The History of Categorical Logic 1963–1977
THE HISTORY OF CATEGORICAL LOGIC 1963{1977 Jean-Pierre Marquis and Gonzalo E. Reyes Categorical logic, as its name indicates, is logic in the setting of category the- ory. But this description does not say much. Most readers would probably find more instructive to learn that categorical logic is algebraic logic, pure and simple. It is logic in an algebraic dressing. Just as algebraic logic encodes propositional logic in its different guises (classical, intuitionistic, etc.) by their Lindenbaum- Tarski algebras (Boolean algebras, Heyting algebras and so on), categorical logic encodes first-order and higher-order logics (classical, intuitionistic, etc.) by cate- gories with additional properties and structure (Boolean categories, Heyting cate- gories and so on). Thus, from the purely technical point of view, categorical logic constitutes a generalization of the algebraic encoding of propositional logic to first- order, higher-order and other logics. Furthermore, we shall present and discuss arguments (given by the main actors) to show that this encoding constitutes the correct generalization of the well-known algebraic encoding of propositional logics by the Lindenbaum-Tarski algebras. The proper algebraic structures are not only categories, but also morphisms between categories, mainly functors and more specially adjoint functors. A key example is provided by the striking fact that quantifiers, which were the stumbling block to the proper algebraic generalization of propositional logic, can be seen to be adjoint functors and thus entirely within the categorical framework. As is usually the case when algebraic techniques are imported and developed within a field, e.g. geometry and topology, vast generalizations and unification become possible.
[Show full text]