The Zebrafish Cerebellum
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Rapid Effects of Sex Steroids on PGF2 Approach Response in Zebrafish
Rapid effects of sex steroids on PGF2� approach response in zebrafish (Danio rerio) Student Researcher: Leah B. Kratochvil, Advisor: Richmond R. Thompson Bowdoin College Department of Neuroscience Abstract Steroids are molecular messengers that regulate a variety of bodily functions, including behaviors and sexual motivation. Steroids have long been known to induce behavioral effects in days or weeks, but more recently have been discovered to effect these changes within seconds. Research surrounding these so-called “rapid” effects of steroids on sensory systems is lacking. I took advantage of the sophisticated sex pheromone system in zebrafish to study this system, and the male zebrafish approach response to the pre-ovulatory pheromone prostaglandin F2� (PGF2�). Sexually mature male zebrafish were treated with vehicle, T, or 11-ketotestosterone (11-KT) for 40 minutes, and then immediately evaluated for time spent near vehicle or PGF2� administered to their test tank. Initial data suggests that T-treated fish spent more time near the pheromone, indicating that T may rapidly modulate this response in zebrafish. There were no significant differences between treatments. Further investigation, with higher steroid and pheromone concentrations and a slightly different experimental design, is underway to confirm how T and/or 11-KT modulate(s) the male zebrafish approach response to PGF2�. Project Objectives Classically, steroids have been thought to act in the body by binding to intracellular receptors and inducing gene transcription, protein translation and ultimately behavioral responses. However, because this process – termed the “genomic” mechanism due to its interactions with the genome – takes time, these genomic behavioral effects usually take days or weeks to appear. -
Functional Imaging of the Deep Cerebellar Nuclei: a Review
Cerebellum (2010) 9:22–28 DOI 10.1007/s12311-009-0119-3 Functional Imaging of the Deep Cerebellar Nuclei: A Review Christophe Habas Published online: 10 June 2009 # Springer Science + Business Media, LLC 2009 Abstract The present mini-review focused on functional and climbing fibers derived from the bulbar olivary nuclei. imaging of human deep cerebellar nuclei, mainly the The mossy-fiber influence on DCN firing appears to be dentate nucleus. Although these nuclei represent the unique weaker than the climbing-fiber influence. Despite the output channel of the cerebellum, few data are available pivotal role of these nuclei, only very few results are concerning their functional role. However, the dentate available for functional imaging of the DCN, including nucleus has been shown to participate in a widespread PET scan and MRI techniques, and most of these data functional network including sensorimotor and associative concern the DN. This lack of data is due to a number of cortices, striatum, hypothalamus, and thalamus, and plays a reasons. minor role in motor execution and a major role in First, the human DCN mainly comprise the large, sensorimotor coordination and learning, and cognition. widespread, and easily identifiable DN which has a marked The dentate nucleus appears to be predominantly involved low-intensity signal on MRI T2*-weighted sequences and in conjunction with the neocerebellum in executive and is clearly distinguished from the adjacent cortical structures. affective networks devoted, at least, to attention, working In contrast, FN and GEN are very thin and are both located memory, procedural reasoning, and salience detection. very close to the gray matter of lobules VIII and IX, while these nuclei are situated on the medial aspect of the DN. -
The Effect of Fluoxetine on Self-Control in Betta Splendens
University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2014 The effect of fluoxetine on self-control in betta splendens Kathryn Gwen Lamp The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Lamp, Kathryn Gwen, "The effect of fluoxetine on self-control in betta splendens" (2014). Graduate Student Theses, Dissertations, & Professional Papers. 10770. https://scholarworks.umt.edu/etd/10770 This Dissertation is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. THE EFFECT OF FLUOXETINE ON SELF-CONTROL IN BETTA SPLENDENS by KATHRYN GWEN LAMP Bachelor of Arts, Christopher Newport University, Newport News, VA, 2008 Master of Arts, The University of Montana, Missoula, MT, 2012 Dissertation presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Experimental Psychology The University of Montana Missoula, MT June 2014 Approved by: Dr. Allen Szalda-Petree, Chair Department of Psychology Dr. Nabil Haddad Department of Psychology Dr. Stuart Hall Department of Psychology Dr. Jerry Smith Department of Biomedical and Pharmaceutical Sciences Dr. Keith Parker Department of Biomedical and Pharmaceutical Sciences UMI Number: 3628951 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. -
Basal Ganglia & Cerebellum
1/2/2019 This power point is made available as an educational resource or study aid for your use only. This presentation may not be duplicated for others and should not be redistributed or posted anywhere on the internet or on any personal websites. Your use of this resource is with the acknowledgment and acceptance of those restrictions. Basal Ganglia & Cerebellum – a quick overview MHD-Neuroanatomy – Neuroscience Block Gregory Gruener, MD, MBA, MHPE Vice Dean for Education, SSOM Professor, Department of Neurology LUHS a member of Trinity Health Outcomes you want to accomplish Basal ganglia review Define and identify the major divisions of the basal ganglia List the major basal ganglia functional loops and roles List the components of the basal ganglia functional “circuitry” and associated neurotransmitters Describe the direct and indirect motor pathways and relevance/role of the substantia nigra compacta 1 1/2/2019 Basal Ganglia Terminology Striatum Caudate nucleus Nucleus accumbens Putamen Globus pallidus (pallidum) internal segment (GPi) external segment (GPe) Subthalamic nucleus Substantia nigra compact part (SNc) reticular part (SNr) Basal ganglia “circuitry” • BG have no major outputs to LMNs – Influence LMNs via the cerebral cortex • Input to striatum from cortex is excitatory – Glutamate is the neurotransmitter • Principal output from BG is via GPi + SNr – Output to thalamus, GABA is the neurotransmitter • Thalamocortical projections are excitatory – Concerned with motor “intention” • Balance of excitatory & inhibitory inputs to striatum, determine whether thalamus is suppressed BG circuits are parallel loops • Motor loop – Concerned with learned movements • Cognitive loop – Concerned with motor “intention” • Limbic loop – Emotional aspects of movements • Oculomotor loop – Concerned with voluntary saccades (fast eye-movements) 2 1/2/2019 Basal ganglia “circuitry” Cortex Striatum Thalamus GPi + SNr Nolte. -
Housing, Husbandry and Welfare of a “Classic” Fish Model, the Paradise Fish (Macropodus Opercularis)
animals Article Housing, Husbandry and Welfare of a “Classic” Fish Model, the Paradise Fish (Macropodus opercularis) Anita Rácz 1,* ,Gábor Adorján 2, Erika Fodor 1, Boglárka Sellyei 3, Mohammed Tolba 4, Ádám Miklósi 5 and Máté Varga 1,* 1 Department of Genetics, ELTE Eötvös Loránd University, Pázmány Péter stny. 1C, 1117 Budapest, Hungary; [email protected] 2 Budapest Zoo, Állatkerti krt. 6-12, H-1146 Budapest, Hungary; [email protected] 3 Fish Pathology and Parasitology Team, Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungária krt. 21, 1143 Budapest, Hungary; [email protected] 4 Department of Zoology, Faculty of Science, Helwan University, Helwan 11795, Egypt; [email protected] 5 Department of Ethology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1C, 1117 Budapest, Hungary; [email protected] * Correspondence: [email protected] (A.R.); [email protected] (M.V.) Simple Summary: Paradise fish (Macropodus opercularis) has been a favored subject of behavioral research during the last decades of the 20th century. Lately, however, with a massively expanding genetic toolkit and a well annotated, fully sequenced genome, zebrafish (Danio rerio) became a central model of recent behavioral research. But, as the zebrafish behavioral repertoire is less complex than that of the paradise fish, the focus on zebrafish is a compromise. With the advent of novel methodologies, we think it is time to bring back paradise fish and develop it into a modern model of Citation: Rácz, A.; Adorján, G.; behavioral and evolutionary developmental biology (evo-devo) studies. The first step is to define the Fodor, E.; Sellyei, B.; Tolba, M.; housing and husbandry conditions that can make a paradise fish a relevant and trustworthy model. -
Zebrafish Embryos and Bioinformatics: Useful and Marketable Exercises for Students Enrolled in Upper-Level Undergraduate Courses
2019 Eastern Biologist Special Issue 1 Zebrafish as a Model System for Research and Teaching A. Davis, H. Nguyen, and J. Qian 2019 Eastern Biologist Special Issue 1:47–63 Zebrafish Embryos and Bioinformatics: Useful and Marketable Exercises for Students Enrolled in Upper-Level Undergraduate Courses Adam Davis1*, Hong Nguyen1, and Jo Qian1 Abstract - The zebrafish (Danio rerio) is a widely used vertebrate model system in several branches of biological research, including molecular biology, developmental biology, and evolutionary biology. The rapid and transparent development of embryos outside of the mother allows for real- time observation of embryonic development of different types of organ systems. However, the types of wet-lab exercises involving zebrafish embryos that undergraduate students can perform during a 2-3 hour laboratory period are limited. Recent advances in bioinformatics applications and the availability of genomic sequence data from zebrafish and other evolutionarily divergent vertebrates, including human, allow students to be actively involved in semester-long molecular, evolutionary, and developmental biology projects that can be performed both in and out of the laboratory. In this paper, we report several exercises that can be used in upper level undergraduate biology courses that include a 2-3 hour weekly laboratory session. These exercises include amino acid and genomic DNA sequence alignment and gene expression analysis of Hoxa2, a developmental regulatory gene that is highly characterized in its expression and function. All exercises make use of standard operating procedures for training students on new techniques. The exercises presented will provide several learning outcomes for students, including the identification of conserved protein domains and cis- regulatory elements and how mutations to these motifs can lead to evolutionary diversity as well as the development of homeostatic imbalances in humans. -
Lower Organisms As Alternatives for Toxicity Testing in Rodents with a Focus on Ceanorhabditis Elegans and the Zebrafish (Danio Rerio)
Report 340720003/2009 L.T.M. van der Ven Lower organisms as alternatives for toxicity testing in rodents With a focus on Ceanorhabditis elegans and the zebrafish (Danio rerio) RIVM report 340720003/2009 Lower organisms as alternatives for toxicity testing in rodents With a focus on Caenorhabditis elegans and the zebrafish (Danio rerio) L.T.M. van der Ven Contact: L.T.M. van der Ven Laboratory for Health Protection Research [email protected] This investigation has been performed by order and for the account of the Ministry of Health, Welfare and Sport, within the framework of V/340720 Alternatives for animal testing RIVM, P.O. Box 1, 3720 BA Bilthoven, the Netherlands Tel +31 30 274 91 11 www.rivm.nl © RIVM 2009 Parts of this publication may be reproduced, provided acknowledgement is given to the 'National Institute for Public Health and the Environment', along with the title and year of publication. RIVM report 340720003 2 Abstract Lower organisms as alternatives for toxicity testing in rodents With a focus on Caenorhabiditis elegans and the zebrafish (Danio rerio) The nematode C. elegans and the zebrafish embryo are promising alternative test models for assessment of toxic effects in rodents. Tests with these lower organisms may have a good predictive power for effects in humans and are thus complementary to tests with in vitro models (cell cultures). However, all described tests need further validation. This is the outcome of a literature survey, commissioned by the ministry of Health, Welfare and Sport of the Netherlands. The survey is part of the policy to reduce, refine and replace animal testing (3R policy). -
Barhl1regulates Migration and Survival of Cerebellar Granule
3104 • The Journal of Neuroscience, March 24, 2004 • 24(12):3104–3114 Development/Plasticity/Repair Barhl1 Regulates Migration and Survival of Cerebellar Granule Cells by Controlling Expression of the Neurotrophin-3 Gene Shengguo Li,1 Feng Qiu,1 Anlong Xu,2 Sandy M. Price,1 and Mengqing Xiang1 1Center for Advanced Biotechnology and Medicine and Department of Pediatrics, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, and 2Department of Biochemistry, College of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China The neurons generated at the germinal rhombic lip undergo long distance migration along divergent pathways to settle in widely dispersed locations within the hindbrain, giving rise to cerebellar granule cells and precerebellar nuclei. Neurotrophin-3 (NT-3) signaling has been shown to be required for proper migration and survival of cerebellar granule cells. The molecular bases that govern NT-3 expression within the cerebellum, however, remain unknown at present. Here we report that, during early mouse neurogenesis, the Barhl1 homeobox gene is highly expressed by the rhombic lip and rhombic lip-derived migratory neurons. Its expression is later restricted to cerebellar granule cells and precerebellar neurons extending mossy fibers, two groups of neurons that synaptically connect in the adult cerebellar system. Loss of Barhl1 function causes cerebellar phenotypes with a striking similarity to those of NT-3 conditional null mice, which include attenuated cerebellar foliation as well as defective radial migration and increased apoptotic death of granule cells. Correlating with these defects, we find that NT-3 expression is dramatically downregulated in granule cells of the posterior lobe of Ϫ Ϫ Ϫ Ϫ Barhl1 / cerebella. -
Stages of Embryonic Development of the Zebrafish
DEVELOPMENTAL DYNAMICS 2032553’10 (1995) Stages of Embryonic Development of the Zebrafish CHARLES B. KIMMEL, WILLIAM W. BALLARD, SETH R. KIMMEL, BONNIE ULLMANN, AND THOMAS F. SCHILLING Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403-1254 (C.B.K., S.R.K., B.U., T.F.S.); Department of Biology, Dartmouth College, Hanover, NH 03755 (W.W.B.) ABSTRACT We describe a series of stages for Segmentation Period (10-24 h) 274 development of the embryo of the zebrafish, Danio (Brachydanio) rerio. We define seven broad peri- Pharyngula Period (24-48 h) 285 ods of embryogenesis-the zygote, cleavage, blas- Hatching Period (48-72 h) 298 tula, gastrula, segmentation, pharyngula, and hatching periods. These divisions highlight the Early Larval Period 303 changing spectrum of major developmental pro- Acknowledgments 303 cesses that occur during the first 3 days after fer- tilization, and we review some of what is known Glossary 303 about morphogenesis and other significant events that occur during each of the periods. Stages sub- References 309 divide the periods. Stages are named, not num- INTRODUCTION bered as in most other series, providing for flexi- A staging series is a tool that provides accuracy in bility and continued evolution of the staging series developmental studies. This is because different em- as we learn more about development in this spe- bryos, even together within a single clutch, develop at cies. The stages, and their names, are based on slightly different rates. We have seen asynchrony ap- morphological features, generally readily identi- pearing in the development of zebrafish, Danio fied by examination of the live embryo with the (Brachydanio) rerio, embryos fertilized simultaneously dissecting stereomicroscope. -
Cerebellar Histology & Circuitry
Cerebellar Histology & Circuitry Histology > Neurological System > Neurological System CEREBELLAR HISTOLOGY & CIRCUITRY SUMMARY OVERVIEW Gross Anatomy • The folding of the cerebellum into lobes, lobules, and folia allows it to assume a tightly packed, inconspicuous appearance in the posterior fossa. • The cerebellum has a vast surface area, however, and when stretched, it has a rostrocaudal expanse of roughly 120 centimeters, which allows it to hold an estimated one hundred billion granule cells — more cells than exist within the entire cerebral cortex. - It is presumed that the cerebellum's extraordinary cell count plays an important role in the remarkable rehabilitation commonly observed in cerebellar stroke. Histology Two main classes of cerebellar nuclei • Cerebellar cortical neurons • Deep cerebellar nuclei CEREBELLAR CORTICAL CELL LAYERS Internal to external: Subcortical white matter Granule layer (highly cellular) • Contains granule cells, Golgi cells, and unipolar brush cells. Purkinje layer 1 / 9 • Single layer of large Purkinje cell bodies. • Purkinje cells project a fine axon through the granule cell layer. - Purkinje cells possess a large dendritic system that arborizes (branches) extensively and a single fine axon. Molecular layer • Primarily comprises cell processes but also contains stellate and basket cells. DEEP CEREBELLAR NUCLEI From medial to lateral: Fastigial Globose Emboliform Dentate The globose and emboliform nuclei are also known as the interposed nuclei • A classic acronym for the lateral to medial organization of the deep nuclei is "Don't Eat Greasy Food," for dentate, emboliform, globose, and fastigial. NEURONS/FUNCTIONAL MODULES • Fastigial nucleus plays a role in the vestibulo- and spinocerebellum. • Interposed nuclei are part of the spinocerebellum. • Dentate nucleus is part of the pontocerebellum. -
Cerebellar Rhombic Lip Derivatives 4397
Development 126, 4395-4404 (1999) 4395 Printed in Great Britain © The Company of Biologists Limited 1999 DEV2426 The role of the rhombic lip in avian cerebellum development Richard J. T. Wingate* and Mary E. Hatten Laboratory of Developmental Neurobiology, Rockefeller University, 1230 York Avenue, New York, NY 10021-10034, USA *Author for correspondence (e-mail: richard. wingate@kcl. ac. uk) Accepted 3 August; published on WWW 27 September 1999 SUMMARY We have used a combination of quail-chick fate-mapping neurons of the lateral pontine nucleus. DiI-labelling of techniques and dye labelling to investigate the development cerebellum explants reveals that external germinal layer of the avian cerebellum. Using Hoxa2 as a guide for the precursors have a characteristic unipolar morphology and microsurgical construction of quail-chick chimaeras, we undergo an orientated, active migration away from the show that the caudal boundary of the presumptive rhombic lip, which is apparently independent of either glial cerebellum at E6 maps to the caudal boundary of or axon guidance or ‘chain’ formation. rhombomere 1. By fate mapping the dorsoventral axis of rhombomere 1, we demonstrate that granule cell Key words: Granule cell, Lateral pontine nucleus, Quail-chick precursors are generated at the rhombic lip together with chimaera, Cell migration, Hoxa2 INTRODUCTION constriction, or isthmus, that separates these two embryonic vesicles is an important signalling centre and a number of The vertebrate neuraxis is patterned by dorsoventral and studies have demonstrated that genes induced at the isthmus anteroposterior molecular cues into regionally distinct regulate both cerebellum and midbrain development (Lumsden subdivisions each characterised by a different repertoire of and Krumlauf, 1996). -
Regulation of Striatal Cells and Goal-Directed Behavior by Cerebellar Outputs
ARTICLE DOI: 10.1038/s41467-018-05565-y OPEN Regulation of striatal cells and goal-directed behavior by cerebellar outputs Le Xiao1, Caroline Bornmann1, Laetitia Hatstatt-Burklé1 & Peter Scheiffele 1 The cerebellum integrates descending motor commands and sensory information to generate predictions and detect errors during ongoing behaviors. Cerebellar computation has been proposed to control motor but also non-motor behaviors, including reward expectation and fl 1234567890():,; cognitive exibility. However, the organization and functional contribution of cerebellar output channels are incompletely understood. Here, we elaborate the cell-type specificity of a broad connectivity matrix from the deep cerebellar nuclei (DCN) to the dorsal striatum in mice. Cerebello-striatal connections arise from all deep cerebellar subnuclei and are relayed through intralaminar thalamic nuclei (ILN). In the dorsal striatum, these connections target medium spiny neurons, but also ChAT-positive interneurons, a class of tonically active interneurons implicated in shifting and updating behavioral strategies. Chemogenetic silen- cing of cerebello-striatal connectivity modifies function of striatal ChAT-positive inter- neurons. We propose that cerebello-striatal connections relay cerebellar computation to striatal circuits for goal-directed behaviors. 1 Biozentrum, University of Basel, 4056 Basel, Switzerland. Correspondence and requests for materials should be addressed to P.S. (email: [email protected]) NATURE COMMUNICATIONS | (2018) 9:3133 | DOI: 10.1038/s41467-018-05565-y | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-05565-y he cerebellum is a major site of multisensory integration reminiscent of processes controlled by cerebellar computation, it Tthat controls sensorimotor function1,2. Current models for is unknown whether thalamo-striatal inputs to ChAT cells are cerebellar function pose that cerebellar computation inte- linked anatomically or functionally to cerebellar outputs.