a neutron star and a black hole is expected to produce a burst of electromagnetic emission in addition to gravitational waves detectable by LIGO, making these cosmic collisions a prime candidate for multi-messenger astronomy. Current parameter estimation algorithms for such events, including sky localization, assume the interferometer noise is well-behaved and stationary on the time scale of hundreds of seconds. However, terrestrial interferometer data often contains a high rate of non-stationary transient noise, or glitches. This project will characterize the impact of common forms of transient noise observed in the Advanced LIGO interferometers on the recovery of the sky position and physical parameters of compact binary systems, including those containing at least one neutron star, and explore methods of recovering signals from data containing transient noise.
    [Show full text]
  • Revealing Local Failed Supernovae with Neutrino Telescopes
    Revealing local failed supernovae with neutrino telescopes Lili Yang1 and Cecilia Lunardini1, 2 1Arizona State University, Tempe, AZ 85287-1504 2RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973 We study the detectability of neutrino bursts from nearby direct black hole-forming collapses (failed supernovae) at Megaton detectors. Due to their high energetics, these bursts could be identified { by the time coincidence of N ≥ 2 or N ≥ 3 events within a ∼ 1 s time window { from as far as ∼ 4 − 5 Mpc away. This distance encloses several supernova-rich galaxies, so that failed supernova bursts could be detected at a rate of up to one per decade, comparable to the expected rate of the more common, but less energetic, neutron star-forming collapses. Thus, the detection of a failed supernova within the lifetime of a Mt detector is realistic. It might give the first evidence of direct black hole formation, with important implications on the physics of this phenomenon. The gravitational collapse of a stellar core is one of the The fact that detecting individual neutrino bursts from most extreme phenomena in our universe. There, matter failed supernovae is realistic, with a Mt detector, implies is pushed to its limits of density, and most of the energy is the potential to reveal { possibly for the first time { the emitted by a non-electromagnetic form of radiation, the direct collapse of a star into a black hole, with several neutrinos, rather than in the final explosion (supernova) implications on the physics of this transition, such as that often follows the collapse.
    [Show full text]
  • Ps15cey and Ps17cke: Prospective Candidates from the Pan-STARRS Search for Kilonovae
    MNRAS 000, 000–000 (2020) Preprint 27 October 2020 Compiled using MNRAS LATEX style file v3.0 PS15cey and PS17cke: prospective candidates from the Pan-STARRS Search for Kilonovae O. R. McBrien1?, S. J. Smartt1, M. E. Huber2, A. Rest3, K. C. Chambers2, C. Barbieri4;5;6, M. Bulla7, S. Jha8, M. Gromadzki9, S. Srivastav1, K. W. Smith1, D. R. Young1, S. McLaughlin1, C. Inserra10, M. Nicholl11;12, M. Fraser13, K. Maguire14, T.-W. Chen15, T. Wevers16;17, J. P. Anderson17, T. E. Müller-Bravo18, F. Olivares E.19, E. Kankare20, A. Gal-Yam21, C. Waters22 1Astrophysics Research Centre, School of Mathematics and Physics, Queen’s University Belfast, BT7 1NN, UK 2Institute for Astronmy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, Hawaii 96822, USA 3Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA 4Università degli Studi di Milano-Bicocca, Dipartimento di Fisica “G. Occhialini”, Piazza della Scienza 3, I-20126 Milano, Italy 5INAF – Osservatorio Astronomico di Brera, via E. Bianchi 46, I-23807 Merate, Italy 6INFN – Sezione di Milano-Bicocca, Piazza della Scienza 3, I-20126 Milano, Italy 7Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-106 91 Stockholm, Sweden 8Department of Physics and Astronomy, Rutgers the State University of New Jersey, 136 Frelinghuysen Road, Piscataway, New Jersey 08854, USA 9Astronomical Observatory, University of Warsaw, Al. Ujazdowskie 4, 00-478 Warszawa, Poland 10School of Physics & Astronomy, Cardiff University, Queens Buildings, The Parade,
    [Show full text]
  • Supernova and Supernova Remnants! Why Study Supernova Remnants?
    • We bid a fond farewell to black holes and start a new topic... supernova and supernova remnants! 1! Why Study Supernova Remnants? Supernova explosion: How is mass and energy distributed in the ejecta? What was the mechanism of the supernova explosion? What and (how much) elements were formed in the explosion, and how? What are the characteristics of the compact stellar remnant? Shock physics: How is energy distributed between electrons, ions, and cosmic rays in the shock? How do electrons and ions share energy behind the shock? Interstellar medium: What is the structure of the interstellar medium, and how does the shock interact with that structure? How is the ISM enriched and ionized- how are the metals created2! and distributed Supernova- See ch 13.1 of Longair! • Supernova come in two types (I and II) ! – Type Ia is the explosion of a white dwarf pushed over the Chandrasekar limit- details are not understood! • However they are used as a standard candle for cosmology! – Type Ib and II is the explosion of a massive star after it has used up its nuclear fuel- massive M>8M! star ! • Type I supernovae do not show hydrogen in their spectra. Type Ia supernovae reach peak luminosities of about ! 43 10 2 x10 erg/s (e.g. 10 L!)! • Type II supernovae show hydrogen in their spectra. Their light curves are diverse, with peak luminosities ~1042 erg/s ! 3! Two Paths to a SNe! 4! The Life of SN1987A- AKA SK-69-202! 5! How to Get to a Type I! • Route to a type I is very complex and not well understood! • There maybe several evolutionary paths ! 6! Formation of Black Holes in SN Explosions! • The formation of BHs occurs at the end of the nuclear burning phase in massive stars and can proceed via two routes.! – For the lower mass end of BH formation, a meta-stable proto-neutron star (NS) is produced, followed by the formation of a BH through accretion of the part of the stellar envelope that was not expelled in the supernova explosion.! • Direct collapse (sometimes called failed supernova) into a BH occurs in the case of the most massive stars.
    [Show full text]
  • Neutrino Emission and Annihilation Near Tori Around Black Holes
    ACTA ASTRONOMICA Vol. 43 (1993) pp. 183±191 Neutrino Emission and Annihilation Near Tori around Black Holes by Michaø J a r o s z y nski Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa, Poland Received September 20, 1993 ABSTRACT Neutrino radiation ®elds from stationary, axisymmetric, non-selfgravitating tori around stellar mass Kerr black holes are calculated. Such objects may form as a result of a merger between two neutron stars, a neutron star and a stellar mass black hole, or a "failed supernova" collapse of a single rapidly rotating star. The neutrino annihilation rates near the axis of rotation are found with fully general relativistic methods. Our calculations show that about 80% of the energy deposited by annihilating neutrinos is swallowed by the black hole, lowering the energy which can be transported to in®nity. The importance of this effect for the modeling of the gamma ray burst sources is discussed. Key words: Gamma-rays: bursts ± Radiative transfer ± supernovae: general 1. Introduction The aim of this paper is to investigate further the possible observational con- sequences of the presence of hot and dense tori around stellar mass black holes. Such objects may form as a result of a collision ± merger of two neutron stars or a neutron star and a stellar mass black hole (Paczynski 1991, Narayan, Paczynski and Piran 1992, Mochkovitch et al. 1993, and references therein), or by a di- rect collapse of a massive rotating star ± a "failed supernova" (Woosley 1993a,b, Paczynski 1993), and are among the likely candidates for gamma-ray bursters at cosmological distances.
    [Show full text]
  • R-Process Nucleosynthesis in the MHD+Neutrino-Heated Collapsar Jet
    A&A 582, A34 (2015) Astronomy DOI: 10.1051/0004-6361/201526110 & c ESO 2015 Astrophysics r-process nucleosynthesis in the MHD+neutrino-heated collapsar jet K. Nakamura1, T. Kajino2,3,G.J.Mathews4,2,S.Sato2,, and S. Harikae2, 1 Waseda University, Ohkubo 3-4-1, Shinjuku, 169-8555 Tokyo, Japan e-mail: [email protected] 2 National Astronomical Observatory of Japan, Osawa 2-21-1, Mitaka, 181-8588 Tokyo, Japan e-mail: [email protected] 3 Department of Astronomy, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-0033 Tokyo, Japan 4 Center for Astrophysics, Department of Physics, University of Notre Dame, Notre Dame, IN 46556, USA e-mail: [email protected] Received 17 March 2015 / Accepted 23 May 2015 ABSTRACT It has been proposed that the collapsar scenario for long-duration gamma ray bursts is a possible astrophysical site for r-process nucleosynthesis. Here we present r-process nucleosynthesis calculations based upon a model for a MHD+neutrino-heated collapsar jet. We utilize a relativistic magnetohydrodynamic model that includes ray-tracing neutrino transport to describe the development of the black hole accretion disk and the neutrino heating of the funnel region above the black hole. The late time evolution of the collapsar jet is then evolved using axisymmetric special relativistic hydrodynamics. We employ representative test particles to follow the trajectories in density, temperature, entropy, and electron fraction for material flowing from the accretion disk into the jet until they are several thousand km above the black hole.
    [Show full text]