Medical Image Enhancement by a Bilateral Filter Using Optimization Technique
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
SAR Image Despeckling Based on Convolutional Denoising Autoencoder
SAR Image Despeckling Based on Convolutional Denoising Autoencoder Zhang Qianqian1 Sun Ruizhi2,* PhD student, Professor, College of Information and Electrical Engineering, College of Information and Electrical Engineering, China Agricultural University China Agricultural University Beijing, P.R. China Beijing, P.R. China e-mail: [email protected] *Corresponding author: e-mail: [email protected] Abstract—In Synthetic Aperture Radar (SAR) imaging, availability of noise in the SAR images has obvious influence despeckling is very important for image analysis,whereas speckle that complicates the obtaining and analysis process timely[1], is known as a kind of multiplicative noise caused by the coherent as results depend strongly on the implementation of imaging system. During the past three decades, various subsequent tasks (object detection, classification, segmentation, algorithms have been proposed to denoise the SAR image. and so on). Also, the denoising process is disturbing the Generally, the BM3D is considered as the state of art technique quality of the original images which may lead to poor to despeckle the speckle noise with excellent performance. More decisions either by humans or machines. Therefore, the goal of recently, deep learning make a success in image denoising and noise removal or reduction in the SAR image should take achieved a improvement over conventional method where large accuracy into high consideration as much as possible. train dataset is required. Unlike most of the images SAR image despeckling approach, the proposed approach learns the speckle SAR image despeckling, conventional problem in the field from corrupted images directly. In this paper, the limited scale of computer vision, has been extensively studied by of dataset make a efficient exploration by using convolutioal researchers. -
Performance Analysis of Spatial and Transform Filters for Efficient Image Noise Reduction
Performance Analysis of Spatial and Transform Filters for Efficient Image Noise Reduction Santosh Paudel Ajay Kumar Shrestha Pradip Singh Maharjan Rameshwar Rijal Computer and Electronics Computer and Electronics Computer and Electronics Computer and Electronics Engineering Engineering Engineering Engineering KEC, TU KEC, TU KEC, TU KEC, TU Lalitpur, Nepal Lalitpur, Nepal Lalitpur, Nepal Lalitpur, Nepal [email protected] [email protected] [email protected] [email protected] Abstract—During the acquisition of an image from its systems such as laser, acoustics and SAR (Synthetic source, noise always becomes integral part of it. Various Aperture Radar) images [3]. algorithms have been used in past to denoise the images. Image denoising still has scope for improvement. Visual This paper introduces different types of noise to be information transmitted in the form of digital images has considered in an image and analyzed for various spatial become a considerable method of communication in the and transforms domain filters by considering the image modern age, but the image obtained after transmission is metrics such as mean square error (MSE), root mean often corrupted due to noise. In this paper, we review the squared error (RMSE), Peak Signal to Noise Ratio existing denoising algorithms such as filtering approach (PSNR) and universal quality index (UQI). and wavelets based approach, and then perform their comparative study with bilateral filters. We use different II. BACKGROUND noise models to describe additive and multiplicative noise The Wavelet Transform (WT) is a powerful tool of in an image. Based on the samples of degraded pixel signal and image processing, which has been neighborhoods as inputs, the output of an efficient filtering successfully used in many scientific fields such as signal approach has shown a better image denoising performance. -
Fast, High Quality Noise
The Importance of Being Noisy: Fast, High Quality Noise Natalya Tatarchuk 3D Application Research Group AMD Graphics Products Group Outline Introduction: procedural techniques and noise Properties of ideal noise primitive Lattice Noise Types Noise Summation Techniques Reducing artifacts General strategies Antialiasing Snow accumulation and terrain generation Conclusion Outline Introduction: procedural techniques and noise Properties of ideal noise primitive Noise in real-time using Direct3D API Lattice Noise Types Noise Summation Techniques Reducing artifacts General strategies Antialiasing Snow accumulation and terrain generation Conclusion The Importance of Being Noisy Almost all procedural generation uses some form of noise If image is food, then noise is salt – adds distinct “flavor” Break the monotony of patterns!! Natural scenes and textures Terrain / Clouds / fire / marble / wood / fluids Noise is often used for not-so-obvious textures to vary the resulting image Even for such structured textures as bricks, we often add noise to make the patterns less distinguishable Ех: ToyShop brick walls and cobblestones Why Do We Care About Procedural Generation? Recent and upcoming games display giant, rich, complex worlds Varied art assets (images and geometry) are difficult and time-consuming to generate Procedural generation allows creation of many such assets with subtle tweaks of parameters Memory-limited systems can benefit greatly from procedural texturing Smaller distribution size Lots of variation -
Synthetic Data Generation for Deep Learning Models
32. DfX-Symposium 2021 Synthetic Data Generation for Deep Learning Models Christoph Petroll 1 , 2 , Martin Denk 2 , Jens Holtmannspötter 1 ,2, Kristin Paetzold 3 , Philipp Höfer 2 1 The Bundeswehr Research Institute for Materials, Fuels and Lubricants (WIWeB) 2 Universität der Bundeswehr München (UniBwM) 3 Technische Universität Dresden * Korrespondierender Autor: Christoph Petroll Institutsweg 1 85435 Erding Germany Telephone: 08122/9590 3313 Mail: [email protected] Abstract The design freedom and functional integration of additive manufacturing is increasingly being implemented in existing products. One of the biggest challenges are competing optimization goals and functions. This leads to multidisciplinary optimization problems which needs to be solved in parallel. To solve this problem, the authors require a synthetic data set to train a deep learning metamodel. The research presented shows how to create a data set with the right quality and quantity. It is discussed what are the requirements for solving an MDO problem with a metamodel taking into account functional and production-specific boundary conditions. A data set of generic designs is then generated and validated. The generation of the generic design proposals is accompanied by a specific product development example of a drone combustion engine. Keywords Multidisciplinary Optimization Problem, Synthetic Data, Deep Learning © 2021 die Autoren | DOI: https://doi.org/10.35199/dfx2021.11 1. Introduction and Idea of This Research Due to its great design freedom, additive manufacturing (AM) shows a high potential of functional integration and part consolidation [1]-[3]. For this purpose, functions and optimization goals that are usually fulfilled by individual components must be considered in parallel. -
22Nd International Congress on Acoustics ICA 2016
Page intentionaly left blank 22nd International Congress on Acoustics ICA 2016 PROCEEDINGS Editors: Federico Miyara Ernesto Accolti Vivian Pasch Nilda Vechiatti X Congreso Iberoamericano de Acústica XIV Congreso Argentino de Acústica XXVI Encontro da Sociedade Brasileira de Acústica 22nd International Congress on Acoustics ICA 2016 : Proceedings / Federico Miyara ... [et al.] ; compilado por Federico Miyara ; Ernesto Accolti. - 1a ed . - Gonnet : Asociación de Acústicos Argentinos, 2016. Libro digital, PDF Archivo Digital: descarga y online ISBN 978-987-24713-6-1 1. Acústica. 2. Acústica Arquitectónica. 3. Electroacústica. I. Miyara, Federico II. Miyara, Federico, comp. III. Accolti, Ernesto, comp. CDD 690.22 ISBN 978-987-24713-6-1 © Asociación de Acústicos Argentinos Hecho el depósito que marca la ley 11.723 Disclaimer: The material, information, results, opinions, and/or views in this publication, as well as the claim for authorship and originality, are the sole responsibility of the respective author(s) of each paper, not the International Commission for Acoustics, the Federación Iberoamaricana de Acústica, the Asociación de Acústicos Argentinos or any of their employees, members, authorities, or editors. Except for the cases in which it is expressly stated, the papers have not been subject to peer review. The editors have attempted to accomplish a uniform presentation for all papers and the authors have been given the opportunity to correct detected formatting non-compliances Hecho en Argentina Made in Argentina Asociación de Acústicos Argentinos, AdAA Camino Centenario y 5006, Gonnet, Buenos Aires, Argentina http://www.adaa.org.ar Proceedings of the 22th International Congress on Acoustics ICA 2016 5-9 September 2016 Catholic University of Argentina, Buenos Aires, Argentina ICA 2016 has been organised by the Ibero-american Federation of Acoustics (FIA) and the Argentinian Acousticians Association (AdAA) on behalf of the International Commission for Acoustics. -
Fusion of Median and Bilateral Filtering for Range Image Upsampling
FusionThis article has been of accepted Median for publication andin a future Bilateralissue of this journal, Filteringbut has not been fully foredited. Content Range may change prior to final publication. Image Upsampling Qingxiong Yang, Member, IEEE, Narendra Ahuja, Fellow, IEEE, Ruigang Yang, Member, IEEE, Kar-Han Tan, Senior Member, IEEE, James Davis, Member, IEEE, Bruce Culbertson, Member, IEEE, John Apostolopoulos, Fellow, IEEE, Gang Wang, Member, IEEE, Abstract— We present a new upsampling method to We presented in [54] a framework to enhance the spatial enhance the spatial resolution of depth images. Given a resolution of depth images (e.g., those from the Canesta sensor low-resolution depth image from an active depth sensor [2]). This approach takes advantage of the fact that a registered and a potentially high-resolution color image from a high-quality texture image can provide significant information passive RGB camera, we formulate it as an adaptive cost to enhance the raw depth image. The depth upsampling prob- aggregation problem and solve it using the bilateral filter. lem is formulated in an adaptive cost aggregation framework. The formulation synergistically combines the median filter A cost volume1 measuring the distance between the possible and the bilateral filter; thus it better preserves the depth depth candidates and the depth values bilinearly upsampled edges and is more robust to noise. Numerical and visual from those captured by the active depth sensor is computed. evaluations on a total of 37 Middlebury data sets demon- The joint bilateral filter is then applied to the cost volume to strate the effectiveness of our method. -
Noise Reduction Using Enhanced Bilateral Filter
影像與識別 2006, Vol.12 No.4 Noise Reduction Using Enhanced Bilatera… Noise Reduction Using Enhanced Bilateral Filter Yen-Lan Huang, Chiou-Shann Fuh Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan, 10617, R.O.C [email protected] Abstract. Noise reduction is an important block in the image pipeline. Noticing noise in an image is unpleasant. A good noise reduction method can reduce the noise level and preserve the detail of the image. In this paper, we introduce some basic noise types and traditional noise reduction methods. Then we create photometric functions and geometric functions based on the concept of the bilateral filter. We use experiments to show our proposed methods are more robust to salt-and- pepper noise. Besides, we show that our methods take less time compared with Gaussian bilateral filter. 1. Introduction 1.1 Motivation In order to get a clean and sharp image, noise reduction is the main issue in image pipeline. Many filters were used to reduce noises but also blur the whole image because image details and noises are difficult to distinguish by computer. Filtering is the most popular method to reduce noise. In the spatial domain, filtering depends on location and its neighbors. In the frequency domain, filtering multiplies the whole image and the mask. Some filters operate in spatial domain, some filters are mathematically derived from frequency domain to spatial domain, other filters are designed for special noise, combination of two or more filters, or derivation from other filters. C. Tomasi and R. Manduchi introduce a noise reduction filtering method called bilateral filtering [5]. -
Digital to Analog, PWM, Stepper Motors
Lecture #19 Digital To Analog, PWM, Stepper Motors 18-348 Embedded System Engineering Philip Koopman Monday, 28-March-2016 Electrical& Computer ENGINEERING © Copyright 2006-2016, Philip Koopman, All Rights Reserved Example System: HVAC Compressor Expansion Valve [http://www.solarpowerwindenergy.org] 2 HVAC Embedded Control Compressors (reciprocating & scroll) • Smart loading and unloading of compressor – Want to minimize motor turn on/turn off cycles – May involve bypassing liquid so compressor keeps running but doesn’t compress • Variable speed for better output temperature control • Diagnostics and prognostics – Prevent equipment damage (e.g., liquid entering compressor, compressor stall) – Predict equipment failures (e.g., low refrigerant, motor bearings wearing out) Expansion Valve • Smart control of amount of refrigerant evaporated – Often a stepper motor • Diagnostics and prognostics – Low refrigerant, icing on cold coils, overheating of hot coils System coordination • Coordinate expansion valve and compressor operation • Coordinate multiple compressors • Next lecture – talk about building-level system level diagnostics & coordination 3 Where Are We Now? Where we’ve been: • Interrupts, concurrency, scheduling, RTOS Where we’re going today: • Analog Output Where we’re going next: • Analog Input •Human I/O • Very gentle introduction to control •… • Test #2 and last project demo 4 Preview Digital To Analog Conversion • Example implementation • Understanding performance • Low pass filters Waveform encoding PWM • Digital way -
TEPRSCC 2020 Curriculum Vitae Cynthia Mccollough
Curriculum Vitae and Bibliography Cynthia H McCollough, PhD Personal Information Work Address: Mayo Clinic Rochester 200 First St SW Rochester, MN 55905-0001 507-284-6875 Present Academic Rank and Position Consultant - Department of Radiology, Mayo Clinic, Rochester, Minnesota 03/1994 - Present Full Faculty Privileges in Biomedical Engineering & Physiology - Mayo Clinic 03/2007 - Present Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine and Science Professor of Medical Physics - Mayo Clinic College of Medicine and Science 10/2008 - Present Professor of Biomedical Engineering - Mayo Clinic College of Medicine and 12/2011 - Present Science Career Scientist - Department of Radiology, Mayo Clinic, Rochester, Minnesota 01/2013 - Present Education Hope College - BS, Physics 1985 University of Wisconsin, Madison - MS, Medical Physics 1986 University of Wisconsin, Madison - PhD, Medical Physics 1991 Certification Board Certifications American Board of Radiology (ABR) Diagnostic Radiological Physics 1995 - Present Honors and Awards Ralph J. Eggleston Memorial Scholarship - Lake Shore High School, St. Clair 06/1981 Shores, Michigan Scholarship - American Business Women's Association 06/1981 - 05/1985 State of Michigan Competitive Scholarship - State of Michigan 06/1981 Bertelle-Arkell-Barbour Scholarship - Hope College, Holland, Michigan 08/1981 - 05/1985 Dean's List - Hope College, Holland, Michigan 08/1981 - 05/1985 Presidential Scholar - Hope College, Holland, Michigan 08/1981 - 05/1985 Member - Sigma Pi Sigma (Physics -
PROCEEDINGS of the ICA CONGRESS (Onl the ICA PROCEEDINGS OF
ine) - ISSN 2415-1599 ISSN ine) - PROCEEDINGS OF THE ICA CONGRESS (onl THE ICA PROCEEDINGS OF Page intentionaly left blank 22nd International Congress on Acoustics ICA 2016 PROCEEDINGS Editors: Federico Miyara Ernesto Accolti Vivian Pasch Nilda Vechiatti X Congreso Iberoamericano de Acústica XIV Congreso Argentino de Acústica XXVI Encontro da Sociedade Brasileira de Acústica 22nd International Congress on Acoustics ICA 2016 : Proceedings / Federico Miyara ... [et al.] ; compilado por Federico Miyara ; Ernesto Accolti. - 1a ed . - Gonnet : Asociación de Acústicos Argentinos, 2016. Libro digital, PDF Archivo Digital: descarga y online ISBN 978-987-24713-6-1 1. Acústica. 2. Acústica Arquitectónica. 3. Electroacústica. I. Miyara, Federico II. Miyara, Federico, comp. III. Accolti, Ernesto, comp. CDD 690.22 ISSN 2415-1599 ISBN 978-987-24713-6-1 © Asociación de Acústicos Argentinos Hecho el depósito que marca la ley 11.723 Disclaimer: The material, information, results, opinions, and/or views in this publication, as well as the claim for authorship and originality, are the sole responsibility of the respective author(s) of each paper, not the International Commission for Acoustics, the Federación Iberoamaricana de Acústica, the Asociación de Acústicos Argentinos or any of their employees, members, authorities, or editors. Except for the cases in which it is expressly stated, the papers have not been subject to peer review. The editors have attempted to accomplish a uniform presentation for all papers and the authors have been given the opportunity -
Image Denoising by Utilizing Bilateral Filter Via Box Filtering Approach
IJRRAS 32 (3) ● September 2017 www.arpapress.com/Volumes/Vol32Issue3/IJRRAS_32_3_02.pdf IMAGE DENOISING BY UTILIZING BILATERAL FILTER VIA BOX FILTERING APPROACH Sheeraz Ahmed Solangi 1,*, Qunsheng Cao1 & Shumaila Solangi2 1 Nanjing University of Aeronautics and Astronautics (NUAA), Nanjing 211106, China 2 IMCS, University of Sindh, Jamshoro 76080, Pakistan ABSTRACT Box and Gaussian filters are suitable and typically perform well in applications where amount of smoothing required is small. These types of filters are quite optimum in eliminating small amount of noise from natural images. However, when the floor of the noise is large, and one is essential to average more pixels to suppress the noise, so these type of filters begin to over smooth sharp image features such as corners and edges. To overcome this shortcoming the bilateral filter has been proposed. In this paper we have presented new approach by utilizing bilateral filter via box filter method. The proposed method significantly improve the bilateral filter performance by simply implementing pre- processing step of box filtering at almost no additional cost. Keywords: Bilateral filtering, Box filtering, Image denoising, Edge-preserving 1. INTRODUCTION The bilateral filter (BF) is a kind of non-linear weighted averaging filter [1]. The methodology of bilateral filter is that the weights of the filter is totally depend on the spatial distance and the photometric similarity distance with respect to the center pixel. While doing the spatial smoothing the bilateral filter have the capability to preserve the edges that is the main characteristic of this filter. The performance of bilateral filter is relatively effective in denoising images degraded with small amounts of Gaussian noise. -
A Study of Image Noising and Filtering Technique Surabhi1, Neha Pawar2 Research Scholar1, Assistant Professor2 SDDIET Department of Computer Sc
DOI 10.4010/2016.1647 ISSN 2321 3361 © 2016 IJESC ` Research Article Volume 6 Issue No. 6 A Study of Image Noising and Filtering Technique Surabhi1, Neha Pawar2 Research Scholar1, Assistant Professor2 SDDIET Department of Computer Sc. Barwala Haryana, India Abstract: In the world of image processing field, removal of high density desire noise is always a famous area for research. In the sources of noise in images arise during image acquisition, digitization or transmission. Now study for removing fixed impulse noise from color images. Impulse noise is produced by errors in the data transmission generate in noisy sensors or message channels, or by errors through the data capture from digital cameras. Several nonlinear filters have been proposed for renovation of images impure by salt and pepper noise. Among these standard median filter has been recognized as trustworthy method to remove the salt and pepper noise without harmful the edge details. Keywords: Image Processing, Impulse Noise, Bilateral Filter, Image Quality Metric 1. INTRODUCTION Color images are very often ruined by impulsive noise, which Computer image processing methods mainly take two is introduced into the image by faulty pixels in the camera categories. First, the space domain processing; that is in the sensors, broadcast errors in noisy channels, poor lighting image gap of the image processing. The other is the image conditions and aging of the storage material [1]. The spatial domain. It should be use rate domain through the suppression of the disturbances introduce by the impulsive orthogonal. In the world of image processing field, removal noise is indispensable for the success of additional stages of of high density desire noise is always a famous area for the image processing pipeline.