Implications for Megathrust Earthquakes and Tsunamis from Seismic Gaps South of Java Indonesia S
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Risk-Targeted Regional Earthquake Model for South-East Asia
Proceedings of the Tenth Pacific Conference on Earthquake Engineering Building an Earthquake-Resilient Pacific 6-8 November 2015, Sydney, Australia A risk-targeted Regional Earthquake Model for South-East Asia J. Woessner Risk Management Solutions Inc., Zurich, Switzerland. M. Nyst, & E. Seyhan Risk Management Solutions Inc., Newark, California, USA . ABSTRACT: The last decade has shown the social and economic vulnerability of countries in South-East Asia to earthquake hazard and risk. While many disaster mitigation programs to improve societal earthquake resilience are under way focusing on saving lives and livelihoods, the risk management sector is challenged to model economic consequences. We present the hazard component suitable for a South-East Asia earthquake risk model covering Indonesia, Malaysia, the Philippines and Indochine countries. The consistent regional model builds upon refined modelling approaches for 1) background seismicity, i.e. earthquakes not occurring on mapped fault structures, 2) seismic activity from geologic and geodetic data on crustal faults and 3) along the interface of subduction zones. We elaborate on building a self-consistent rate model for crustal fault systems (e.g. Sumatra fault zone, Philippine fault zone) as well as the subduction zone, showcase its characteristics and combine this with an up-to-date ground motion model. We aim to present insights on the impact of the different hazard components on the final risk model. 1 INTRODUCTION Over the past decades, the societies of many countries in Southeast Asia including mainland and mari- time countries have suffered several severe earthquake catastrophes in terms of human casualties, loss of livelihoods and economic losses. The 2004 M9.0 Andaman-Sumatra Earthquake and the associated tsunami caused more than 225,000 fatalities, generating significant attention internationally due to the scale of its impact across the Indian Ocean. -
Seismic Rate Variations Prior to the 2010 Maule, Chile MW 8.8 Giant Megathrust Earthquake
www.nature.com/scientificreports OPEN Seismic rate variations prior to the 2010 Maule, Chile MW 8.8 giant megathrust earthquake Benoit Derode1*, Raúl Madariaga1,2 & Jaime Campos1 The MW 8.8 Maule earthquake is the largest well-recorded megathrust earthquake reported in South America. It is known to have had very few foreshocks due to its locking degree, and a strong aftershock activity. We analyze seismic activity in the area of the 27 February 2010, MW 8.8 Maule earthquake at diferent time scales from 2000 to 2019. We diferentiate the seismicity located inside the coseismic rupture zone of the main shock from that located in the areas surrounding the rupture zone. Using an original spatial and temporal method of seismic comparison, we fnd that after a period of seismic activity, the rupture zone at the plate interface experienced a long-term seismic quiescence before the main shock. Furthermore, a few days before the main shock, a set of seismic bursts of foreshocks located within the highest coseismic displacement area is observed. We show that after the main shock, the seismic rate decelerates during a period of 3 years, until reaching its initial interseismic value. We conclude that this megathrust earthquake is the consequence of various preparation stages increasing the locking degree at the plate interface and following an irregular pattern of seismic activity at large and short time scales. Giant subduction earthquakes are the result of a long-term stress localization due to the relative movement of two adjacent plates. Before a large earthquake, the interface between plates is locked and concentrates the exter- nal forces, until the rock strength becomes insufcient, initiating the sudden rupture along the plate interface. -
Detailed Species Accounts from The
Threatened Birds of Asia: The BirdLife International Red Data Book Editors N. J. COLLAR (Editor-in-chief), A. V. ANDREEV, S. CHAN, M. J. CROSBY, S. SUBRAMANYA and J. A. TOBIAS Maps by RUDYANTO and M. J. CROSBY Principal compilers and data contributors ■ BANGLADESH P. Thompson ■ BHUTAN R. Pradhan; C. Inskipp, T. Inskipp ■ CAMBODIA Sun Hean; C. M. Poole ■ CHINA ■ MAINLAND CHINA Zheng Guangmei; Ding Changqing, Gao Wei, Gao Yuren, Li Fulai, Liu Naifa, Ma Zhijun, the late Tan Yaokuang, Wang Qishan, Xu Weishu, Yang Lan, Yu Zhiwei, Zhang Zhengwang. ■ HONG KONG Hong Kong Bird Watching Society (BirdLife Affiliate); H. F. Cheung; F. N. Y. Lock, C. K. W. Ma, Y. T. Yu. ■ TAIWAN Wild Bird Federation of Taiwan (BirdLife Partner); L. Liu Severinghaus; Chang Chin-lung, Chiang Ming-liang, Fang Woei-horng, Ho Yi-hsian, Hwang Kwang-yin, Lin Wei-yuan, Lin Wen-horn, Lo Hung-ren, Sha Chian-chung, Yau Cheng-teh. ■ INDIA Bombay Natural History Society (BirdLife Partner Designate) and Sálim Ali Centre for Ornithology and Natural History; L. Vijayan and V. S. Vijayan; S. Balachandran, R. Bhargava, P. C. Bhattacharjee, S. Bhupathy, A. Chaudhury, P. Gole, S. A. Hussain, R. Kaul, U. Lachungpa, R. Naroji, S. Pandey, A. Pittie, V. Prakash, A. Rahmani, P. Saikia, R. Sankaran, P. Singh, R. Sugathan, Zafar-ul Islam ■ INDONESIA BirdLife International Indonesia Country Programme; Ria Saryanthi; D. Agista, S. van Balen, Y. Cahyadin, R. F. A. Grimmett, F. R. Lambert, M. Poulsen, Rudyanto, I. Setiawan, C. Trainor ■ JAPAN Wild Bird Society of Japan (BirdLife Partner); Y. Fujimaki; Y. Kanai, H. -
Along the Sumatran Fault System Derived from GNSS
Ito et al. Earth, Planets and Space (2016) 68:57 DOI 10.1186/s40623-016-0427-z LETTER Open Access Co‑seismic offsets due to two earthquakes (Mw 6.1) along the Sumatran fault system derived from GNSS measurements Takeo Ito1* , Endra Gunawan2, Fumiaki Kimata3, Takao Tabei4, Irwan Meilano2, Agustan5, Yusaku Ohta6, Nazli Ismail7, Irwandi Nurdin7 and Didik Sugiyanto7 Abstract Since the 2004 Sumatra–Andaman earthquake (Mw 9.2), the northwestern part of the Sumatran island has been a high seismicity region. To evaluate the seismic hazard along the Great Sumatran fault (GSF), we installed the Aceh GNSS network for the Sumatran fault system (AGNeSS) in March 2005. The AGNeSS observed co-seismic offsets due to the April 11, 2012 Indian Ocean earthquake (Mw 8.6), which is the largest intraplate earthquake recorded in history. The largest offset at the AGNeSS site was approximately 14.9 cm. Two Mw 6.1 earthquakes occurred within AGNeSS in 2013, one on January 21 and the other on July 2. We estimated the fault parameters of the two events using a Markov chain Monte Carlo method. The estimated fault parameter of the first event was a right-lateral strike-slip where the strike was oriented in approximately the same direction as the surface trace of the GSF. The estimated peak value of the probability density function for the static stress drop was approximately 0.7 MPa. On the other hand, the co-seis- mic displacement fields of the second event from nearby GNSS sites clearly showed a left-lateral motion on a north- east–southwest trending fault plane and supported the contention that the July 2 event broke at the conjugate fault of the GSF. -
International Journal of Psychosocial Rehabilitation
8/31/2020 Issue 2 – International Journal of Psychosocial Rehabilitation (https://www.psychosocial.com ) International Journal of Psychosocial Rehabilitation ISSN:1475-7192 Login/Register (/register-login) Issue 2 Analysis of Impact of Modified Piston (https://www.psychosocial.com/article/PR190102/8233/) Authors: G. Sucharitha and Ramesh Rai DOI: 10.37200/IJPR/V23I2/PR190102 (https://doi.org/10.37200/IJPR/V23I2/PR190102) Pages: 1-10 Keywords: Piston Mechanical, Fatigue Machines, Materials Survey Abstract (https://www.psychosocial.com/article/PR190102/8233/) Download (/register-login) Determinants of Millenial’s Intention to Participate in Digital Training (https://www.psychosocial.com/article/PR190266/8863/) Authors: Sri Fatiany Abdul Kader Jailani and Erne Suzila Kassim DOI: 10.37200/IJPR/V23I2/PR190266 (https://doi.org/10.37200/IJPR/V23I2/PR190266) Pages: 11-22 Keywords: Information technology and human resource development, digital training, millennial research, gamification, Technology Acceptance Model (TAM) Abstract (https://www.psychosocial.com/article/PR190266/8863/) Download (/register-login) First Year International Students’ Experience in Universiti Malaysia Sabah (https://www.psychosocial.com/article/PR190267/8865/) Authors: Irma Wani Othman, Hasbullah Bin Awang and Norazah Mohd Suki DOI: 10.37200/IJPR/V23I2/PR190267 (https://doi.org/10.37200/IJPR/V23I2/PR190267) Pages: 23-38 Keywords: International Students, UMS Abstract (https://www.psychosocial.com/article/PR190267/8865/) Download (/register-login) Implementation of Community -
Foreshock Sequences and Short-Term Earthquake Predictability on East Pacific Rise Transform Faults
NATURE 3377—9/3/2005—VBICKNELL—137936 articles Foreshock sequences and short-term earthquake predictability on East Pacific Rise transform faults Jeffrey J. McGuire1, Margaret S. Boettcher2 & Thomas H. Jordan3 1Department of Geology and Geophysics, Woods Hole Oceanographic Institution, and 2MIT-Woods Hole Oceanographic Institution Joint Program, Woods Hole, Massachusetts 02543-1541, USA 3Department of Earth Sciences, University of Southern California, Los Angeles, California 90089-7042, USA ........................................................................................................................................................................................................................... East Pacific Rise transform faults are characterized by high slip rates (more than ten centimetres a year), predominately aseismic slip and maximum earthquake magnitudes of about 6.5. Using recordings from a hydroacoustic array deployed by the National Oceanic and Atmospheric Administration, we show here that East Pacific Rise transform faults also have a low number of aftershocks and high foreshock rates compared to continental strike-slip faults. The high ratio of foreshocks to aftershocks implies that such transform-fault seismicity cannot be explained by seismic triggering models in which there is no fundamental distinction between foreshocks, mainshocks and aftershocks. The foreshock sequences on East Pacific Rise transform faults can be used to predict (retrospectively) earthquakes of magnitude 5.4 or greater, in narrow spatial and temporal windows and with a high probability gain. The predictability of such transform earthquakes is consistent with a model in which slow slip transients trigger earthquakes, enrich their low-frequency radiation and accommodate much of the aseismic plate motion. On average, before large earthquakes occur, local seismicity rates support the inference of slow slip transients, but the subject remains show a significant increase1. In continental regions, where dense controversial23. -
Report on Biodiversity and Tropical Forests in Indonesia
Report on Biodiversity and Tropical Forests in Indonesia Submitted in accordance with Foreign Assistance Act Sections 118/119 February 20, 2004 Prepared for USAID/Indonesia Jl. Medan Merdeka Selatan No. 3-5 Jakarta 10110 Indonesia Prepared by Steve Rhee, M.E.Sc. Darrell Kitchener, Ph.D. Tim Brown, Ph.D. Reed Merrill, M.Sc. Russ Dilts, Ph.D. Stacey Tighe, Ph.D. Table of Contents Table of Contents............................................................................................................................. i List of Tables .................................................................................................................................. v List of Figures............................................................................................................................... vii Acronyms....................................................................................................................................... ix Executive Summary.................................................................................................................... xvii 1. Introduction............................................................................................................................1- 1 2. Legislative and Institutional Structure Affecting Biological Resources...............................2 - 1 2.1 Government of Indonesia................................................................................................2 - 2 2.1.1 Legislative Basis for Protection and Management of Biodiversity and -
The Moment Magnitude and the Energy Magnitude: Common Roots
The moment magnitude and the energy magnitude : common roots and differences Peter Bormann, Domenico Giacomo To cite this version: Peter Bormann, Domenico Giacomo. The moment magnitude and the energy magnitude : com- mon roots and differences. Journal of Seismology, Springer Verlag, 2010, 15 (2), pp.411-427. 10.1007/s10950-010-9219-2. hal-00646919 HAL Id: hal-00646919 https://hal.archives-ouvertes.fr/hal-00646919 Submitted on 1 Dec 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Click here to download Manuscript: JOSE_MS_Mw-Me_final_Nov2010.doc Click here to view linked References The moment magnitude Mw and the energy magnitude Me: common roots 1 and differences 2 3 by 4 Peter Bormann and Domenico Di Giacomo* 5 GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany 6 *Now at the International Seismological Centre, Pipers Lane, RG19 4NS Thatcham, UK 7 8 9 Abstract 10 11 Starting from the classical empirical magnitude-energy relationships, in this article the 12 derivation of the modern scales for moment magnitude M and energy magnitude M is 13 w e 14 outlined and critically discussed. The formulas for Mw and Me calculation are presented in a 15 way that reveals, besides the contributions of the physically defined measurement parameters 16 seismic moment M0 and radiated seismic energy ES, the role of the constants in the classical 17 Gutenberg-Richter magnitude-energy relationship. -
Tsunamigenic Earthquakes
Fifteen Years of (Major to Great) Tsunamigenic Earthquakes F Romano, S Lorito, and A Piatanesi, Istituto Nazionale di Geofisica e Vulcanologia, Roma, Italy T Lay, Earth and Planetary Sciences Department, University of California Santa Cruz, Santa Cruz, CA, United States © 2020 Elsevier Inc. All rights reserved. Tsunamis, Seismically Induced 1 Fifteen Years of Major to Great Tsunamigenic Earthquakes 3 The Study of Tsunamigenic Earthquakes 3 Megathrust Tsunamigenic Earthquakes 4 The Sunda 2004–10 Sequence in the Indian Ocean 4 Peru 2007 5 Maule 2010 5 Tohoku 2011 5 Santa Cruz 2013 6 Iquique 2014 6 Illapel 2015 6 Tsunamigenic Doublets 7 Kurils 2006–07 7 Samoa 2009 7 Tsunami Earthquakes 7 Java 2006 8 Mentawai 2010 8 Recent Special Cases 8 Sumatra 2012 8 Solomon 2007 8 Haida Gwaii 2012 9 Kaikoura 2016 9 Mexico 2017 9 Palu 2018 9 Conclusions 10 References 10 Further Reading 12 Tsunamis, Seismically Induced Tsunamis are a series of long gravity waves generated by the displacement of a significant volume of water that propagating in the sea, under the action of the gravity force, returns in its original equilibrium position. Differently from the common wind waves, tsunamis are characterized by large wavelengths (ranging from tens to hundreds of km) and long periods (ranging from minutes to hours). Several natural phenomena such as earthquakes, landslides, volcanic eruptions, the rapid change of atmospheric pressure (meteotsunami), or asteroids impacts can be the source of a tsunami; among these, the most frequent is represented by the earthquakes. Most of the very tsunamigenic earthquakes occur nearby the Earth convergent boundaries (Fig. -
The Megathrust Earthquake Cycle
Ocean. A little less than four years later, a similar-sized earthquake strikes the Prince William Sound area of Alaska producing a tsunami that ravages Alaska and the west coast of North America. At the time, it was clear Not My Fault: The megathrust these were very large quakes, registering 8.6 and 8.5 on earthquake cycle the Surface Wave magnitude scale, the variant of the Lori Dengler/For the Times-Standard Richter scale that was in use at the time. But only after Posted: May 24, 2017 theresearch of two more Reid award winners Aki and Kanamori (whose work would replace the Richter scale The Seismological Society of America is the world’s with seismic moment and moment magnitude) would largest organization dedicated to the study of the true size of these earthquakes Become clear. When earthquakes and their impacts on humans. The recalculated in the 70s, 1964 Alaska was upped to 9.2 Society’s highest honor is the Henry F. Reid Award and 1960 Chile Became a whopping 9.5, the largest recognizes the work that has done the most to the magnitude earthquake ever recorded on a seismograph. transform the discipline. This year’s recipient is George Plafker for his studies of great suBduction zone Both of these earthquakes occurred before plate earthquakes. tectonics, the grand unifying theory of how the outer part of the earth works, was well known or accepted. In I mentioned Dr. Plafker in my last column as a pioneer of the sixties, many earth scientists Believed great post earthquake/tsunami reconnaissance. -
Indonesia: Floods and Landslides; Information Bulletin No
Indonesia: Floods and Information bulletin n° 2 5 January 2008 Landslides This bulletin is being issued for information only. Torrential rain in Indonesia has caused flooding and landslides in many areas, the most affected being Central Java and East Java. In the two provinces, up to 12,000 houses have been destroyed or damaged with more than 80 lives lost, 24 people reported injured and more than 50 reported missing. At the same time, the capital city Jakarta is also experiencing its seasonal plight, particularly affecting residents along the banks of the Ciliwung river. In response to the flooding and landslides, the Indonesian Red Cross (Palang Merah Indonesia/PMI) are carrying out evacuation operations, distribution of relief items, field kitchen operations, clean water and health services. <click here to view the map of the affected area, or here for detailed contact information> The Situation The flooding, caused by heavy rains in many parts of Indonesia since the last week of December 2007, continues to affect the community, particularly in Central Java and East Java and also in the capital city of Jakarta. Preliminary assessment carried out by the Indonesian Red Cross (Palang Merah Indonesia/PMI) has identified urgent needs for its operation as well as relief needs for the affected communities. The community needs identified so far include food items, health services, hygiene kits, family kits, tents and tarpaulins. The district coordination unit for disaster management (Satlak PB) of Karang Anyar, together with the local government, has assessed the location of floods and landslides, and set up emergency posts as well as field kitchens in the affected areas. -
Waves of Destruction in the East Indies: the Wichmann Catalogue of Earthquakes and Tsunami in the Indonesian Region from 1538 to 1877
Downloaded from http://sp.lyellcollection.org/ by guest on May 24, 2016 Waves of destruction in the East Indies: the Wichmann catalogue of earthquakes and tsunami in the Indonesian region from 1538 to 1877 RON HARRIS1* & JONATHAN MAJOR1,2 1Department of Geological Sciences, Brigham Young University, Provo, UT 84602–4606, USA 2Present address: Bureau of Economic Geology, The University of Texas at Austin, Austin, TX 78758, USA *Corresponding author (e-mail: [email protected]) Abstract: The two volumes of Arthur Wichmann’s Die Erdbeben Des Indischen Archipels [The Earthquakes of the Indian Archipelago] (1918 and 1922) document 61 regional earthquakes and 36 tsunamis between 1538 and 1877 in the Indonesian region. The largest and best documented are the events of 1770 and 1859 in the Molucca Sea region, of 1629, 1774 and 1852 in the Banda Sea region, the 1820 event in Makassar, the 1857 event in Dili, Timor, the 1815 event in Bali and Lom- bok, the events of 1699, 1771, 1780, 1815, 1848 and 1852 in Java, and the events of 1797, 1818, 1833 and 1861 in Sumatra. Most of these events caused damage over a broad region, and are asso- ciated with years of temporal and spatial clustering of earthquakes. The earthquakes left many cit- ies in ‘rubble heaps’. Some events spawned tsunamis with run-up heights .15 m that swept many coastal villages away. 2004 marked the recurrence of some of these events in western Indonesia. However, there has not been a major shallow earthquake (M ≥ 8) in Java and eastern Indonesia for the past 160 years.