Vegetation Classification and Mapping of Tallgrass Prairie National Preserve
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
"National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment. -
Literature Cited
Literature Cited Robert W. Kiger, Editor This is a consolidated list of all works cited in volumes 19, 20, and 21, whether as selected references, in text, or in nomenclatural contexts. In citations of articles, both here and in the taxonomic treatments, and also in nomenclatural citations, the titles of serials are rendered in the forms recommended in G. D. R. Bridson and E. R. Smith (1991). When those forms are abbre- viated, as most are, cross references to the corresponding full serial titles are interpolated here alphabetically by abbreviated form. In nomenclatural citations (only), book titles are rendered in the abbreviated forms recommended in F. A. Stafleu and R. S. Cowan (1976–1988) and F. A. Stafleu and E. A. Mennega (1992+). Here, those abbreviated forms are indicated parenthetically following the full citations of the corresponding works, and cross references to the full citations are interpolated in the list alphabetically by abbreviated form. Two or more works published in the same year by the same author or group of coauthors will be distinguished uniquely and consistently throughout all volumes of Flora of North America by lower-case letters (b, c, d, ...) suffixed to the date for the second and subsequent works in the set. The suffixes are assigned in order of editorial encounter and do not reflect chronological sequence of publication. The first work by any particular author or group from any given year carries the implicit date suffix “a”; thus, the sequence of explicit suffixes begins with “b”. Works missing from any suffixed sequence here are ones cited elsewhere in the Flora that are not pertinent in these volumes. -
Natural Trait Variation for Taxonomic Classification and Breeding Potential Assessment in the Genus Camelina
Natural trait variation for taxonomic classification and breeding potential assessment in the genus Camelina by Jerry Wu A thesis submitted to the Faculty of Graduate and Postdoctoral Affairs in partial fulfillment of the requirements for the degree of Master of Science in Biology Carleton University Ottawa, Ontario © 2016, Jerry Wu Abstract Camelina sativa (L.) Crantz or camelina has been the subject of renewed interest as a novel alternative oilseed crop suitable for uses in biofuel, food, and industrial chemical applications as well as sustainable agricultural practices. Camelina’s development as an oilseed crop is currently limited by a short breeding history and a complicated allohexaploid genome structure, which hinders traditional breeding and genetic modification approaches. Therefore, our study takes an alternative approach, examining natural (phenotypic) variation in an assortment of quantitative traits of 23 accessions representing camelina and four of its crop wild relatives (CWRs) to further our understanding of the taxonomic classification and breeding potential within the Camelina genus. For our first objective, to determine key traits for discriminating taxa in the genus, principal components analysis (PCA) and linear discriminants analysis (LDA) were conducted to understand the patterns of phenotypic variation observed. It was determined that C20:1 and C22:1 fatty acid traits were the most informative variables in discriminating eight group membership identifications of the Camelina genus in this study. Permutational MANOVAs and Welch’s t-tests conducted across the eight group membership identifications as well as 23 accessions for the quantitative traits were consistent with the clustering analyses from PCA and LDA. Also, our investigations into varying morphological traits within the genus combined with patterns of variation observed for seed oil characteristics suggest that C. -
Vascular Plants and a Brief History of the Kiowa and Rita Blanca National Grasslands
United States Department of Agriculture Vascular Plants and a Brief Forest Service Rocky Mountain History of the Kiowa and Rita Research Station General Technical Report Blanca National Grasslands RMRS-GTR-233 December 2009 Donald L. Hazlett, Michael H. Schiebout, and Paulette L. Ford Hazlett, Donald L.; Schiebout, Michael H.; and Ford, Paulette L. 2009. Vascular plants and a brief history of the Kiowa and Rita Blanca National Grasslands. Gen. Tech. Rep. RMRS- GTR-233. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 44 p. Abstract Administered by the USDA Forest Service, the Kiowa and Rita Blanca National Grasslands occupy 230,000 acres of public land extending from northeastern New Mexico into the panhandles of Oklahoma and Texas. A mosaic of topographic features including canyons, plateaus, rolling grasslands and outcrops supports a diverse flora. Eight hundred twenty six (826) species of vascular plant species representing 81 plant families are known to occur on or near these public lands. This report includes a history of the area; ethnobotanical information; an introductory overview of the area including its climate, geology, vegetation, habitats, fauna, and ecological history; and a plant survey and information about the rare, poisonous, and exotic species from the area. A vascular plant checklist of 816 vascular plant taxa in the appendix includes scientific and common names, habitat types, and general distribution data for each species. This list is based on extensive plant collections and available herbarium collections. Authors Donald L. Hazlett is an ethnobotanist, Director of New World Plants and People consulting, and a research associate at the Denver Botanic Gardens, Denver, CO. -
Canyons of the Ancients National Monument Plant List by Genus
Canyons of the Ancients National Monument Plant List Please send all corrections and updates to Al Schneider, [email protected] Updated 6/2011 Scientific Name Common name Family Abronia fragrans Sand-verbena Nyctaginaceae Achillea lanulosa Western yarrow Asteraceae Achnatherum hymenoides Indian ricegrass Poaceae Achnatherum speciosum Showy needle grass Poaceae Acosta diffusa Tumble knapweed Asteraceae Acosta maculosa Spotted knapweed Asteraceae Acrolasia albicaulis Whitestem blazingstar Loasaceae Acroptilon repens Russian knapweed Asteraceae Adenolinum lewisii Blue Flax Linaceae Adiantum capillus-veneris Venus' hair fern Adiantaceae Agropyron cristatum Crested wheatgrass Poaceae Agrostis scabra Rough bentgrass Poaceae Agrostis stolonifera Redtop bentgrass Poaceae Allium acuminatum Tapertip onion Alliaceae Allium macropetalum Largeflower wild onion Alliaceae Allium textile Textile onion Alliaceae Alyssum minus Yellow alyssum Brassicaceae Amaranthus blitoides Prostrate pigweed Amaranthaceae Amaranthus retroflexus Redroot amaranth Amaranthaceae Ambrosia acanthicarpa Flatspine burr ragweed Asteraceae Ambrosia trifida great ragweed Asteraceae Amelanchier alnifolia? Saskatoon serviceberry Rosaceae Amelanchier utahensis Utah serviceberry Rosaceae Amsonia jonesii Jones's bluestar Apocynaceae Androsace occidentalis Western rockjasmine Primulaceae Androsace septentrionalis Pygmyflower rockjasmine Primulaceae Androstephium breviflorum Pink funnellily Alliaceae Anisantha tectorum Cheatgrass Poaceae Antennaria rosulata Rosy pussytoes Asteraceae -
Species List For: Labarque Creek CA 750 Species Jefferson County Date Participants Location 4/19/2006 Nels Holmberg Plant Survey
Species List for: LaBarque Creek CA 750 Species Jefferson County Date Participants Location 4/19/2006 Nels Holmberg Plant Survey 5/15/2006 Nels Holmberg Plant Survey 5/16/2006 Nels Holmberg, George Yatskievych, and Rex Plant Survey Hill 5/22/2006 Nels Holmberg and WGNSS Botany Group Plant Survey 5/6/2006 Nels Holmberg Plant Survey Multiple Visits Nels Holmberg, John Atwood and Others LaBarque Creek Watershed - Bryophytes Bryophte List compiled by Nels Holmberg Multiple Visits Nels Holmberg and Many WGNSS and MONPS LaBarque Creek Watershed - Vascular Plants visits from 2005 to 2016 Vascular Plant List compiled by Nels Holmberg Species Name (Synonym) Common Name Family COFC COFW Acalypha monococca (A. gracilescens var. monococca) one-seeded mercury Euphorbiaceae 3 5 Acalypha rhomboidea rhombic copperleaf Euphorbiaceae 1 3 Acalypha virginica Virginia copperleaf Euphorbiaceae 2 3 Acer negundo var. undetermined box elder Sapindaceae 1 0 Acer rubrum var. undetermined red maple Sapindaceae 5 0 Acer saccharinum silver maple Sapindaceae 2 -3 Acer saccharum var. undetermined sugar maple Sapindaceae 5 3 Achillea millefolium yarrow Asteraceae/Anthemideae 1 3 Actaea pachypoda white baneberry Ranunculaceae 8 5 Adiantum pedatum var. pedatum northern maidenhair fern Pteridaceae Fern/Ally 6 1 Agalinis gattingeri (Gerardia) rough-stemmed gerardia Orobanchaceae 7 5 Agalinis tenuifolia (Gerardia, A. tenuifolia var. common gerardia Orobanchaceae 4 -3 macrophylla) Ageratina altissima var. altissima (Eupatorium rugosum) white snakeroot Asteraceae/Eupatorieae 2 3 Agrimonia parviflora swamp agrimony Rosaceae 5 -1 Agrimonia pubescens downy agrimony Rosaceae 4 5 Agrimonia rostellata woodland agrimony Rosaceae 4 3 Agrostis elliottiana awned bent grass Poaceae/Aveneae 3 5 * Agrostis gigantea redtop Poaceae/Aveneae 0 -3 Agrostis perennans upland bent Poaceae/Aveneae 3 1 Allium canadense var. -
Floristic Quality Assessment Report
FLORISTIC QUALITY ASSESSMENT IN INDIANA: THE CONCEPT, USE, AND DEVELOPMENT OF COEFFICIENTS OF CONSERVATISM Tulip poplar (Liriodendron tulipifera) the State tree of Indiana June 2004 Final Report for ARN A305-4-53 EPA Wetland Program Development Grant CD975586-01 Prepared by: Paul E. Rothrock, Ph.D. Taylor University Upland, IN 46989-1001 Introduction Since the early nineteenth century the Indiana landscape has undergone a massive transformation (Jackson 1997). In the pre-settlement period, Indiana was an almost unbroken blanket of forests, prairies, and wetlands. Much of the land was cleared, plowed, or drained for lumber, the raising of crops, and a range of urban and industrial activities. Indiana’s native biota is now restricted to relatively small and often isolated tracts across the State. This fragmentation and reduction of the State’s biological diversity has challenged Hoosiers to look carefully at how to monitor further changes within our remnant natural communities and how to effectively conserve and even restore many of these valuable places within our State. To meet this monitoring, conservation, and restoration challenge, one needs to develop a variety of appropriate analytical tools. Ideally these techniques should be simple to learn and apply, give consistent results between different observers, and be repeatable. Floristic Assessment, which includes metrics such as the Floristic Quality Index (FQI) and Mean C values, has gained wide acceptance among environmental scientists and decision-makers, land stewards, and restoration ecologists in Indiana’s neighboring states and regions: Illinois (Taft et al. 1997), Michigan (Herman et al. 1996), Missouri (Ladd 1996), and Wisconsin (Bernthal 2003) as well as northern Ohio (Andreas 1993) and southern Ontario (Oldham et al. -
Journal of the Oklahoma Native Plant Society, Volume 7, Number 1
ISSN 1536-7738 Oklahoma Native Plant Record Journal of the Oklahoma Native Plant Society Volume 7, Number 1, December 2007 1 Oklahoma Native Plant Record Journal of the Oklahoma Native Plant Society 2435 South Peoria Tulsa, Oklahoma 74114 Volume 7, Number 1, December 2007 ISSN 1536-7738 Managing Editor: Sheila Strawn Technical Editor: Patricia Folley Technical Advisor: Bruce Hoagland CD-ROM Producer: Chadwick Cox Website: http://www.usao.edu/~onps/ The purpose of ONPS is to encourage the study, protection, propagation, appreciation and use of the native plants of Oklahoma. Membership in ONPS shall be open to any person who supports the aims of the Society. ONPS offers individual, student, family, and life memberships. 2007 Officers and Board Members President: Kim Shannon Librarian: Bonnie Winchester Vice-president: Gloria Caddell Website Manager: Chadwick Cox Secretary: Paula Shryock Photo Poster Curators: Treasurer: Mary Korthase Sue Amstutz & Marilyn Stewart Membership Database: Tina Julich Color Oklahoma Chair: Tina Julich Past President: Constance Murray Conservation Chair: Chadwick Cox Board Members: Field Trip Chair: Patricia Folley Paul Buck Mailings Chair: Karen Haworth Ron Tyrl Merchandise Chair: Susan Chambers Lynn Michael Nominating Chair: Paula Shryock Monica Macklin Photography Contest Chair: Tina Julich Elfriede Miller Publications Chair: Sheila Strawn Stanley Rice Publicity Chairs: Central Chapter Chair: Lou Duke/ Kim Shannon & Marilyn Stewart Marilyn Stewart Wildflower Workshop Chair: Cross-timbers Chapter Chair: Constance Murray Paul Richardson Cover photo: Courtesy of Patricia Folley. Mycology Chapter Chair: Clark Ovrebo “This Opuntia polyacantha was Northeast Chapter Chair: Sue Amstutz blooming away on a rocky shore on Jed Gaillardia Editor: Chadwick Cox JohnsonLakeintheWichitaMountains Harriet Barclay Award Chair: Wildlife Refuge. -
Checklist Flora of the Former Carden Township, City of Kawartha Lakes, on 2016
Hairy Beardtongue (Penstemon hirsutus) Checklist Flora of the Former Carden Township, City of Kawartha Lakes, ON 2016 Compiled by Dale Leadbeater and Anne Barbour © 2016 Leadbeater and Barbour All Rights reserved. No part of this publication may be reproduced, stored in a retrieval system or database, or transmitted in any form or by any means, including photocopying, without written permission of the authors. Produced with financial assistance from The Couchiching Conservancy. The City of Kawartha Lakes Flora Project is sponsored by the Kawartha Field Naturalists based in Fenelon Falls, Ontario. In 2008, information about plants in CKL was scattered and scarce. At the urging of Michael Oldham, Biologist at the Natural Heritage Information Centre at the Ontario Ministry of Natural Resources and Forestry, Dale Leadbeater and Anne Barbour formed a committee with goals to: • Generate a list of species found in CKL and their distribution, vouchered by specimens to be housed at the Royal Ontario Museum in Toronto, making them available for future study by the scientific community; • Improve understanding of natural heritage systems in the CKL; • Provide insight into changes in the local plant communities as a result of pressures from introduced species, climate change and population growth; and, • Publish the findings of the project . Over eight years, more than 200 volunteers and landowners collected almost 2000 voucher specimens, with the permission of landowners. Over 10,000 observations and literature records have been databased. The project has documented 150 new species of which 60 are introduced, 90 are native and one species that had never been reported in Ontario to date. -
Interactions Between Genetics and Environment Shape Camelina Seed Oil Composition Jordan R
Brock et al. BMC Plant Biology (2020) 20:423 https://doi.org/10.1186/s12870-020-02641-8 RESEARCH ARTICLE Open Access Interactions between genetics and environment shape Camelina seed oil composition Jordan R. Brock1, Trey Scott1, Amy Yoonjin Lee1, Sergei L. Mosyakin2 and Kenneth M. Olsen1* Abstract Background: Camelina sativa (gold-of-pleasure) is a traditional European oilseed crop and emerging biofuel source with high levels of desirable fatty acids. A twentieth century germplasm bottleneck depleted genetic diversity in the crop, leading to recent interest in using wild relatives for crop improvement. However, little is known about seed oil content and genetic diversity in wild Camelina species. Results: We used gas chromatography, environmental niche assessment, and genotyping-by-sequencing to assess seed fatty acid composition, environmental distributions, and population structure in C. sativa and four congeners, with a primary focus on the crop’s wild progenitor, C. microcarpa. Fatty acid composition differed significantly between Camelina species, which occur in largely non-overlapping environments. The crop progenitor comprises three genetic subpopulations with discrete fatty acid compositions. Environment, subpopulation, and population- by-environment interactions were all important predictors for seed oil in these wild populations. A complementary growth chamber experiment using C. sativa confirmed that growing conditions can dramatically affect both oil quantity and fatty acid composition in Camelina. Conclusions: Genetics, environmental conditions, and genotype-by-environment interactions all contribute to fatty acid variation in Camelina species. These insights suggest careful breeding may overcome the unfavorable FA compositions in oilseed crops that are predicted with warming climates. Keywords: Camelina, Fatty acid, Environmental association, Oil content, Population structure, Phenotypic plasticity, Wild crop relatives Background modern C. -
Dissertation Indaziflam
DISSERTATION INDAZIFLAM: A NEW CELLULOSE BIOSYNTHESIS INHIBITING HERBICIDE PROVIDES LONG-TERM CONTROL OF INVASIVE WINTER ANNUAL GRASSES Submitted by Derek James Sebastian Department of Bioagricultural Sciences and Pest Management In partial fulfillment of the requirements For the Degree of Doctor of Philosophy Colorado State University Fort Collins, Colorado Spring 2017 Doctoral Committee: Advisor: Scott Nissen George Beck Paul Meiman Todd Gaines Copyright by Derek James Sebastian 2017 All Rights Reserved ABSTRACT INDAZIFLAM: A NEW CELLULOSE BIOSYNTHESIS INHIBITING HERBICIDE PROVIDES LONG-TERM CONTROL OF INVASIVE WINTER ANNUAL GRASSES Invasive winter annual grasses such as downy brome (Bromus tectorum L.) are a threat to native ecosystems throughout the US. These invasive grasses exploit moisture and nutrients throughout the fall and early spring before native plants break dormancy. This results in decreased native species abundance and development of monotypic stands. Short-term downy brome management has been shown to be effective; however, the soil seed reserve has often been overlooked although it’s the mechanism responsible for rapid re-establishment. While glyphosate, imazapic, and rimsulfuron are herbicides commonly recommended to control invasive, annual grasses, their performance is inconsistent, and they can injure desirable perennial grasses. Indaziflam is a recently registered cellulose-biosynthesis inhibiting herbicide, providing broad spectrum control of annual grass and broadleaf weeds. Indaziflam (Esplanade®, Bayer CropScience) is a cellulose biosynthesis inhibiting (CBI) herbicide that is a unique mode of action for resistance management and has broad spectrum activity at low application rates. At three sites, glyphosate and rimsulfuron provided less downy brome control than indaziflam one year after treatment (YAT). Percent downy brome control with imazapic decreased significantly 2 YAT (45-64%), and 3 YAT (10-32%). -
Vascular Plants of the Forest River Bi- Ology Station, North Dakota
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln The Prairie Naturalist Great Plains Natural Science Society 6-2015 VASCULAR PLANTS OF THE FOREST RIVER BI- OLOGY STATION, NORTH DAKOTA Alexey Shipunov Kathryn A. Yurkonis John C. La Duke Vera L. Facey Follow this and additional works at: https://digitalcommons.unl.edu/tpn Part of the Biodiversity Commons, Botany Commons, Ecology and Evolutionary Biology Commons, Natural Resources and Conservation Commons, Systems Biology Commons, and the Weed Science Commons This Article is brought to you for free and open access by the Great Plains Natural Science Society at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in The Prairie Naturalist by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. The Prairie Naturalist 47:29–35; 2015 VASCULAR PLANTS OF THE FOREST RIVER BI- known to occur at the site. Despite this effort, 88 species OLOGY STATION, NORTH DAKOTA—During sum- in La Duke et al. (unpublished data) are not yet supported mer 2013 we completed a listing of the plant species of the with collections, but have been included with this list. No- joint University of North Dakota (UND) Forest River Biol- menclature and taxon concepts are given in the accordance ogy Station and North Dakota Game and Fish Department with USDA PLANTS database (United States Department of Wildlife Management Area (FRBS).The FRBS is a 65 ha Agriculture 2013), and the Flora of North America (Flora of tract of land that encompasses the south half of the SW ¼ of North America Editorial Committee 1993). section 11 (acquired by UND in 1952) and the north half of We recorded 498 plant species from 77 families in the the NW ¼ of section 14 (acquired by UND in 1954) in Ink- FRBS (Appendix A), which is greater than the number of ster Township (T154N, R55W).