Investigation of the Antibacterial Activity and the Biosynthesis Gene Cluster of the Peptide Antibiotic Feglymycin

Total Page:16

File Type:pdf, Size:1020Kb

Investigation of the Antibacterial Activity and the Biosynthesis Gene Cluster of the Peptide Antibiotic Feglymycin Investigation of the antibacterial activity and the biosynthesis gene cluster of the peptide antibiotic feglymycin vorgelegt von Diplom-Biochemikerin Saskia Rausch aus Berlin Von der Fakultät II – Mathematik und Naturwissenschaften der Technischen Universität Berlin zur Erlangung des akademischen Grades Doktor der Naturwissenschaften - Dr. rer. nat. – genehmigte Dissertation Promotionsausschuss: Vorsitzende: Prof. Dr. Marga Lensen 1. Berichter/Gutachter: Prof. Dr. Roderich Süssmuth 2. Berichter/Gutachter: Prof. Dr. Dirk Schwarzer Tag der wissenschaftlichen Aussprache: 09.12.2011 Berlin 2012 D 83 Zusammenfassung: Untersuchung zur antibakteriellen Wirkung und zum Biosynthese-Genclusters des Peptidantibiotikum Feglymycin Feglymycin ist ein aus Streptomyces sp. DSM 11171 isoliertes, lineares 13mer-Peptid, das zu einem hohen Anteil aus den nicht-proteinogenen Aminosäuren Hpg (4-Hydroxyphenylglycine) und Dpg (3,5- Dihydroxyphenylglycine) besteht. Zudem besitzt es eine interessante, alternierende Abfolge von D- und L- Aminosäuren und strukturelle Ähnlichkeiten mit den Glycopeptiden der Vancomycin-Gruppe von Antibiotika und den Glycodepsipeptid-Antibiotika Ramoplanin und Enduracidin. Außerdem besitzt Feglymycin eine interessante Bioaktivität. Es wirkt in vivo antibakteriell gegen MRSA-Stämme (multi- resistente Staphylococcus aureus Stämme) und inhibitiert in vitro die Replikation von HIV-Viren im Zellkulturtest. Aufgrund seiner molekularen Masse und strukturellen Ähnlichkeit mit bekannten Zellwandbiosynthese-Inhibitoren wie z.B. Vancomycin und Ramoplanin, wurde auch Feglymycin als Zellwandbiosynthese-Inhibitor getestet. In diesen Tests zeigte Feglymycin keinen Effekt auf die membran-gebundenen zweite und die dritte Stufe der Peptidoglycanbiosynthese. Jedoch deuteten die Experimente auf eine Inhibition der früheren Biosyntheseschritte hin. Ziel dieser Arbeit war es, die antibakterielle Wirkung von Feglymycin auf die bakterielle Zellwandbiosynthese im Detail zu untersuchen und das biologische Target zu identifizieren. Zusätzlich wurde das Feglymycin Biosynthese-Gencluster untersucht. In LC-MS „one-pot assays“ wurde die Wirkung von Feglymycin auf die isolierten E. coli-Enzyme MurA-F getestet. Hierbei konnte reproduzierbar gezeigt werden, das Feglymycin die Enzyme MurA (Enopyruvyl-UDP-GlcNAc Synthase) und MurC (UDP-N-Acetyl-muramyl-L-alanin Ligase) inhibiert. In spektrophotometischen Assays mit den E. coli-Enzymen MurA und MurC konnte ein Ki-Wert von 0.33 +/- 0.04 µM für das MurC Enzym und ein Ki-Wert von 3.4 +/- 1.1 µM für das MurA Enzym bestimmt werden. Weitere Untersuchungen zeigten, dass Feglmycin auch die MurA (IC50 = 3.5 +/- 1.3 µM) und MurC (IC50 = 1.0 +/- 0.6 µM) Enzyme des gram-positiven Bakteriums Staphylococcus aureus inhibiert. Feglymycin zeigte dabei eine nicht-kompetitive Inhibition gegenüber der Bindung der Substrate des MurA Enzyms PEP (Phosphoenolpyruvat) und UDP-GlcNAc (UDP-N-Acetylglucosamin) und der Substrate des MurC Enzyms UDP-MurNAc (UDP-N-Acetylmuramat), ATP (Adenosintriphosphat) and L-Alanin. Feglmycin ist daher der erste Naturstoff der das MurC Enzym inhibiert. Zudem zeigt Feglymycin einen nicht- kompetitive Inhibitionstyp. Circulardichromismus (CD) Experimente mit den isolierten E. coli-Enzymen MurA und MurC und Feglymycin deuten einen möglichen allosterischen Effekt des Inhibitors auf die Enzyme an. Zusätzlich wurde die Feglmycinproduktion durch den Stamm Streptomyces sp. DSM 11171 und die Feglymycin-Detektion mittels LC-MS optimiert. Durch die Sequezierung des Genoms von Streptomyces sp. DSM 11171 konnte das Feglymycin Biosynthese-Gencluster identifiziert werden. Bei der Annotation des Genclusters zeigte sich, dass es sich bei Feglymycin um ein nicht-ribosomal synthetisiertes Peptid (NRPS) handelt dessen Biosynthese der Biosynthese der Glycopeptidantibiotika der Vancomycin-Gruppe von Antibiotika ähnelt. Zudem konnten im Streptomyces sp. DSM 11171 Genom weitere NRPS und Polyketidsynthase (PKS) Gencluster identifiziert und annotiert werden. Abstract: Investigation of the antibacterial activity and the biosynthesis gene cluster of the peptide antibiotic feglymycin Feglymycin is a linear 13-mer peptide produced by Streptomyces sp. DSM 11171 containing largely the non-proteinogenic Hpg (4-hydroxyphenylglycine) and the non-proteinogenic Dpg (3,5- dihydroxyphenylglycine) amino acids and an interesting alternation of D and L amino acids. It shows structural homogies to the glycopeptides of the vancomycin group of antibiotics and the glycodepsipeptide antibiotics ramoplanin and enduracidin. Feglymycin additionally shows an interesting biological activity. It possesses antibiotic activity against MRSA (multi-resistant Staphylococcus aureus) strains in vivo and inhibits syncytium formation in HIV infection in vitro. Due to its molecular mass and structural analogies to known inhibitors of the cell-wall biosynthesis, i.e. vancomycin and ramoplanin, feglymycin was tested as cell-wall biosynthesis inhibitor. In these tests feglymycin showed no effect on the membrane-bound second and third step of the peptidoglycan biosynthesis but the experiments indicated an inhibition of earlier biosynthetic steps. Aim of this work was to investigate the antibacterial activity of feglymycin on the bacterial cell- wall biosynthesis in more detail and to identify the biological target. Additionally the feglymycin biosynthesis gene cluster was investigated. Feglymycin was tested in a LC-MS one-pot assay against the isolated enzymes MurA-F from E. coli. Dereplication revealed that feglymycin specifically inhibits the enzymes MurA (enolpyruvyl-UDP-GlcNAc synthase) and MurC (UDP-N-acetyl-muramyl-L-alanine ligase). In in vitro assays with the enzymes MurA and MurC from gram-negative E. coli, a Ki value of 0.33 +/- 0.04 µM was determined for the MurC enzyme and a Ki value of 3.4 +/- 1.1 µM for the MurA enzyme. Further investigations showed that feglymycin also inhibits the MurA (IC50 = 3.5 +/- 1.3 µM) and MurC (IC50 = 1.0 +/- 0.6 µM) enzyme from gram-positive Staphylococcus aureus. The inhibition mode of feglymycin was found to be non-competitive with the binding of PEP (phosphoenolpyruvate) and UDP-GlcNAc (UDP-N-acetylglucosamine) in case of the MurA enzyme and non-competitive with binding of UDP-MurNAc (UDP-N-acetylmuramic acid), ATP (adenosine-triphosphate) and L-alanine in case of the MurC enzyme. Feglymycin is therefore the first natural compound found to inhibit the MurC enzyme showing a non-competitive inhibition type. Circular dichroism (CD) experiments with the isolated enzymes MurA and MurC from E. coli and feglymycin indicated a possible allosteric effect of feglymycin. Furthermore the feglymycin production by Streptomyces sp. DSM 11171 and feglymycin detection by LC-MS were optimized. Sequencing of the genome of Streptomyces sp. DSM 11171 allowed the idenfitication of the feglymycin biosynthesis gene cluster. Annotation of the gene cluster showed that feglymycin is a non-ribosomal synthesized peptide (NRPS) closely related to the glycopeptides of the vancomycin group of antibiotics. Additionally further NRPS and polyketide synthase (PKS) gene clusters were identified in the Streptomyces sp. DSM 11171 genome and annotated. Teile der vorliegenden Arbeit wurden bereits veröffentlicht: Publikationen: “Feglymycin is an inhibitor of the enzymes MurA and MurC of the peptidoglycan biosynthesis pathway” Saskia Rausch, Anne Hänchen, Alexander Denisiuk, Marius Löhken, Tanja Schneider, Roderich D. Süssmuth ChemBioChem, 2011, 8, 1171-1173. Poster: “Feglymycin inhibits the enzymes MurA and MurC of the peptidoglycan biosynthesis pathway” Saskia Rausch, Anne Hänchen, Alexander Denisiuk, Marius Löken and Roderich Süßmuth 10th German Peptide Symposium, FU-Berlin, 7.03-10.03.2011 “Feglymycin inhibits the enzymes MurA and MurC of the peptidoglycan biosynthesis pathway” Saskia Rausch, Anne Hänchen, Alexander Denisiuk, Marius Löken and Roderich Süßmuth Bayer PhD student Course, Köln, 10.-14.07.2011 Vorträge: “Antimicrobial activity of the peptide antibiotic Feglymycin” Saskia Rausch, Anne Hänchen, Alexander Denisiuk, Marius Löken and Roderich Süßmuth International workshop, DGMS „New Developments of Lysosomal Storage Disease Diagnostics & Therapeutics, Protein – Carbohydrate Interactions, Konstanz, 3-5.10.2011 “It is the search for the truth, not possession of the truth which is the way of philosophy. Its questions are more relevant than its answers, and every answer becomes a new question.” Karl Theodor Jaspers, Way to Wisdom: An Introduction to Philosophy “It’s a bacteria-eat-man world out there, filled with a nearly endless variety of germs that see us as spawning grounds.” W. Wayt Gibbs, Nanobodies Die vorliegende Arbeit wurde unter der Leitung von Herrn Prof. Dr. Roderich Süßmuth In der Zeit vom September 2008 bis August 2011 am Institut für Chemie der Fakultät II der Technischen Universität Berlin angefertigt. Danksagungen: Mein besondere Dank gilt meinen Doktorvater Prof. Roderich Süssmuth für meine Aufnahme in den Arbeitskreis Süßmuth, das interessante Promotionsthema und die exzellente Betreuung und Förderung wärend meiner Promotionszeit. Ich bin dankbar für das mir von ihm entgegengebrachte Vertrauen und das freundschaftliche Verhältnis, dass das Arbeiten auch in besonders stressigen Zeiten noch angenehm machte. Ich bin ebenfalls dankbar für die vielen Möglichkeiten die mir geboten wurden so viele verschiedene Methoden zu erlernen und so vielfältige und spannende Projekte zu bearbeiten. Insbesondere möchte ich mich auch für die intensive
Recommended publications
  • Structure of Human Aspartyl Aminopeptidase Complexed With
    Chaikuad et al. BMC Structural Biology 2012, 12:14 http://www.biomedcentral.com/1472-6807/12/14 RESEARCH ARTICLE Open Access Structure of human aspartyl aminopeptidase complexed with substrate analogue: insight into catalytic mechanism, substrate specificity and M18 peptidase family Apirat Chaikuad1, Ewa S Pilka1, Antonio De Riso2, Frank von Delft1, Kathryn L Kavanagh1, Catherine Vénien-Bryan2, Udo Oppermann1,3 and Wyatt W Yue1* Abstract Backround: Aspartyl aminopeptidase (DNPEP), with specificity towards an acidic amino acid at the N-terminus, is the only mammalian member among the poorly understood M18 peptidases. DNPEP has implicated roles in protein and peptide metabolism, as well as the renin-angiotensin system in blood pressure regulation. Despite previous enzyme and substrate characterization, structural details of DNPEP regarding ligand recognition and catalytic mechanism remain to be delineated. Results: The crystal structure of human DNPEP complexed with zinc and a substrate analogue aspartate-β- hydroxamate reveals a dodecameric machinery built by domain-swapped dimers, in agreement with electron microscopy data. A structural comparison with bacterial homologues identifies unifying catalytic features among the poorly understood M18 enzymes. The bound ligands in the active site also reveal the coordination mode of the binuclear zinc centre and a substrate specificity pocket for acidic amino acids. Conclusions: The DNPEP structure provides a molecular framework to understand its catalysis that is mediated by active site loop swapping, a mechanism likely adopted in other M18 and M42 metallopeptidases that form dodecameric complexes as a self-compartmentalization strategy. Small differences in the substrate binding pocket such as shape and positive charges, the latter conferred by a basic lysine residue, further provide the key to distinguishing substrate preference.
    [Show full text]
  • Serine Proteases with Altered Sensitivity to Activity-Modulating
    (19) & (11) EP 2 045 321 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.04.2009 Bulletin 2009/15 C12N 9/00 (2006.01) C12N 15/00 (2006.01) C12Q 1/37 (2006.01) (21) Application number: 09150549.5 (22) Date of filing: 26.05.2006 (84) Designated Contracting States: • Haupts, Ulrich AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 51519 Odenthal (DE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Coco, Wayne SK TR 50737 Köln (DE) •Tebbe, Jan (30) Priority: 27.05.2005 EP 05104543 50733 Köln (DE) • Votsmeier, Christian (62) Document number(s) of the earlier application(s) in 50259 Pulheim (DE) accordance with Art. 76 EPC: • Scheidig, Andreas 06763303.2 / 1 883 696 50823 Köln (DE) (71) Applicant: Direvo Biotech AG (74) Representative: von Kreisler Selting Werner 50829 Köln (DE) Patentanwälte P.O. Box 10 22 41 (72) Inventors: 50462 Köln (DE) • Koltermann, André 82057 Icking (DE) Remarks: • Kettling, Ulrich This application was filed on 14-01-2009 as a 81477 München (DE) divisional application to the application mentioned under INID code 62. (54) Serine proteases with altered sensitivity to activity-modulating substances (57) The present invention provides variants of ser- screening of the library in the presence of one or several ine proteases of the S1 class with altered sensitivity to activity-modulating substances, selection of variants with one or more activity-modulating substances. A method altered sensitivity to one or several activity-modulating for the generation of such proteases is disclosed, com- substances and isolation of those polynucleotide se- prising the provision of a protease library encoding poly- quences that encode for the selected variants.
    [Show full text]
  • Enzyme Phosphatidylserine Synthase (Saccharomyces Cerevisae/Chol Gene/Transformation) V
    Proc. Nati. Acad. Sci. USA Vol. 80, pp. 7279-7283, December 1983 Genetics Isolation of the yeast structural gene for the membrane-associated enzyme phosphatidylserine synthase (Saccharomyces cerevisae/CHOl gene/transformation) V. A. LETTS*, L. S. KLIG*, M. BAE-LEEt, G. M. CARMANt, AND S. A. HENRY* *Departments of Genetics and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461; and tDepartment of Food Science, Cook College, New Jersey Agricultural Experimental Station, Rutgers University, New Brunswick, NJ 08903 Communicated by Frank Lilly, August 11, 1983 ABSTRACT The structural gene (CHOI) for phosphatidyl- Mammals, for example, synthesize PtdSer by an exchange re- serine synthase (CDPdiacylglycerol:L-serine O-phosphatidyl- action with PtdEtn (9). However, PtdSer synthase is found in transferase, EC 2.7.8.8) was isolated by genetic complementation E. coli and indeed the structural gene for the E. coli enzyme has in Saccharomyces cerevmae from a bank of yeast genomic DNA been cloned (10). Thus, cloning of the structural gene for the on a chimeric plasmid. The cloned DNA (4.0 kilobases long) was yeast enzyme will permit a detailed comparison of the structure shown to represent a unique sequence in the yeast genome. The and function of prokaryotic and eukaryotic genes and gene DNA sequence on an integrative plasmid was shown to recombine products. The availability of a clone of the CHOI gene will per- into the CHOi locus, confwrming its genetic identity. The chol yeast mit analysis of its regulation at the transcriptional level. Fur- strain transformed with this gene on an autonomously replicating thermore, the cloning of the CHOI gene provides us with the plasmid had significantly increased activity of the regulated mem- the levels of PtdSer synthase in the cell, brane-associated enzyme phosphatidylserine synthase.
    [Show full text]
  • Assembly of the Membrane Domain of ATP Synthase in Human Mitochondria
    Assembly of the membrane domain of ATP synthase in human mitochondria Jiuya Hea,1, Holly C. Forda,1, Joe Carrolla, Corsten Douglasa, Evvia Gonzalesa, Shujing Dinga, Ian M. Fearnleya, and John E. Walkera,2 aMedical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, United Kingdom Contributed by John E. Walker, January 16, 2018 (sent for review December 20, 2017; reviewed by Ulrich Brandt and Nikolaus Pfanner) The ATP synthase in human mitochondria is a membrane-bound mitochondria in human ρ0 cells lack organellar DNA and contain assembly of 29 proteins of 18 kinds. All but two membrane another incomplete ATP synthase, necessarily with no ATP6 or components are encoded in nuclear genes, synthesized on cyto- ATP8 (7, 9). These incomplete vestigial ATP synthases provide plasmic ribosomes, and imported into the matrix of the organelle, insight into the pathway of assembly of the complete enzyme. where they are assembled into the complex with ATP6 and ATP8, Here we investigated the effects of the selective removal of su- the products of overlapping genes in mitochondrial DNA. Disrup- pernumerary membrane subunits e, f, g, DAPIT, and 6.8PL on tion of individual human genes for the nuclear-encoded subunits assembly of human ATP synthase. in the membrane portion of the enzyme leads to the formation of intermediate vestigial ATPase complexes that provide a descrip- Results tion of the pathway of assembly of the membrane domain. The Human Cells Lacking Supernumerary Subunits. The human genes key intermediate complex consists of the F1-c8 complex inhibited ATP5I, ATP5J2, ATP5L, USMG5, and C14orf2 (SI Appendix, Fig.
    [Show full text]
  • Proteomic Analysis of Ascocotyle Longa (Trematoda: Heterophyidae) T Metacercariae Karina M
    Molecular & Biochemical Parasitology 239 (2020) 111311 Contents lists available at ScienceDirect Molecular & Biochemical Parasitology journal homepage: www.elsevier.com/locate/molbiopara Proteomic analysis of Ascocotyle longa (Trematoda: Heterophyidae) T metacercariae Karina M. Rebelloa,c,*, Juliana N. Borgesb, André Teixeirac, Jonas Peralesc, Cláudia P. Santosb,** a Laboratório de Estudos Integrados em Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil b Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil c Laboratório de Toxinologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil ARTICLE INFO ABSTRACT Keywords: Ascocotyle longa is parasitic trematode with wide distribution throughout America, Europe, Africa, and Middle Mugil liza East. Despite the fact that this fish-borne pathogen has been considered an agent of human heterophyiasis in Fish-born pathogen Brazil, the molecules involved in the host-parasite interaction remain unknown. The present study reports the Proteins proteome profile ofA. longa metacercariae collected from the fishMugil liza from Brazil. This infective stage for Parasite humans, mammals and birds was analyzed using nLC-MS/MS approach. We identified a large repertoire of Helminth proteins, which are mainly involved in energy metabolism and cell structure. Peptidases and immunogenic Heterophyiasis proteins were also identified, which might play roles in host-parasite interface. Our data provided unprecedented insights into the biology of A. longa and represent a first step to understand the natural host-parasite interaction. Moreover, as the first proteome characterized in this trematode, it will provide an important resource for future studies. 1. Introduction find their way into their final hosts [14].
    [Show full text]
  • Citrate Synthase a Mitochondrial Marker Enzyme
    Oroboros Protocols Enzymes Mitochondrial Physiology Network 17.04(04):1-12 (2020) Version 04: 2020-04-18 ©2013-2020 Oroboros Updates: http://wiki.oroboros.at/index.php/MiPNet17.04_CitrateSynthase Laboratory Protocol: Citrate synthase a mitochondrial marker enzyme Eigentler A1,2, Draxl A2, Gnaiger E1,2 1D. Swarovski Research Laboratory Dept Visceral, Transplant and Thoracic Surgery Medical Univ Innsbruck, Austria www.mitofit.org 2Oroboros Instruments High-Resolution Respirometry Schöpfstrasse 18, A-6020 Innsbruck, Austria Email: [email protected]; www.oroboros.at 1. Background 1 1.1. Enzymatic reaction catalyzed by citrate synthase 2 1.2. Principle of spectrophotometric enzyme assay 2 1.3. Temperature of enzyme assay 3 2. Reagents and buffers 3 2.1. Prepare every month new and store at 4 °C 3 2.2. Prepare 12.2 mM acetyl-CoA, store at -20 °C 3 2.3. Prepare fresh every day 3 2.4. Chemicals 4 3. Sample preparation 4 4. Measurement: Spectrophotometer HP8452A Diode Array 6 4.1. Measurement of CS activity in 1 mL cuvette 6 4.2. Blank measurement 6 4.3. Sample measurement 7 4.4. Experimental procedure 7 5. Data analysis: calculation of specific CS activity 8 5.1. Absorbance, concentration and rate of reaction 8 5.2. Specific enzyme activity: reaction rate per unit sample 8 6. Normalization of respiratory flux for CS activity 9 6.1. Flow per instrumental chamber, IO2 9 6.2. Flux per chamber volume, JV,O2 10 6.3. Flow per experimental object, IO2/N 10 6.4. Flux per sample mass, JO2/m 10 7. References 10 8.
    [Show full text]
  • Understanding Carbamoyl-Phosphate Synthetase I (CPS1) Deficiency by Using Expression Studies and Structure-Based Analysis
    Understanding carbamoyl-phosphate synthetase I (CPS1) deficiency by using expression studies and structure-based analysis. Satu Pekkala, Ana Isabel Martínez, Belén Barcelona, Igor Yefimenko, Ulrich Finckh, Vicente Rubio, Javier Cervera To cite this version: Satu Pekkala, Ana Isabel Martínez, Belén Barcelona, Igor Yefimenko, Ulrich Finckh, et al.. Un- derstanding carbamoyl-phosphate synthetase I (CPS1) deficiency by using expression studies and structure-based analysis.. Human Mutation, Wiley, 2010, 31 (7), pp.801. 10.1002/humu.21272. hal-00552391 HAL Id: hal-00552391 https://hal.archives-ouvertes.fr/hal-00552391 Submitted on 6 Jan 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Human Mutation Understanding carbamoyl-phosphate synthetase I (CPS1) deficiency by using expression studies and structure-based analysis. For Peer Review Journal: Human Mutation Manuscript ID: humu-2009-0569.R1 Wiley - Manuscript type: Research Article Date Submitted by the 17-Mar-2010 Author: Complete List of Authors: Pekkala, Satu; Centro de Investigación Príncipe Felipe, Molecular Recognition Martínez, Ana; Centro de Investigación Príncipe Felipe, Molecular Recognition Barcelona, Belén; Centro de Investigación Príncipe Felipe, Molecular Recognition Yefimenko, Igor; Instituto de Biomedicina de Valencia (IBV-CSIC) Finckh, Ulrich; MVZ Dortmund Dr.
    [Show full text]
  • Prospects for New Antibiotics: a Molecule-Centered Perspective
    The Journal of Antibiotics (2014) 67, 7–22 & 2014 Japan Antibiotics Research Association All rights reserved 0021-8820/14 www.nature.com/ja REVIEW ARTICLE Prospects for new antibiotics: a molecule-centered perspective Christopher T Walsh and Timothy A Wencewicz There is a continuous need for iterative cycles of antibiotic discovery and development to deal with the selection of resistant pathogens that emerge as therapeutic application of an antibiotic becomes widespread. A short golden age of antibiotic discovery from nature followed by a subsequent golden half century of medicinal chemistry optimization of existing molecular scaffolds emphasizes the need for new antibiotic molecular frameworks. We bring a molecule-centered perspective to the questions of where will new scaffolds come from, when will chemogenetic approaches yield useful new antibiotics and what existing bacterial targets merit contemporary re-examination. The Journal of Antibiotics (2014) 67, 7–22; doi:10.1038/ja.2013.49; published online 12 June 2013 Keywords: antibiotics; mechanism of action; natural products; resistance A PERSONAL PATHWAY TO ANTIBIOTICS RESEARCH chemical logic and molecular machinery and, in part, with the hope For one of us (CTW), a career-long interest in antibiotics1 was that one might learn to reprogram natural antibiotic assembly lines to spurred by discussions on the mechanism of action of engineer improved molecular variants. D-fluoroalanine2,3 during a seminar visit, as a second year assistant We have subsequently deciphered many of the rules
    [Show full text]
  • Handbook of Proteolytic Enzymes Second Edition Volume 1 Aspartic and Metallo Peptidases
    Handbook of Proteolytic Enzymes Second Edition Volume 1 Aspartic and Metallo Peptidases Alan J. Barrett Neil D. Rawlings J. Fred Woessner Editor biographies xxi Contributors xxiii Preface xxxi Introduction ' Abbreviations xxxvii ASPARTIC PEPTIDASES Introduction 1 Aspartic peptidases and their clans 3 2 Catalytic pathway of aspartic peptidases 12 Clan AA Family Al 3 Pepsin A 19 4 Pepsin B 28 5 Chymosin 29 6 Cathepsin E 33 7 Gastricsin 38 8 Cathepsin D 43 9 Napsin A 52 10 Renin 54 11 Mouse submandibular renin 62 12 Memapsin 1 64 13 Memapsin 2 66 14 Plasmepsins 70 15 Plasmepsin II 73 16 Tick heme-binding aspartic proteinase 76 17 Phytepsin 77 18 Nepenthesin 85 19 Saccharopepsin 87 20 Neurosporapepsin 90 21 Acrocylindropepsin 9 1 22 Aspergillopepsin I 92 23 Penicillopepsin 99 24 Endothiapepsin 104 25 Rhizopuspepsin 108 26 Mucorpepsin 11 1 27 Polyporopepsin 113 28 Candidapepsin 115 29 Candiparapsin 120 30 Canditropsin 123 31 Syncephapepsin 125 32 Barrierpepsin 126 33 Yapsin 1 128 34 Yapsin 2 132 35 Yapsin A 133 36 Pregnancy-associated glycoproteins 135 37 Pepsin F 137 38 Rhodotorulapepsin 139 39 Cladosporopepsin 140 40 Pycnoporopepsin 141 Family A2 and others 41 Human immunodeficiency virus 1 retropepsin 144 42 Human immunodeficiency virus 2 retropepsin 154 43 Simian immunodeficiency virus retropepsin 158 44 Equine infectious anemia virus retropepsin 160 45 Rous sarcoma virus retropepsin and avian myeloblastosis virus retropepsin 163 46 Human T-cell leukemia virus type I (HTLV-I) retropepsin 166 47 Bovine leukemia virus retropepsin 169 48
    [Show full text]
  • Supplemental Table 1
    Symbol Gene name MIN6.EXO MIN6.M1 MIN6.M2 MIN6.M3 MIN6.M4 A2m alpha-2-macroglobulin A2m Acat1 acetyl-Coenzyme A acetyltransferase 1 Acat1 Acly ATP citrate lyase Acly Acly Acly Act Actin Act Act Act Act Aga aspartylglucosaminidase Aga Ahcy S-adenosylhomocysteine hydrolase Ahcy Alb Albumin Alb Alb Alb Aldoa aldolase A, fructose-bisphosphate Aldoa Anxa5 Annexin A5 Anxa5 AP1 Adaptor-related protein complex AP1 AP2 Adaptor protein complex AP2 Arf1 ADP-ribosylation factor 1 Arf1 Atp1a1 ATPase Na/K transpoting Atp1a1 ATP1b1 Na/K ATPase beta subunit ATP1b1 ATP6V1 ATPase, H+ transporting.. ATP6V1 ATP6v1 ATP6v1 Banf1 Barrier to autointegration factor Banf1 Basp1 brain abundant, memrane signal protein 1 Basp1 C3 complement C3 C3 C3 C3 C4 Complement C4 C4 C4 C4 Calm2 calmodulin 2 (phosphorylase kinase, delta) Calm2 Capn5 Calpain 5 Capn5 Capn5 Cct5 chaperonin subunit 5 Cct5 Cct8 chaperonin subunit 8 Cct8 CD147 basigin CD147 CD63 CD63 CD63 CD81 CD81 CD81 CD81 CD81 CD81 CD81 CD82 CD82 CD82 CD82 CD90.2 thy1.2 CD90.2 CD98 Slc3a2 CD98 CD98 Cdc42 Cell division cycle 42 Cdc42 Cfl1 Cofilin 1 Cfl1 Cfl1 Chmp4b chromatin modifying protein 4B Chmp4b Chmp5 chromatin modifying protein 5 Chmp5 Clta clathrin, light polypeptide A Clta Cltc Clathrin Hc Cltc Cltc Cltc Cltc Clu clusterin Clu Col16a1 collagen 16a1 Col16a1 Col2 Collagen type II Col2a1 Col2 Col6 Collagen type VI alpha 3 Col6a3 Col6 CpE carboxypeptidase E CpE CpE CpE, CpH CpE CpE Cspg4 Chondroitin sulfate proteoglycan 4 Cspg4 CyCAP Cyclophilin C-associated protein CyCAP CyCAP Dnpep aspartyl aminopeptidase Dnpep Dstn destrin Dstn EDIL3 EGF-like repeat discoidin.
    [Show full text]
  • Polyketide Synthesis in Vitro on a Modular Polyketide Synthase
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Polyketide synthesis in vitro on a modular polyketide synthase Kirsten EH Wiesmannl, Jesus Cortkl, Murray JB Brown*, Annabel 1 Cutter*, James Staunton*, and Peter F Leadlay’* ‘Cambridge Centre for Molecular Recognition and Department of Biochemistry, University of Cambridge, Cambridge CB2 IQW, UK, Xambridge Centre for Molecular Recognition and Department of Organic Chemistry, University of Cambridge, Cambridge CB2 1 EW, UK Background: The 6-deoxyerythronolide B synthase out to purify the chimaeric enzyme and to determine its (DEBS) of Sacckavopolyspora erytkraea, which synthesizes activity in vitro. the aglycone core of the antibiotic erythromycin A, con- Results: The purified DEBSl-TE multienzyme catalyzes tains some 30 active sites distributed between three mul- synthesis of triketide lactones in vitro.The synthase specif- tienzyme polypeptides (designated DEBSl-3). This ically uses the (25’)-isomer of methylmalonyl-CoA, as complexity has hitherto frustrated mechanistic analysis of previously proposed, but has a more relaxed specificity for such enzymes. We previously produced a mutant strain of the starter unit than in vivo. S. erytkraea in which the chain-terminating cyclase Conclusions: We have obtained a purified polyketide domain (TE) is fused to the carboxyl-terminus of synthase system, derived from DEBS, which retains cat- DEBSl, the multienzyme that catalyzes the first two alytic activity. This approach opens the way for mechanis- rounds of polyketide chain extension in S. erytkraea. This tic and structural analyses of active multienzymes derived mutant strain produces triketide lactone in vivo. We set from any modular polyketide synthase.
    [Show full text]
  • Plasmodium Falciparum: New Molecular Targets with Potential for Antimalarial Drug Development
    Plasmodium falciparum: new molecular targets with potential for antimalarial drug development Author Gardiner, Donald L, Skinner-Adams, Tina S, Brown, Christopher L, Andrews, Katherine T, Stack, Colin M, McCarthy, James S, Dalton, John P, Trenholme, Katharine R Published 2009 Journal Title Expert Reviews of Anti-Infective Therapy DOI https://doi.org/10.1586/eri.09.93 Copyright Statement © 2009 Expert Reviews Ltd.. The attached file is reproduced here in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version. Downloaded from http://hdl.handle.net/10072/30257 Griffith Research Online https://research-repository.griffith.edu.au Review For reprint orders, please contact [email protected] Plasmodium falciparum: new molecular targets with potential for antimalarial drug development Expert Rev. Anti Infect. Ther. 7(9), 1087–1098 (2009) Donald L Gardiner†, Malaria remains one of the world’s most devastating infectious diseases. Drug resistance to all Tina S Skinner-Adams, classes of antimalarial agents has now been observed, highlighting the need for new agents Christopher L Brown, that act against novel parasite targets. The complete sequencing of the Plasmodium falciparum Katherine T Andrews, genome has allowed the identification of new molecular targets within the parasite that may be amenable to chemotherapeutic intervention. In this review, we investigate four possible Colin M Stack, targets for the future development of new classes of antimalarial agents. These targets include James S McCarthy, histone deacetylase, the aspartic proteases or plasmepsins, aminopeptidases and the purine John P Dalton and salvage enzyme hypoxanthine–xanthine–guanine phosphoribosyltransferase.
    [Show full text]