The History of Categorical Logic 1963–1977

Total Page:16

File Type:pdf, Size:1020Kb

The History of Categorical Logic 1963–1977 THE HISTORY OF CATEGORICAL LOGIC 1963{1977 Jean-Pierre Marquis and Gonzalo E. Reyes Categorical logic, as its name indicates, is logic in the setting of category the- ory. But this description does not say much. Most readers would probably find more instructive to learn that categorical logic is algebraic logic, pure and simple. It is logic in an algebraic dressing. Just as algebraic logic encodes propositional logic in its different guises (classical, intuitionistic, etc.) by their Lindenbaum- Tarski algebras (Boolean algebras, Heyting algebras and so on), categorical logic encodes first-order and higher-order logics (classical, intuitionistic, etc.) by cate- gories with additional properties and structure (Boolean categories, Heyting cate- gories and so on). Thus, from the purely technical point of view, categorical logic constitutes a generalization of the algebraic encoding of propositional logic to first- order, higher-order and other logics. Furthermore, we shall present and discuss arguments (given by the main actors) to show that this encoding constitutes the correct generalization of the well-known algebraic encoding of propositional logics by the Lindenbaum-Tarski algebras. The proper algebraic structures are not only categories, but also morphisms between categories, mainly functors and more specially adjoint functors. A key example is provided by the striking fact that quantifiers, which were the stumbling block to the proper algebraic generalization of propositional logic, can be seen to be adjoint functors and thus entirely within the categorical framework. As is usually the case when algebraic techniques are imported and developed within a field, e.g. geometry and topology, vast generalizations and unification become possible. Furthermore, unexpected concepts and results show up along the way, often allowing a better understanding of known concepts and results. Categorical logic is not merely a convenient tool or a powerful framework. Again, as is usually the case when algebraic techniques are imported and used in a field, the very nature of the field has to be thought over. Furthermore, var- ious results shed a new light on what was assumed to be obvious or, what turns out to be often the same on careful analysis, totally obscure. Thus, categorical logic is philosophically relevant in more than one way. The way it encodes logical concepts and operations reveals important, even essential, aspects and properties of these concepts and operations. Again, as soon as quantifiers are seen as ad- joint functors, the traditional question of the nature of variables in logic receives a satisfactory analysis. Furthermore, many results obtained via categorical techniques have clear and essential philosophical implications. The systematic development of higher-order 2 Jean-Pierre Marquis and Gonzalo E. Reyes logic, type theory under a different name, and various completeness theorems are the most obvious candidates. But there is much more. Many important questions concerning the foundations of mathematics and the very nature of mathematical knowledge are inescapable. In particular, issues related to abstraction and the nature of mathematical objects emerges naturally from categorical logic. This paper covers the period that can be qualified as the birth and the consti- tution of categorical logic, that is the time span between 1963 and 1977. No one will deny that categorical logic started with Bill Lawvere's Ph.D. thesis written in 1963 under S. Eilenberg's supervision and widely circulated afterwards. (It is now available on-line on the TAC web-site.) In his thesis, Lawvere offered a categorical version of algebraic theories. He also suggested that the category of categories could be taken as a foundation for mathematics and that sets could be analyzed in a categorical manner. In the years that followed, Lawvere tried to extend his analysis and sketched a categorical version of first-order theories under the name of elementary theories. Then, in 1969, in collaboration with Myles Tierney, Law- vere introduced the notion of an elementary topos, making an explicit connection with higher-order logic and type theories. Both Lawvere and Tierney were aim- ing at an elementary, that is first-order, axiomatic presentation of what are now called Grothendieck toposes, a special type of categories introduced by Alexandre Grothendieck in the context of algebraic geometry and sheaf theory. Soon after, connections with intuitionistic analysis, recursive functions, completeness theo- rems for various logical systems, differential geometry, constructive mathematics were made. We have decided to end our coverage in 1977 for the following rea- sons. First, we had to stop somewhere, otherwise we would have to write a book. Second, and this is a more serious reason, three independent events in 1977 mark more or less a turning point in the history of categorical logic. First, the book First-Order Categorical Logic, by Makkai and Reyes appears, a book that more or less codifies the work done by the Montreal school in the period 1970-1974 and now constitutes the core of categorical first-order logic. Second, the same year witnesses the publication of Johnstone's Topos Theory, the first systematic and comprehensive presentation of topos theory as it was known in 1974-75. (The reader should compare this edition with Johnstone's recent Sketches of an Ele- phant, a comprehensive reference on topos theory in three volumes.) Third, 1977 was also the year of the Durham meeting on applications of sheaf theory to logic, algebra and analysis, whose proceedings were published in 1979. We submit that around the end of the nineteen seventies, categorical logic was on firm ground and could be developed in various directions, which is precisely what happened, from theoretical computer science, modal logic and other areas. The usual warnings, caveat and apologies are now necessary. It is impossible to cover, even in a long article such as this one and for such a short time period, all events involved in the history of categorical logic. This paper is but a first attempt at a more precise and detailed history of a complicated and fascinating period in the history of ideas. We hope that it will stimulate more work on the topic. We hasten to add that it also reflects our interests and (hopefully not too limited) The History of Categorical Logic: 1963{1977 3 knowledge of the field. It is our hope that it will nonetheless be useful to logicians and philosophers alike. We sincerely apologize to mathematicians, logicians and philosophers whose names ought to have appeared in this history but have not because of our ignorance. 1 THE BIRTH OF CATEGORY THEORY AND ITS EARLY DEVELOPMENTS Category theory as a discipline in itself and was born in the context of algebraic topology in the nineteen forties. We will briefly sketch the history of category theory before the advent of categorical logic and rehearse the fundamental notions of the theory required for the exposition of the following sections. 1.1 Category theory: its origins We will here only rehearse the ingredients required for the history of categorical logic. The reader is referred to [Landry and Marquis, 2005], [Marquis, 2006] and [Kr¨omer, 2007] for more details. Category theory made its official public appearance in 1945 in the paper enti- tled \General Theory of Natural Equivalences" written by Samuel Eilenberg and Saunders Mac Lane. This “off beat" and \far out" paper, as Mac Lane came to qualify it later [Mac Lane, 2002, 130], was meant to provide an autonomous framework for the concept of natural transformation, a concept whose generality, pervasiveness and usefulness had become clear to both of them during their col- laboration on the clarification of an unsuspected link between group extensions and homology groups. Such a general, pervasive and conceptually useful notion seemed to deserve a precise, rigorous, systematic and abstract treatment. Eilenberg and Mac Lane decided to devise an axiomatic framework in which the notion of natural transformation would receive an entirely general and autonomous definition. This is where categories came in. Informally, a natural transformation is a family of maps that provides a systematic \translation" or a \deformation" between two systems of interrelated entities within a given framework. But in order to give a precise definition of natural transformations, one needs to clarify the systematic nature of these deformations, that is, one has to specify what these deformations depend upon and how they depend upon it. Eilenberg and Mac Lane introduced what they called functors | the term was borrowed from Carnap | so that one could say between what the natural transformations were acting: a natural transformation is a family of maps between functors. Clearly, one has to define the notion of a functor: the concept of category was tailored for that purpose. The systematic nature of natural transformations was also made clear by categories themselves. Thus categories were introduced in 1945 and, as Mac Lane reported (see [Mac Lane, 2002]), Eilenberg believed that their paper would be the only paper written on \pure" category theory. 4 Jean-Pierre Marquis and Gonzalo E. Reyes As we have already mentioned, Eilenberg and Mac Lane gave a purely axiomatic definition of category in their original paper. It is worth mentioning that they explicitly avoided using a set-theoretical terminology and notation in the axioms themselves. Here is how their definition unfolds (only with a slightly different notation): A category C is an aggregate of abstract elements X, called the objects of the category, and abstract elements f, called mappings of the category. Certain pairs of mappings f; g of C determine uniquely a product mapping g ◦ f, satisfying the axioms C1, C2, C3 below. Corresponding to each object X of C, there is a unique mapping, denoted by 1X satisfying the axioms C4 and C5. The axioms are: C1 The triple product h ◦ (g ◦ f) is defined if and only if (h ◦ g) ◦ f is defined.
Recommended publications
  • Creating New Concepts in Mathematics: Freedom and Limitations. the Case of Category Theory
    Creating new concepts in mathematics: freedom and limitations. The case of Category Theory Zbigniew Semadeni Institute of Mathematics, University of Warsaw Abstract In the paper we discuss the problem of limitations of freedom in mathematics and search for criteria which would differentiate the new concepts stemming from the historical ones from the new concepts that have opened unexpected ways of thinking and reasoning. We also investigate the emergence of category theory (CT) and its origins. In particular we explore the origins of the term functor and present the strong evidence that Eilenberg and Carnap could have learned the term from Kotarbinski´ and Tarski. Keywords categories, functors, Eilenberg-Mac Lane Program, mathematical cognitive transgressions, phylogeny, platonism. CC-BY-NC-ND 4.0 • 1. Introduction he celebrated dictum of Georg Cantor that “The essence of math- Tematics lies precisely in its freedom” expressed the idea that in mathematics one can freely introduce new notions (which may, how- Philosophical Problems in Science (Zagadnienia FilozoficzneNo w Nauce) 69 (2020), pp. 33–65 34 Zbigniew Semadeni ever, be abandoned if found unfruitful or inconvenient).1 This way Cantor declared his opposition to claims of Leopold Kronecker who objected to the free introduction of new notions (particularly those related to the infinite). Some years earlier Richard Dedekind stated that—by forming, in his theory, a cut for an irrational number—we create a new number. For him this was an example of a constructed notion which was a free creation of the human mind (Dedekind, 1872, § 4). In 1910 Jan Łukasiewicz distinguished constructive notions from empirical reconstructive ones.
    [Show full text]
  • Sketches: Outline with References by Charles Wells Addendum 15 September 2009
    This package is licensed under a Creative Commons Attribution-ShareAlike 2.5 License. Sketches: Outline with References by Charles Wells Addendum 15 September 2009 This package contains the original article, written in December, 1993, and this addendum, which lists a few references to papers and books that have been written since 1993. Additional and Updated References Atish Bagchi and Charles Wells, Graph Based Logic and Sketches. May be downloaded from http://arxiv.org/PS cache/arxiv/pdf/0809/0809.3023v1.pdf Michael Barr and Charles Wells, Toposes, Triples and Theories. Revised and corrected edition now available online at http://www.case.edu/artsci/math/wells/pub/pdf/ttt.pdf Michael Barr and Charles Wells, Category Theory for Computing Science, third edi- tion (1999). Les Publications CRM, Montreal. Zinovy Diskin and Uwe Wolter, A diagrammatic logic for object-oriented visual model- ing. Electronic Notes in Theoretical Computer Science (2006). May be downloaded from http://www.cs.toronto.edu/ zdiskin/Pubs/ACCAT-07.pdf Ren´eGuitart, The theory of sketches. Journ´eesFaiscaux et Logique (1981). Online at http://pagesperso-orange.fr/rene.guitart/textespublications/guitart81theosketches.pdf Peter Johnstone, Sketches of an Elephant, Vol. 2, Chapter D2. Oxford University Press (2003). Yoshiki Kinoshita, John Power, and Makoto Takeyama. Sketches. In Mathematical Foun- dations of Programming Semantics, Thirteenth Annual Conference, Stephen Brookes and Michael W. Mislove, editors. Elsevier (1997). Michael Makkai, Generalized sketches as a framework for completeness theorems. Journal of Pure and Applied Algebra 115 (1997): 49-79, 179-212, 214-274. 1 Sketches: Outline with References∗ Charles Wells 8 December 1993 1 Introduction 1.1 Purpose directory math/wells.
    [Show full text]
  • Axiomatizing Category Theory in Free Logic
    Axiomatizing Category Theory in Free Logic Christoph Benzm¨uller1 and Dana S. Scott2 1University of Luxemburg, Luxemburg & Freie Universit¨at Berlin, Germany 2Visiting Scholar at University of Califormia, Berkeley, USA October 15, 2018 Abstract Starting from a generalization of the standard axioms for a monoid we present a step- wise development of various, mutually equivalent foundational axiom systems for category theory. Our axiom sets have been formalized in the Isabelle/HOL interactive proof as- sistant, and this formalization utilizes a semantically correct embedding of free logic in classical higher-order logic. The modeling and formal analysis of our axiom sets has been significantly supported by series of experiments with automated reasoning tools integrated with Isabelle/HOL. We also address the relation of our axiom systems to alternative pro- posals from the literature, including an axiom set proposed by Freyd and Scedrov for which we reveal a technical issue (when encoded in free logic): either all operations, e.g. morphism composition, are total or their axiom system is inconsistent. The repair for this problem is quite straightforward, however. 1 Introduction We present a stepwise development of axiom systems for category theory by generalizing the standard axioms for a monoid to a partial composition operation. Our purpose is not to make or claim any contribution to category theory but rather to show how formalizations involving the kind of logic required (free logic) can be validated within modern proof assistants. A total of eight different axiom systems is studied. The systems I-VI are shown to be equiva- lent. The axiom system VII slightly modifies axiom system VI to obtain (modulo notational arXiv:1609.01493v5 [cs.LO] 12 Oct 2018 transformation) the set of axioms as proposed by Freyd and Scedrov in their textbook “Cat- egories, Allegories” [10], published in 1990; see also Subsection 9.2 where we present their original system.
    [Show full text]
  • An Introduction to Category Theory and Categorical Logic
    An Introduction to Category Theory and Categorical Logic Wolfgang Jeltsch Category theory An Introduction to Category Theory basics Products, coproducts, and and Categorical Logic exponentials Categorical logic Functors and Wolfgang Jeltsch natural transformations Monoidal TTU¨ K¨uberneetika Instituut categories and monoidal functors Monads and Teooriaseminar comonads April 19 and 26, 2012 References An Introduction to Category Theory and Categorical Logic Category theory basics Wolfgang Jeltsch Category theory Products, coproducts, and exponentials basics Products, coproducts, and Categorical logic exponentials Categorical logic Functors and Functors and natural transformations natural transformations Monoidal categories and Monoidal categories and monoidal functors monoidal functors Monads and comonads Monads and comonads References References An Introduction to Category Theory and Categorical Logic Category theory basics Wolfgang Jeltsch Category theory Products, coproducts, and exponentials basics Products, coproducts, and Categorical logic exponentials Categorical logic Functors and Functors and natural transformations natural transformations Monoidal categories and Monoidal categories and monoidal functors monoidal functors Monads and Monads and comonads comonads References References An Introduction to From set theory to universal algebra Category Theory and Categorical Logic Wolfgang Jeltsch I classical set theory (for example, Zermelo{Fraenkel): I sets Category theory basics I functions from sets to sets Products, I composition
    [Show full text]
  • Categorical Semantics of Constructive Set Theory
    Categorical semantics of constructive set theory Beim Fachbereich Mathematik der Technischen Universit¨atDarmstadt eingereichte Habilitationsschrift von Benno van den Berg, PhD aus Emmen, die Niederlande 2 Contents 1 Introduction to the thesis 7 1.1 Logic and metamathematics . 7 1.2 Historical intermezzo . 8 1.3 Constructivity . 9 1.4 Constructive set theory . 11 1.5 Algebraic set theory . 15 1.6 Contents . 17 1.7 Warning concerning terminology . 18 1.8 Acknowledgements . 19 2 A unified approach to algebraic set theory 21 2.1 Introduction . 21 2.2 Constructive set theories . 24 2.3 Categories with small maps . 25 2.3.1 Axioms . 25 2.3.2 Consequences . 29 2.3.3 Strengthenings . 31 2.3.4 Relation to other settings . 32 2.4 Models of set theory . 33 2.5 Examples . 35 2.6 Predicative sheaf theory . 36 2.7 Predicative realizability . 37 3 Exact completion 41 3.1 Introduction . 41 3 4 CONTENTS 3.2 Categories with small maps . 45 3.2.1 Classes of small maps . 46 3.2.2 Classes of display maps . 51 3.3 Axioms for classes of small maps . 55 3.3.1 Representability . 55 3.3.2 Separation . 55 3.3.3 Power types . 55 3.3.4 Function types . 57 3.3.5 Inductive types . 58 3.3.6 Infinity . 60 3.3.7 Fullness . 61 3.4 Exactness and its applications . 63 3.5 Exact completion . 66 3.6 Stability properties of axioms for small maps . 73 3.6.1 Representability . 74 3.6.2 Separation . 74 3.6.3 Power types .
    [Show full text]
  • Alfred Tarski and a Watershed Meeting in Logic: Cornell, 1957 Solomon Feferman1
    Alfred Tarski and a watershed meeting in logic: Cornell, 1957 Solomon Feferman1 For Jan Wolenski, on the occasion of his 60th birthday2 In the summer of 1957 at Cornell University the first of a cavalcade of large-scale meetings partially or completely devoted to logic took place--the five-week long Summer Institute for Symbolic Logic. That meeting turned out to be a watershed event in the development of logic: it was unique in bringing together for such an extended period researchers at every level in all parts of the subject, and the synergetic connections established there would thenceforth change the face of mathematical logic both qualitatively and quantitatively. Prior to the Cornell meeting there had been nothing remotely like it for logicians. Previously, with the growing importance in the twentieth century of their subject both in mathematics and philosophy, it had been natural for many of the broadly representative meetings of mathematicians and of philosophers to include lectures by logicians or even have special sections devoted to logic. Only with the establishment of the Association for Symbolic Logic in 1936 did logicians begin to meet regularly by themselves, but until the 1950s these occasions were usually relatively short in duration, never more than a day or two. Alfred Tarski was one of the principal organizers of the Cornell institute and of some of the major meetings to follow on its heels. Before the outbreak of World War II, outside of Poland Tarski had primarily been involved in several Unity of Science Congresses, including the first, in Paris in 1935, and the fifth, at Harvard in September, 1939.
    [Show full text]
  • The Petit Topos of Globular Sets
    Journal of Pure and Applied Algebra 154 (2000) 299–315 www.elsevier.com/locate/jpaa View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector The petit topos of globular sets Ross Street ∗ Macquarie University, N. S. W. 2109, Australia Communicated by M. Tierney Dedicated to Bill Lawvere Abstract There are now several deÿnitions of weak !-category [1,2,5,19]. What is pleasing is that they are not achieved by ad hoc combinatorics. In particular, the theory of higher operads which underlies Michael Batanin’s deÿnition is based on globular sets. The purpose of this paper is to show that many of the concepts of [2] (also see [17]) arise in the natural development of category theory internal to the petit 1 topos Glob of globular sets. For example, higher spans turn out to be internal sets, and, in a sense, trees turn out to be internal natural numbers. c 2000 Elsevier Science B.V. All rights reserved. MSC: 18D05 1. Globular objects and !-categories A globular set is an inÿnite-dimensional graph. To formalize this, let G denote the category whose objects are natural numbers and whose only non-identity arrows are m;m : m → n for all m¡n ∗ Tel.: +61-2-9850-8921; fax: 61-2-9850-8114. E-mail address: [email protected] (R. Street). 1 The distinction between toposes that are “space like” (or petit) and those which are “category-of-space like” (or gros) was investigated by Lawvere [9,10]. The gros topos of re exive globular sets has been studied extensively by Michael Roy [12].
    [Show full text]
  • The Bulletin of Symbolic Logic the Bulletin of Symbolic Logic
    THE BULLETIN OF SYMBOLIC LOGIC THE BULLETIN OF SYMBOLIC LOGIC Edited by Frank Wagner, Managing Editor Vol. 21 Vol. Patricia Blanchette Menachem Kojman Andrea Cantini Leonid Libkin Thierry Coquand André Nies . Number 1 Deirdre Haskell Reviews Editors Ernest Schimmerling, Managing Editor for Reviews . March 2015 March Mark Colyvan Colin McLarty Anuj Dawar Rahim Moosa Michael Fourman Henry Towsner Steffen Lempp Kai Wehmeier . Pages 1-110 Bernard Linsky VOLUME 21 • NUMBER 1 • MARCH 2015 • ISSN 1079-8986 Copyright © 2015 by the Association for Symbolic Logic. All rights reserved. Reproduction by photostat, photo-print, microfi lm, or like process by permission only. Cambridge Journals Online For further information about this journal please go to the journal web site at: journals.cambridge.org/bsl PUBLISHED BY CAMBRIDGE UNIVERSITY PRESS FOR AND ON BEHALF OF THE ASSOCIATION OF SYMBOLIC LOGIC. The BULLETIN, the JOURNAL and the REVIEW OF SYMBOLIC LOGIC are the official organs of the Association for Symbolic Logic, an international organization for furthering research in logic and the exchange of ideas among mathematicians, computer scientists, linguists, and others interested in this fi eld. The BULLETIN encourages submissions of Articles and Communications in all areas of logic, including mathematical or philosophical logic, logic in computer science or linguistics, the history or philosophy of logic, and applications of logic to other fields. The BULLETIN also publishes reviews of publications in logic. Editors THE BULLETIN OF SYMBOLIC LOGIC (ISSN print: 1079–8986, ISSN online: 1943–5894) is pub- Frank Wagner (Managing Editor), Insitut Camille Jordan, UMR 5208, Bâtiment Braconnier, Université lished quarterly, in the months of March, June, September.
    [Show full text]
  • Logic and Categories As Tools for Building Theories
    Logic and Categories As Tools For Building Theories Samson Abramsky Oxford University Computing Laboratory 1 Introduction My aim in this short article is to provide an impression of some of the ideas emerging at the interface of logic and computer science, in a form which I hope will be accessible to philosophers. Why is this even a good idea? Because there has been a huge interaction of logic and computer science over the past half-century which has not only played an important r^olein shaping Computer Science, but has also greatly broadened the scope and enriched the content of logic itself.1 This huge effect of Computer Science on Logic over the past five decades has several aspects: new ways of using logic, new attitudes to logic, new questions and methods. These lead to new perspectives on the question: What logic is | and should be! Our main concern is with method and attitude rather than matter; nevertheless, we shall base the general points we wish to make on a case study: Category theory. Many other examples could have been used to illustrate our theme, but this will serve to illustrate some of the points we wish to make. 2 Category Theory Category theory is a vast subject. It has enormous potential for any serious version of `formal philosophy' | and yet this has hardly been realized. We shall begin with introduction to some basic elements of category theory, focussing on the fascinating conceptual issues which arise even at the most elementary level of the subject, and then discuss some its consequences and philosophical ramifications.
    [Show full text]
  • Bernays–G Odel Type Theory
    Journal of Pure and Applied Algebra 178 (2003) 1–23 www.elsevier.com/locate/jpaa Bernays–G&odel type theory Carsten Butz∗ Department of Mathematics and Statistics, Burnside Hall, McGill University, 805 Sherbrooke Street West, Montreal, Que., Canada H3A 2K6 Received 21 November 1999; received in revised form 3 April 2001 Communicated by P. Johnstone Dedicated to Saunders Mac Lane, on the occasion of his 90th birthday Abstract We study the type-theoretical analogue of Bernays–G&odel set-theory and its models in cate- gories. We introduce the notion of small structure on a category, and if small structure satisÿes certain axioms we can think of the underlying category as a category of classes. Our axioms imply the existence of a co-variant powerset monad on the underlying category of classes, which sends a class to the class of its small subclasses. Simple ÿxed points of this and related monads are shown to be models of intuitionistic Zermelo–Fraenkel set-theory (IZF). c 2002 Published by Elsevier Science B.V. MSC: Primary: 03E70; secondary: 03C90; 03F55 0. Introduction The foundations of mathematics accepted by most working mathematicians is Zermelo–Fraenkel set-theory (ZF). The basic notion is that of a set, the abstract model of a collection. There are other closely related systems, like for example that of Bernays and G&odel (BG) based on the distinction between sets and classes: every set is a class, but the only elements of classes are sets. The theory (BG) axiomatizes which classes behave well, that is, are sets. In fact, the philosophy of Bernays–G&odel set-theory is that small classes behave well.
    [Show full text]
  • Ralph Martin Kaufmann Publications 1. Kaufmann, Ralph
    Ralph Martin Kaufmann Department of Mathematics, Purdue University 150 N. University Street, West Lafayette, IN 47907{2067 Tel.: (765) 494-1205 Fax: (765) 494-0548 Publications 1. Kaufmann, Ralph M., Khlebnikov, Sergei, and Wehefritz-Kaufmann, Birgit \Local models and global constraints for degeneracies and band crossings" J. of Geometry and Physics 158 (2020) 103892. 2. Galvez-Carillo, Imma, Kaufmann, Ralph M., and Tonks, Andrew. \Three Hopf algebras from number theory, physics & topology, and their common background I: operadic & simplicial aspects" Comm. in Numb. Th. and Physics (CNTP), vol 14,1 (2020), 1-90. 3. Galvez-Carillo, Imma, Kaufmann, Ralph M., and Tonks, Andrew. \Three Hopf algebras from number theory, physics & topology, and their common background II: general categorical formulation" Comm. in Numb. Th. and Physics (CNTP), vol 14,1 (2020), 91-169. 4. Kaufmann, Ralph M. \Lectures on Feynman categories", 2016 MATRIX annals, 375{438, MATRIX Book Ser., 1, Springer, Cham, 2018. 5. Kaufmann, Ralph M. and Kaufmann-Wehfritz, B. Theoretical Properties of Materials Formed as Wire Network Graphs from Triply Periodic CMC Surfaces, Especially the Gyroid in: \The Role of Topology in Materials", Eds: Gupta, S. and Saxena, A., Springer series in Solid State Sciences. Springer, 2018 6. Kaufmann, Ralph and Lucas, Jason. \Decorated Feynman categories". J. of Noncommutative Geometry, 1 (2017), no 4 1437-1464 7. Berger, C. and Kaufmann R. M. \Comprehensive Factorization Systems". Special Issue in honor of Professors Peter J. Freyd and F.William Lawvere on the occasion of their 80th birthdays, Tbilisi Mathematical Journal 10 (2017), no. 3,. 255-277 8. Kaufmann, Ralph M.
    [Show full text]
  • An Interview with F. William Lawvere
    An Interview with F. William Lawvere You have written a paper, published for the first time in 1986, entitled \Taking categories seriously"1. Why should we take categories seriously ? In all those areas where category theory is actively used the categorical concept of adjoint functor has come to play a key role. Such a universal instrument for guiding the learning, development, and use of advanced mathematics does not fail to have its indications also in areas of school and college mathematics, in the most basic relationships of space and quantity and the calculations based on those relationships. By saying \take categories seriously", I meant that one should seek, cultivate, and teach helpful examples of an elementary nature. The relation between teaching and research is partly embodied in simple general concepts that can guide the elaboration of examples in both. No- tions and constructions, such as the spectral analysis of dynamical systems, have important aspects that can be understood and pursued without the complications of limiting the models to specific classical categories. The application of some simple general concepts from category theory can lead from a clarification of basic con- structions on dynamical systems to a F. William Lawvere (Braga, March 2007) construction of the real number system with its structure as a closed cate- gory; applied to that particular closed category, the general enriched category theory leads inexorably to embedding the- orems and to notions of Cauchy completeness, rotation, convex hull, radius, and 1Revista Colombiana de Matematicas 20 (1986) 147-178. Reprinted in Repr. Theory Appl. Categ. 8 (2005) 1-24 (electronic).
    [Show full text]