The History of Categorical Logic 1963–1977
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Creating New Concepts in Mathematics: Freedom and Limitations. the Case of Category Theory
Creating new concepts in mathematics: freedom and limitations. The case of Category Theory Zbigniew Semadeni Institute of Mathematics, University of Warsaw Abstract In the paper we discuss the problem of limitations of freedom in mathematics and search for criteria which would differentiate the new concepts stemming from the historical ones from the new concepts that have opened unexpected ways of thinking and reasoning. We also investigate the emergence of category theory (CT) and its origins. In particular we explore the origins of the term functor and present the strong evidence that Eilenberg and Carnap could have learned the term from Kotarbinski´ and Tarski. Keywords categories, functors, Eilenberg-Mac Lane Program, mathematical cognitive transgressions, phylogeny, platonism. CC-BY-NC-ND 4.0 • 1. Introduction he celebrated dictum of Georg Cantor that “The essence of math- Tematics lies precisely in its freedom” expressed the idea that in mathematics one can freely introduce new notions (which may, how- Philosophical Problems in Science (Zagadnienia FilozoficzneNo w Nauce) 69 (2020), pp. 33–65 34 Zbigniew Semadeni ever, be abandoned if found unfruitful or inconvenient).1 This way Cantor declared his opposition to claims of Leopold Kronecker who objected to the free introduction of new notions (particularly those related to the infinite). Some years earlier Richard Dedekind stated that—by forming, in his theory, a cut for an irrational number—we create a new number. For him this was an example of a constructed notion which was a free creation of the human mind (Dedekind, 1872, § 4). In 1910 Jan Łukasiewicz distinguished constructive notions from empirical reconstructive ones. -
Sketches: Outline with References by Charles Wells Addendum 15 September 2009
This package is licensed under a Creative Commons Attribution-ShareAlike 2.5 License. Sketches: Outline with References by Charles Wells Addendum 15 September 2009 This package contains the original article, written in December, 1993, and this addendum, which lists a few references to papers and books that have been written since 1993. Additional and Updated References Atish Bagchi and Charles Wells, Graph Based Logic and Sketches. May be downloaded from http://arxiv.org/PS cache/arxiv/pdf/0809/0809.3023v1.pdf Michael Barr and Charles Wells, Toposes, Triples and Theories. Revised and corrected edition now available online at http://www.case.edu/artsci/math/wells/pub/pdf/ttt.pdf Michael Barr and Charles Wells, Category Theory for Computing Science, third edi- tion (1999). Les Publications CRM, Montreal. Zinovy Diskin and Uwe Wolter, A diagrammatic logic for object-oriented visual model- ing. Electronic Notes in Theoretical Computer Science (2006). May be downloaded from http://www.cs.toronto.edu/ zdiskin/Pubs/ACCAT-07.pdf Ren´eGuitart, The theory of sketches. Journ´eesFaiscaux et Logique (1981). Online at http://pagesperso-orange.fr/rene.guitart/textespublications/guitart81theosketches.pdf Peter Johnstone, Sketches of an Elephant, Vol. 2, Chapter D2. Oxford University Press (2003). Yoshiki Kinoshita, John Power, and Makoto Takeyama. Sketches. In Mathematical Foun- dations of Programming Semantics, Thirteenth Annual Conference, Stephen Brookes and Michael W. Mislove, editors. Elsevier (1997). Michael Makkai, Generalized sketches as a framework for completeness theorems. Journal of Pure and Applied Algebra 115 (1997): 49-79, 179-212, 214-274. 1 Sketches: Outline with References∗ Charles Wells 8 December 1993 1 Introduction 1.1 Purpose directory math/wells. -
Axiomatizing Category Theory in Free Logic
Axiomatizing Category Theory in Free Logic Christoph Benzm¨uller1 and Dana S. Scott2 1University of Luxemburg, Luxemburg & Freie Universit¨at Berlin, Germany 2Visiting Scholar at University of Califormia, Berkeley, USA October 15, 2018 Abstract Starting from a generalization of the standard axioms for a monoid we present a step- wise development of various, mutually equivalent foundational axiom systems for category theory. Our axiom sets have been formalized in the Isabelle/HOL interactive proof as- sistant, and this formalization utilizes a semantically correct embedding of free logic in classical higher-order logic. The modeling and formal analysis of our axiom sets has been significantly supported by series of experiments with automated reasoning tools integrated with Isabelle/HOL. We also address the relation of our axiom systems to alternative pro- posals from the literature, including an axiom set proposed by Freyd and Scedrov for which we reveal a technical issue (when encoded in free logic): either all operations, e.g. morphism composition, are total or their axiom system is inconsistent. The repair for this problem is quite straightforward, however. 1 Introduction We present a stepwise development of axiom systems for category theory by generalizing the standard axioms for a monoid to a partial composition operation. Our purpose is not to make or claim any contribution to category theory but rather to show how formalizations involving the kind of logic required (free logic) can be validated within modern proof assistants. A total of eight different axiom systems is studied. The systems I-VI are shown to be equiva- lent. The axiom system VII slightly modifies axiom system VI to obtain (modulo notational arXiv:1609.01493v5 [cs.LO] 12 Oct 2018 transformation) the set of axioms as proposed by Freyd and Scedrov in their textbook “Cat- egories, Allegories” [10], published in 1990; see also Subsection 9.2 where we present their original system. -
An Introduction to Category Theory and Categorical Logic
An Introduction to Category Theory and Categorical Logic Wolfgang Jeltsch Category theory An Introduction to Category Theory basics Products, coproducts, and and Categorical Logic exponentials Categorical logic Functors and Wolfgang Jeltsch natural transformations Monoidal TTU¨ K¨uberneetika Instituut categories and monoidal functors Monads and Teooriaseminar comonads April 19 and 26, 2012 References An Introduction to Category Theory and Categorical Logic Category theory basics Wolfgang Jeltsch Category theory Products, coproducts, and exponentials basics Products, coproducts, and Categorical logic exponentials Categorical logic Functors and Functors and natural transformations natural transformations Monoidal categories and Monoidal categories and monoidal functors monoidal functors Monads and comonads Monads and comonads References References An Introduction to Category Theory and Categorical Logic Category theory basics Wolfgang Jeltsch Category theory Products, coproducts, and exponentials basics Products, coproducts, and Categorical logic exponentials Categorical logic Functors and Functors and natural transformations natural transformations Monoidal categories and Monoidal categories and monoidal functors monoidal functors Monads and Monads and comonads comonads References References An Introduction to From set theory to universal algebra Category Theory and Categorical Logic Wolfgang Jeltsch I classical set theory (for example, Zermelo{Fraenkel): I sets Category theory basics I functions from sets to sets Products, I composition -
Categorical Semantics of Constructive Set Theory
Categorical semantics of constructive set theory Beim Fachbereich Mathematik der Technischen Universit¨atDarmstadt eingereichte Habilitationsschrift von Benno van den Berg, PhD aus Emmen, die Niederlande 2 Contents 1 Introduction to the thesis 7 1.1 Logic and metamathematics . 7 1.2 Historical intermezzo . 8 1.3 Constructivity . 9 1.4 Constructive set theory . 11 1.5 Algebraic set theory . 15 1.6 Contents . 17 1.7 Warning concerning terminology . 18 1.8 Acknowledgements . 19 2 A unified approach to algebraic set theory 21 2.1 Introduction . 21 2.2 Constructive set theories . 24 2.3 Categories with small maps . 25 2.3.1 Axioms . 25 2.3.2 Consequences . 29 2.3.3 Strengthenings . 31 2.3.4 Relation to other settings . 32 2.4 Models of set theory . 33 2.5 Examples . 35 2.6 Predicative sheaf theory . 36 2.7 Predicative realizability . 37 3 Exact completion 41 3.1 Introduction . 41 3 4 CONTENTS 3.2 Categories with small maps . 45 3.2.1 Classes of small maps . 46 3.2.2 Classes of display maps . 51 3.3 Axioms for classes of small maps . 55 3.3.1 Representability . 55 3.3.2 Separation . 55 3.3.3 Power types . 55 3.3.4 Function types . 57 3.3.5 Inductive types . 58 3.3.6 Infinity . 60 3.3.7 Fullness . 61 3.4 Exactness and its applications . 63 3.5 Exact completion . 66 3.6 Stability properties of axioms for small maps . 73 3.6.1 Representability . 74 3.6.2 Separation . 74 3.6.3 Power types . -
Alfred Tarski and a Watershed Meeting in Logic: Cornell, 1957 Solomon Feferman1
Alfred Tarski and a watershed meeting in logic: Cornell, 1957 Solomon Feferman1 For Jan Wolenski, on the occasion of his 60th birthday2 In the summer of 1957 at Cornell University the first of a cavalcade of large-scale meetings partially or completely devoted to logic took place--the five-week long Summer Institute for Symbolic Logic. That meeting turned out to be a watershed event in the development of logic: it was unique in bringing together for such an extended period researchers at every level in all parts of the subject, and the synergetic connections established there would thenceforth change the face of mathematical logic both qualitatively and quantitatively. Prior to the Cornell meeting there had been nothing remotely like it for logicians. Previously, with the growing importance in the twentieth century of their subject both in mathematics and philosophy, it had been natural for many of the broadly representative meetings of mathematicians and of philosophers to include lectures by logicians or even have special sections devoted to logic. Only with the establishment of the Association for Symbolic Logic in 1936 did logicians begin to meet regularly by themselves, but until the 1950s these occasions were usually relatively short in duration, never more than a day or two. Alfred Tarski was one of the principal organizers of the Cornell institute and of some of the major meetings to follow on its heels. Before the outbreak of World War II, outside of Poland Tarski had primarily been involved in several Unity of Science Congresses, including the first, in Paris in 1935, and the fifth, at Harvard in September, 1939. -
The Petit Topos of Globular Sets
Journal of Pure and Applied Algebra 154 (2000) 299–315 www.elsevier.com/locate/jpaa View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector The petit topos of globular sets Ross Street ∗ Macquarie University, N. S. W. 2109, Australia Communicated by M. Tierney Dedicated to Bill Lawvere Abstract There are now several deÿnitions of weak !-category [1,2,5,19]. What is pleasing is that they are not achieved by ad hoc combinatorics. In particular, the theory of higher operads which underlies Michael Batanin’s deÿnition is based on globular sets. The purpose of this paper is to show that many of the concepts of [2] (also see [17]) arise in the natural development of category theory internal to the petit 1 topos Glob of globular sets. For example, higher spans turn out to be internal sets, and, in a sense, trees turn out to be internal natural numbers. c 2000 Elsevier Science B.V. All rights reserved. MSC: 18D05 1. Globular objects and !-categories A globular set is an inÿnite-dimensional graph. To formalize this, let G denote the category whose objects are natural numbers and whose only non-identity arrows are m;m : m → n for all m¡n ∗ Tel.: +61-2-9850-8921; fax: 61-2-9850-8114. E-mail address: [email protected] (R. Street). 1 The distinction between toposes that are “space like” (or petit) and those which are “category-of-space like” (or gros) was investigated by Lawvere [9,10]. The gros topos of re exive globular sets has been studied extensively by Michael Roy [12]. -
The Bulletin of Symbolic Logic the Bulletin of Symbolic Logic
THE BULLETIN OF SYMBOLIC LOGIC THE BULLETIN OF SYMBOLIC LOGIC Edited by Frank Wagner, Managing Editor Vol. 21 Vol. Patricia Blanchette Menachem Kojman Andrea Cantini Leonid Libkin Thierry Coquand André Nies . Number 1 Deirdre Haskell Reviews Editors Ernest Schimmerling, Managing Editor for Reviews . March 2015 March Mark Colyvan Colin McLarty Anuj Dawar Rahim Moosa Michael Fourman Henry Towsner Steffen Lempp Kai Wehmeier . Pages 1-110 Bernard Linsky VOLUME 21 • NUMBER 1 • MARCH 2015 • ISSN 1079-8986 Copyright © 2015 by the Association for Symbolic Logic. All rights reserved. Reproduction by photostat, photo-print, microfi lm, or like process by permission only. Cambridge Journals Online For further information about this journal please go to the journal web site at: journals.cambridge.org/bsl PUBLISHED BY CAMBRIDGE UNIVERSITY PRESS FOR AND ON BEHALF OF THE ASSOCIATION OF SYMBOLIC LOGIC. The BULLETIN, the JOURNAL and the REVIEW OF SYMBOLIC LOGIC are the official organs of the Association for Symbolic Logic, an international organization for furthering research in logic and the exchange of ideas among mathematicians, computer scientists, linguists, and others interested in this fi eld. The BULLETIN encourages submissions of Articles and Communications in all areas of logic, including mathematical or philosophical logic, logic in computer science or linguistics, the history or philosophy of logic, and applications of logic to other fields. The BULLETIN also publishes reviews of publications in logic. Editors THE BULLETIN OF SYMBOLIC LOGIC (ISSN print: 1079–8986, ISSN online: 1943–5894) is pub- Frank Wagner (Managing Editor), Insitut Camille Jordan, UMR 5208, Bâtiment Braconnier, Université lished quarterly, in the months of March, June, September. -
Logic and Categories As Tools for Building Theories
Logic and Categories As Tools For Building Theories Samson Abramsky Oxford University Computing Laboratory 1 Introduction My aim in this short article is to provide an impression of some of the ideas emerging at the interface of logic and computer science, in a form which I hope will be accessible to philosophers. Why is this even a good idea? Because there has been a huge interaction of logic and computer science over the past half-century which has not only played an important r^olein shaping Computer Science, but has also greatly broadened the scope and enriched the content of logic itself.1 This huge effect of Computer Science on Logic over the past five decades has several aspects: new ways of using logic, new attitudes to logic, new questions and methods. These lead to new perspectives on the question: What logic is | and should be! Our main concern is with method and attitude rather than matter; nevertheless, we shall base the general points we wish to make on a case study: Category theory. Many other examples could have been used to illustrate our theme, but this will serve to illustrate some of the points we wish to make. 2 Category Theory Category theory is a vast subject. It has enormous potential for any serious version of `formal philosophy' | and yet this has hardly been realized. We shall begin with introduction to some basic elements of category theory, focussing on the fascinating conceptual issues which arise even at the most elementary level of the subject, and then discuss some its consequences and philosophical ramifications. -
Bernays–G Odel Type Theory
Journal of Pure and Applied Algebra 178 (2003) 1–23 www.elsevier.com/locate/jpaa Bernays–G&odel type theory Carsten Butz∗ Department of Mathematics and Statistics, Burnside Hall, McGill University, 805 Sherbrooke Street West, Montreal, Que., Canada H3A 2K6 Received 21 November 1999; received in revised form 3 April 2001 Communicated by P. Johnstone Dedicated to Saunders Mac Lane, on the occasion of his 90th birthday Abstract We study the type-theoretical analogue of Bernays–G&odel set-theory and its models in cate- gories. We introduce the notion of small structure on a category, and if small structure satisÿes certain axioms we can think of the underlying category as a category of classes. Our axioms imply the existence of a co-variant powerset monad on the underlying category of classes, which sends a class to the class of its small subclasses. Simple ÿxed points of this and related monads are shown to be models of intuitionistic Zermelo–Fraenkel set-theory (IZF). c 2002 Published by Elsevier Science B.V. MSC: Primary: 03E70; secondary: 03C90; 03F55 0. Introduction The foundations of mathematics accepted by most working mathematicians is Zermelo–Fraenkel set-theory (ZF). The basic notion is that of a set, the abstract model of a collection. There are other closely related systems, like for example that of Bernays and G&odel (BG) based on the distinction between sets and classes: every set is a class, but the only elements of classes are sets. The theory (BG) axiomatizes which classes behave well, that is, are sets. In fact, the philosophy of Bernays–G&odel set-theory is that small classes behave well. -
Ralph Martin Kaufmann Publications 1. Kaufmann, Ralph
Ralph Martin Kaufmann Department of Mathematics, Purdue University 150 N. University Street, West Lafayette, IN 47907{2067 Tel.: (765) 494-1205 Fax: (765) 494-0548 Publications 1. Kaufmann, Ralph M., Khlebnikov, Sergei, and Wehefritz-Kaufmann, Birgit \Local models and global constraints for degeneracies and band crossings" J. of Geometry and Physics 158 (2020) 103892. 2. Galvez-Carillo, Imma, Kaufmann, Ralph M., and Tonks, Andrew. \Three Hopf algebras from number theory, physics & topology, and their common background I: operadic & simplicial aspects" Comm. in Numb. Th. and Physics (CNTP), vol 14,1 (2020), 1-90. 3. Galvez-Carillo, Imma, Kaufmann, Ralph M., and Tonks, Andrew. \Three Hopf algebras from number theory, physics & topology, and their common background II: general categorical formulation" Comm. in Numb. Th. and Physics (CNTP), vol 14,1 (2020), 91-169. 4. Kaufmann, Ralph M. \Lectures on Feynman categories", 2016 MATRIX annals, 375{438, MATRIX Book Ser., 1, Springer, Cham, 2018. 5. Kaufmann, Ralph M. and Kaufmann-Wehfritz, B. Theoretical Properties of Materials Formed as Wire Network Graphs from Triply Periodic CMC Surfaces, Especially the Gyroid in: \The Role of Topology in Materials", Eds: Gupta, S. and Saxena, A., Springer series in Solid State Sciences. Springer, 2018 6. Kaufmann, Ralph and Lucas, Jason. \Decorated Feynman categories". J. of Noncommutative Geometry, 1 (2017), no 4 1437-1464 7. Berger, C. and Kaufmann R. M. \Comprehensive Factorization Systems". Special Issue in honor of Professors Peter J. Freyd and F.William Lawvere on the occasion of their 80th birthdays, Tbilisi Mathematical Journal 10 (2017), no. 3,. 255-277 8. Kaufmann, Ralph M. -
An Interview with F. William Lawvere
An Interview with F. William Lawvere You have written a paper, published for the first time in 1986, entitled \Taking categories seriously"1. Why should we take categories seriously ? In all those areas where category theory is actively used the categorical concept of adjoint functor has come to play a key role. Such a universal instrument for guiding the learning, development, and use of advanced mathematics does not fail to have its indications also in areas of school and college mathematics, in the most basic relationships of space and quantity and the calculations based on those relationships. By saying \take categories seriously", I meant that one should seek, cultivate, and teach helpful examples of an elementary nature. The relation between teaching and research is partly embodied in simple general concepts that can guide the elaboration of examples in both. No- tions and constructions, such as the spectral analysis of dynamical systems, have important aspects that can be understood and pursued without the complications of limiting the models to specific classical categories. The application of some simple general concepts from category theory can lead from a clarification of basic con- structions on dynamical systems to a F. William Lawvere (Braga, March 2007) construction of the real number system with its structure as a closed cate- gory; applied to that particular closed category, the general enriched category theory leads inexorably to embedding the- orems and to notions of Cauchy completeness, rotation, convex hull, radius, and 1Revista Colombiana de Matematicas 20 (1986) 147-178. Reprinted in Repr. Theory Appl. Categ. 8 (2005) 1-24 (electronic).