An Introduction to Category Theory and Categorical Logic

Total Page:16

File Type:pdf, Size:1020Kb

An Introduction to Category Theory and Categorical Logic An Introduction to Category Theory and Categorical Logic Wolfgang Jeltsch Category theory An Introduction to Category Theory basics Products, coproducts, and and Categorical Logic exponentials Categorical logic Functors and Wolfgang Jeltsch natural transformations Monoidal TTU¨ K¨uberneetika Instituut categories and monoidal functors Monads and Teooriaseminar comonads April 19 and 26, 2012 References An Introduction to Category Theory and Categorical Logic Category theory basics Wolfgang Jeltsch Category theory Products, coproducts, and exponentials basics Products, coproducts, and Categorical logic exponentials Categorical logic Functors and Functors and natural transformations natural transformations Monoidal categories and Monoidal categories and monoidal functors monoidal functors Monads and comonads Monads and comonads References References An Introduction to Category Theory and Categorical Logic Category theory basics Wolfgang Jeltsch Category theory Products, coproducts, and exponentials basics Products, coproducts, and Categorical logic exponentials Categorical logic Functors and Functors and natural transformations natural transformations Monoidal categories and Monoidal categories and monoidal functors monoidal functors Monads and Monads and comonads comonads References References An Introduction to From set theory to universal algebra Category Theory and Categorical Logic Wolfgang Jeltsch I classical set theory (for example, Zermelo{Fraenkel): I sets Category theory basics I functions from sets to sets Products, I composition of functions yields function coproducts, and I identity functions exist exponentials Categorical logic I adding structure and preserving it: Functors and I vector spaces natural transformations I linear maps from vector spaces to vector spaces Monoidal I composition of linear maps yields linear map categories and I identity functions are linear maps monoidal functors generalization of this idea in universal algebra: Monads and I comonads I certain algebras with the same signature References I homomorphisms from such algebras to other such algebras I composition of homomorphisms yields homomorphism I identity functions are homomorphisms An Introduction to Beyond universal algebra Category Theory and Categorical Logic Wolfgang Jeltsch I topology based on the Kuratowski axioms: Category theory I topological space is a set X and a closure operator basics Products, cl : P(X ) !P(X ) coproducts, and exponentials that fulfills certain axioms Categorical logic 0 0 I continuous function from (X ; cl) to (X ; cl ) Functors and 0 natural is a function f : X ! X with transformations 0 Monoidal f (cl(A)) ⊆ cl (f (A)) categories and monoidal functors Monads and I does not fit into the universal algebra framework: comonads I closure operator operates on sets References instead of single elements I continuity axiom uses ⊆ instead of = I will fit into the categorical framework An Introduction to No elements anymore Category Theory and Categorical Logic Wolfgang Jeltsch Category theory basics I revision control system darcs: Products, coproducts, and I repository states exponentials I patches that turn repository states into repository states Categorical logic I composition of patches yields patch Functors and natural I empty patches exist transformations repository states do not have elements Monoidal I categories and monoidal functors I will fit into the categorical framework nevertheless Monads and I more about a categorical approach to darcs in [Swierstra] comonads References An Introduction to Categories Category Theory and Categorical I components of a category: Logic I a class of objects Wolfgang Jeltsch I class of morphisms, each having a unique domain Category theory and a unique codomain, which are objects basics I composition of morphisms: Products, coproducts, and f : A ! B g : B ! C exponentials gf : A ! C Categorical logic Functors and I identity morphisms: natural transformations idA : A ! A Monoidal categories and I axioms that have to hold: monoidal functors I composition is associative Monads and I id is left and right unit comonads I classes of objects and morphism are not necessarily sets: References allows categories of sets, vector spaces, etc. I composition is partial: codomain and domain must match I above constructions lead to categories Set, Vec, etc. An Introduction to Duality Category Theory and Categorical Logic Wolfgang Jeltsch axioms still hold after doing the following: I Category theory basics I swapping domain and codomain of each morphism I changing the argument order of composition Products, coproducts, and op I opposite category C for every category C: exponentials op Categorical logic I objects of C are the ones of C op Functors and I morphisms f : A ! B of C are the morphism natural f : B ! A of C transformations op I compositions gf in C are the compositions fg in C Monoidal op categories and I identities in C are the same as in C monoidal functors I consequences: Monads and comonads op I for every categorical notion N, there is a dual notion N References such that something is an Nop in C if it is an N in Cop I for every theorem, there is a dual theorem that refers to the dual notions An Introduction to Products of categories Category Theory and Categorical Logic Wolfgang Jeltsch I product category C × D for any two categories C and D: Category theory I objects basics (A; B) Products, coproducts, and where A is an object of C, and B is an object of D exponentials I morphisms Categorical logic 0 0 (f ; g):(A; B) ! (A ; B ) Functors and natural where f : A ! A0 and g : B ! B0 transformations I compositions and identities defined componentwise: Monoidal categories and monoidal functors 0 0 0 0 (f ; g )(f ; g) = (f f ; g g) Monads and comonads id(A;B) = (idA; idB ) References I neutral element is the category 1: I exactly one object I exactly one morphism (the identity of that object) An Introduction to Categories and elements Category Theory and Categorical Logic Wolfgang Jeltsch Category theory basics Products, coproducts, and exponentials I in general, no notion of element of an object Categorical logic I however, elements can be recovered for specific kinds Functors and natural of categories transformations I furthermore, some concepts that seem to require Monoidal categories and the notion of element actually do not monoidal functors Monads and comonads References An Introduction to Injectivity Category Theory and Categorical Definition (Injectivity) Logic Wolfgang Jeltsch A function f : A ! B is injective if and only if Category theory basics 8x1; x2 2 A : f (x1) = f (x2) ) x1 = x2 : Products, coproducts, and exponentials Theorem Categorical logic Functors and A function f : A ! B is injective if and only if natural transformations Monoidal 8C : 8g1; g2 : C ! A : fg1 = fg2 ) g1 = g2 : categories and monoidal functors Monads and I above definition relies on the notion of element comonads References I theorem gives us another property for defining injectivity: I does not mention elements, but only sets and functions (point-free style) I can therefore be generalized to arbitrary categories I leads to the notion of monomorphism An Introduction to Surjectivity Category Theory and Categorical Logic Definition (Surjectivity) Wolfgang Jeltsch A function f : A ! B is surjective if and only if Category theory basics 8y 2 B : 9x 2 A : f (x) = y : Products, coproducts, and exponentials Categorical logic Theorem Functors and A function f : A ! B is surjective if and only if natural transformations Monoidal 8C : 8g1; g2 : B ! C : g1f = g2f ) g1 = g2 : categories and monoidal functors Monads and comonads I theorem gives us point-free definition References I generalization to arbitrary categories leads to the notion of epimorphism I point-free style makes it clear that monomorphism and epimorphism (injectivity and surjectivity) are duals An Introduction to Isomorphisms Category Theory and Categorical Logic Wolfgang Jeltsch Category theory basics Products, I generalization of bijections coproducts, and exponentials I morphism f : A ! B is an isomorphism Categorical logic −1 if there is an f : B ! A such that Functors and natural transformations f −1f = id ff −1 = id A B Monoidal categories and monoidal functors I objects A and B are isomorphic (A =∼ B) Monads and if there exists an isomorphism f : A ! B comonads References An Introduction to Category Theory and Categorical Logic Category theory basics Wolfgang Jeltsch Category theory Products, coproducts, and exponentials basics Products, coproducts, and Categorical logic exponentials Categorical logic Functors and Functors and natural transformations natural transformations Monoidal categories and Monoidal categories and monoidal functors monoidal functors Monads and Monads and comonads comonads References References An Introduction to Cartesian products Category Theory and Categorical Logic I pair construction: Wolfgang Jeltsch Category theory x 2 A y 2 B basics (x; y) 2 A × B Products, coproducts, and exponentials I pair destruction: Categorical logic Functors and π1 : A × B ! A π2 : A × B ! B natural transformations Monoidal I destruction is point-free, construction is not categories and monoidal functors I construction can be made point-free: Monads and comonads f : C ! A g : C ! B References hf ; gi : C ! A × B where 8z 2 C : hf ; gi(z) = (f (z); g(z)) An Introduction to Products Category Theory and Categorical Logic I generalization of cartesian products Wolfgang Jeltsch I a product of A and B is an object A × B together Category theory
Recommended publications
  • 1. Directed Graphs Or Quivers What Is Category Theory? • Graph Theory on Steroids • Comic Book Mathematics • Abstract Nonsense • the Secret Dictionary
    1. Directed graphs or quivers What is category theory? • Graph theory on steroids • Comic book mathematics • Abstract nonsense • The secret dictionary Sets and classes: For S = fX j X2 = Xg, have S 2 S , S2 = S Directed graph or quiver: C = (C0;C1;@0 : C1 ! C0;@1 : C1 ! C0) Class C0 of objects, vertices, points, . Class C1 of morphisms, (directed) edges, arrows, . For x; y 2 C0, write C(x; y) := ff 2 C1 j @0f = x; @1f = yg f 2C1 tail, domain / @0f / @1f o head, codomain op Opposite or dual graph of C = (C0;C1;@0;@1) is C = (C0;C1;@1;@0) Graph homomorphism F : D ! C has object part F0 : D0 ! C0 and morphism part F1 : D1 ! C1 with @i ◦ F1(f) = F0 ◦ @i(f) for i = 0; 1. Graph isomorphism has bijective object and morphism parts. Poset (X; ≤): set X with reflexive, antisymmetric, transitive order ≤ Hasse diagram of poset (X; ≤): x ! y if y covers x, i.e., x 6= y and [x; y] = fx; yg, so x ≤ z ≤ y ) z = x or z = y. Hasse diagram of (N; ≤) is 0 / 1 / 2 / 3 / ::: Hasse diagram of (f1; 2; 3; 6g; j ) is 3 / 6 O O 1 / 2 1 2 2. Categories Category: Quiver C = (C0;C1;@0 : C1 ! C0;@1 : C1 ! C0) with: • composition: 8 x; y; z 2 C0 ; C(x; y) × C(y; z) ! C(x; z); (f; g) 7! g ◦ f • satisfying associativity: 8 x; y; z; t 2 C0 ; 8 (f; g; h) 2 C(x; y) × C(y; z) × C(z; t) ; h ◦ (g ◦ f) = (h ◦ g) ◦ f y iS qq <SSSS g qq << SSS f qqq h◦g < SSSS qq << SSS qq g◦f < SSS xqq << SS z Vo VV < x VVVV << VVVV < VVVV << h VVVV < h◦(g◦f)=(h◦g)◦f VVVV < VVV+ t • identities: 8 x; y; z 2 C0 ; 9 1y 2 C(y; y) : 8 f 2 C(x; y) ; 1y ◦ f = f and 8 g 2 C(y; z) ; g ◦ 1y = g f y o x MM MM 1y g MM MMM f MMM M& zo g y Example: N0 = fxg ; N1 = N ; 1x = 0 ; 8 m; n 2 N ; n◦m = m+n ; | one object, lots of arrows [monoid of natural numbers under addition] 4 x / x Equation: 3 + 5 = 4 + 4 Commuting diagram: 3 4 x / x 5 ( 1 if m ≤ n; Example: N1 = N ; 8 m; n 2 N ; jN(m; n)j = 0 otherwise | lots of objects, lots of arrows [poset (N; ≤) as a category] These two examples are small categories: have a set of morphisms.
    [Show full text]
  • Product Category Rules
    Product Category Rules PRé’s own Vee Subramanian worked with a team of experts to publish a thought provoking article on product category rules (PCRs) in the International Journal of Life Cycle Assessment in April 2012. The full article can be viewed at http://www.springerlink.com/content/qp4g0x8t71432351/. Here we present the main body of the text that explores the importance of global alignment of programs that manage PCRs. Comparing Product Category Rules from Different Programs: Learned Outcomes Towards Global Alignment Vee Subramanian • Wesley Ingwersen • Connie Hensler • Heather Collie Abstract Purpose Product category rules (PCRs) provide category-specific guidance for estimating and reporting product life cycle environmental impacts, typically in the form of environmental product declarations and product carbon footprints. Lack of global harmonization between PCRs or sector guidance documents has led to the development of duplicate PCRs for same products. Differences in the general requirements (e.g., product category definition, reporting format) and LCA methodology (e.g., system boundaries, inventory analysis, allocation rules, etc.) diminish the comparability of product claims. Methods A comparison template was developed to compare PCRs from different global program operators. The goal was to identify the differences between duplicate PCRs from a broad selection of product categories and propose a path towards alignment. We looked at five different product categories: Milk/dairy (2 PCRs), Horticultural products (3 PCRs), Wood-particle board (2 PCRs), and Laundry detergents (4 PCRs). Results & discussion Disparity between PCRs ranged from broad differences in scope, system boundaries and impacts addressed (e.g. multi-impact vs. carbon footprint only) to specific differences of technical elements.
    [Show full text]
  • Categorical Semantics of Constructive Set Theory
    Categorical semantics of constructive set theory Beim Fachbereich Mathematik der Technischen Universit¨atDarmstadt eingereichte Habilitationsschrift von Benno van den Berg, PhD aus Emmen, die Niederlande 2 Contents 1 Introduction to the thesis 7 1.1 Logic and metamathematics . 7 1.2 Historical intermezzo . 8 1.3 Constructivity . 9 1.4 Constructive set theory . 11 1.5 Algebraic set theory . 15 1.6 Contents . 17 1.7 Warning concerning terminology . 18 1.8 Acknowledgements . 19 2 A unified approach to algebraic set theory 21 2.1 Introduction . 21 2.2 Constructive set theories . 24 2.3 Categories with small maps . 25 2.3.1 Axioms . 25 2.3.2 Consequences . 29 2.3.3 Strengthenings . 31 2.3.4 Relation to other settings . 32 2.4 Models of set theory . 33 2.5 Examples . 35 2.6 Predicative sheaf theory . 36 2.7 Predicative realizability . 37 3 Exact completion 41 3.1 Introduction . 41 3 4 CONTENTS 3.2 Categories with small maps . 45 3.2.1 Classes of small maps . 46 3.2.2 Classes of display maps . 51 3.3 Axioms for classes of small maps . 55 3.3.1 Representability . 55 3.3.2 Separation . 55 3.3.3 Power types . 55 3.3.4 Function types . 57 3.3.5 Inductive types . 58 3.3.6 Infinity . 60 3.3.7 Fullness . 61 3.4 Exactness and its applications . 63 3.5 Exact completion . 66 3.6 Stability properties of axioms for small maps . 73 3.6.1 Representability . 74 3.6.2 Separation . 74 3.6.3 Power types .
    [Show full text]
  • Toy Industry Product Categories
    Definitions Document Toy Industry Product Categories Action Figures Action Figures, Playsets and Accessories Includes licensed and theme figures that have an action-based play pattern. Also includes clothing, vehicles, tools, weapons or play sets to be used with the action figure. Role Play (non-costume) Includes role play accessory items that are both action themed and generically themed. This category does not include dress-up or costume items, which have their own category. Arts and Crafts Chalk, Crayons, Markers Paints and Pencils Includes singles and sets of these items. (e.g., box of crayons, bucket of chalk). Reusable Compounds (e.g., Clay, Dough, Sand, etc.) and Kits Includes any reusable compound, or items that can be manipulated into creating an object. Some examples include dough, sand and clay. Also includes kits that are intended for use with reusable compounds. Design Kits and Supplies – Reusable Includes toys used for designing that have a reusable feature or extra accessories (e.g., extra paper). Examples include Etch-A-Sketch, Aquadoodle, Lite Brite, magnetic design boards, and electronic or digital design units. Includes items created on the toy themselves or toys that connect to a computer or tablet for designing / viewing. Design Kits and Supplies – Single Use Includes items used by a child to create art and sculpture projects. These items are all-inclusive kits and may contain supplies that are needed to create the project (e.g., crayons, paint, yarn). This category includes refills that are sold separately to coincide directly with the kits. Also includes children’s easels and paint-by-number sets.
    [Show full text]
  • Kleisli Database Instances
    KLEISLI DATABASE INSTANCES DAVID I. SPIVAK Abstract. We use monads to relax the atomicity requirement for data in a database. Depending on the choice of monad, the database fields may contain generalized values such as lists or sets of values, or they may contain excep- tions such as various typesi of nulls. The return operation for monads ensures that any ordinary database instance will count as one of these generalized in- stances, and the bind operation ensures that generalized values behave well under joins of foreign key sequences. Different monads allow for vastly differ- ent types of information to be stored in the database. For example, we show that classical concepts like Markov chains, graphs, and finite state automata are each perfectly captured by a different monad on the same schema. Contents 1. Introduction1 2. Background3 3. Kleisli instances9 4. Examples 12 5. Transformations 20 6. Future work 22 References 22 1. Introduction Monads are category-theoretic constructs with wide-ranging applications in both mathematics and computer science. In [Mog], Moggi showed how to exploit their expressive capacity to incorporate fundamental programming concepts into purely functional languages, thus considerably extending the potency of the functional paradigm. Using monads, concepts that had been elusive to functional program- ming, such as state, input/output, and concurrency, were suddenly made available in that context. In the present paper we describe a parallel use of monads in databases. This approach stems from a similarity between categories and database schemas, as presented in [Sp1]. The rough idea is as follows. A database schema can be modeled as a category C, and an ordinary database instance is a functor δ : C Ñ Set.
    [Show full text]
  • Logic and Categories As Tools for Building Theories
    Logic and Categories As Tools For Building Theories Samson Abramsky Oxford University Computing Laboratory 1 Introduction My aim in this short article is to provide an impression of some of the ideas emerging at the interface of logic and computer science, in a form which I hope will be accessible to philosophers. Why is this even a good idea? Because there has been a huge interaction of logic and computer science over the past half-century which has not only played an important r^olein shaping Computer Science, but has also greatly broadened the scope and enriched the content of logic itself.1 This huge effect of Computer Science on Logic over the past five decades has several aspects: new ways of using logic, new attitudes to logic, new questions and methods. These lead to new perspectives on the question: What logic is | and should be! Our main concern is with method and attitude rather than matter; nevertheless, we shall base the general points we wish to make on a case study: Category theory. Many other examples could have been used to illustrate our theme, but this will serve to illustrate some of the points we wish to make. 2 Category Theory Category theory is a vast subject. It has enormous potential for any serious version of `formal philosophy' | and yet this has hardly been realized. We shall begin with introduction to some basic elements of category theory, focussing on the fascinating conceptual issues which arise even at the most elementary level of the subject, and then discuss some its consequences and philosophical ramifications.
    [Show full text]
  • Notes on Categorical Logic
    Notes on Categorical Logic Anand Pillay & Friends Spring 2017 These notes are based on a course given by Anand Pillay in the Spring of 2017 at the University of Notre Dame. The notes were transcribed by Greg Cousins, Tim Campion, L´eoJimenez, Jinhe Ye (Vincent), Kyle Gannon, Rachael Alvir, Rose Weisshaar, Paul McEldowney, Mike Haskel, ADD YOUR NAMES HERE. 1 Contents Introduction . .3 I A Brief Survey of Contemporary Model Theory 4 I.1 Some History . .4 I.2 Model Theory Basics . .4 I.3 Morleyization and the T eq Construction . .8 II Introduction to Category Theory and Toposes 9 II.1 Categories, functors, and natural transformations . .9 II.2 Yoneda's Lemma . 14 II.3 Equivalence of categories . 17 II.4 Product, Pullbacks, Equalizers . 20 IIIMore Advanced Category Theoy and Toposes 29 III.1 Subobject classifiers . 29 III.2 Elementary topos and Heyting algebra . 31 III.3 More on limits . 33 III.4 Elementary Topos . 36 III.5 Grothendieck Topologies and Sheaves . 40 IV Categorical Logic 46 IV.1 Categorical Semantics . 46 IV.2 Geometric Theories . 48 2 Introduction The purpose of this course was to explore connections between contemporary model theory and category theory. By model theory we will mostly mean first order, finitary model theory. Categorical model theory (or, more generally, categorical logic) is a general category-theoretic approach to logic that includes infinitary, intuitionistic, and even multi-valued logics. Say More Later. 3 Chapter I A Brief Survey of Contemporary Model Theory I.1 Some History Up until to the seventies and early eighties, model theory was a very broad subject, including topics such as infinitary logics, generalized quantifiers, and probability logics (which are actually back in fashion today in the form of con- tinuous model theory), and had a very set-theoretic flavour.
    [Show full text]
  • Homological Algebra in Characteristic One Arxiv:1703.02325V1
    Homological algebra in characteristic one Alain Connes, Caterina Consani∗ Abstract This article develops several main results for a general theory of homological algebra in categories such as the category of sheaves of idempotent modules over a topos. In the analogy with the development of homological algebra for abelian categories the present paper should be viewed as the analogue of the development of homological algebra for abelian groups. Our selected prototype, the category Bmod of modules over the Boolean semifield B := f0, 1g is the replacement for the category of abelian groups. We show that the semi-additive category Bmod fulfills analogues of the axioms AB1 and AB2 for abelian categories. By introducing a precise comonad on Bmod we obtain the conceptually related Kleisli and Eilenberg-Moore categories. The latter category Bmods is simply Bmod in the topos of sets endowed with an involution and as such it shares with Bmod most of its abstract categorical properties. The three main results of the paper are the following. First, when endowed with the natural ideal of null morphisms, the category Bmods is a semi-exact, homological category in the sense of M. Grandis. Second, there is a far reaching analogy between Bmods and the category of operators in Hilbert space, and in particular results relating null kernel and injectivity for morphisms. The third fundamental result is that, even for finite objects of Bmods the resulting homological algebra is non-trivial and gives rise to a computable Ext functor. We determine explicitly this functor in the case provided by the diagonal morphism of the Boolean semiring into its square.
    [Show full text]
  • Linear Continuations and Duality Paul-André Melliès, Nicolas Tabareau
    Linear continuations and duality Paul-André Melliès, Nicolas Tabareau To cite this version: Paul-André Melliès, Nicolas Tabareau. Linear continuations and duality. 2007. hal-00339156 HAL Id: hal-00339156 https://hal.archives-ouvertes.fr/hal-00339156 Preprint submitted on 17 Nov 2008 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Linear continuations and duality Paul-Andre´ Mellies` and Nicolas Tabareau Equipe Preuves, Programmes, Syst`emes CNRS and Universit´eParis 7 Denis Diderot Abstract One fundamental aspect of linear logic is that its conjunction behaves in the same way as a tensor product in linear algebra. Guided by this intuition, we investigate the algebraic status of disjunction – the dual of conjunction – in the presence of linear continuations. We start from the observation that every monoidal category equipped with a tensorial negation inherits a lax monoidal structure from its opposite category. This lax structure interprets dis- junction, and induces a multicategory whose underlying category coincides with the kleisli category associated to the continuation monad. We study the structure of this multicategory, and establish a structure theorem adapting to linear continuations a result by Peter Selinger on control categories and cartesian continuations.
    [Show full text]
  • Profunctors, Open Maps and Bisimulation
    BRICS RS-04-22 Cattani & Winskel: Profunctors, Open Maps and Bisimulation BRICS Basic Research in Computer Science Profunctors, Open Maps and Bisimulation Gian Luca Cattani Glynn Winskel BRICS Report Series RS-04-22 ISSN 0909-0878 October 2004 Copyright c 2004, Gian Luca Cattani & Glynn Winskel. BRICS, Department of Computer Science University of Aarhus. All rights reserved. Reproduction of all or part of this work is permitted for educational or research use on condition that this copyright notice is included in any copy. See back inner page for a list of recent BRICS Report Series publications. Copies may be obtained by contacting: BRICS Department of Computer Science University of Aarhus Ny Munkegade, building 540 DK–8000 Aarhus C Denmark Telephone: +45 8942 3360 Telefax: +45 8942 3255 Internet: [email protected] BRICS publications are in general accessible through the World Wide Web and anonymous FTP through these URLs: http://www.brics.dk ftp://ftp.brics.dk This document in subdirectory RS/04/22/ Profunctors, Open Maps and Bisimulation∗ Gian Luca Cattani DS Data Systems S.p.A., Via Ugozzolo 121/A, I-43100 Parma, Italy. Email: [email protected]. Glynn Winskel University of Cambridge Computer Laboratory, Cambridge CB3 0FD, England. Email: [email protected]. October 2004 Abstract This paper studies fundamental connections between profunctors (i.e., dis- tributors, or bimodules), open maps and bisimulation. In particular, it proves that a colimit preserving functor between presheaf categories (corresponding to a profunctor) preserves open maps and open map bisimulation. Consequently, the composition of profunctors preserves open maps as 2-cells.
    [Show full text]
  • Categorical Logic from a Categorical Point of View
    Categorical logic from a categorical point of view Michael Shulman DRAFT for AARMS Summer School 2016 Version of July 28, 2016 2 ii Contents Prefacei 0 Introduction3 0.1 Appetizer: inverses in group objects................3 0.2 On syntax and free objects.....................8 0.3 On type theory and category theory................ 12 0.4 Expectations of the reader...................... 16 1 Unary type theories 19 1.1 Posets................................. 19 1.2 Categories............................... 23 1.2.1 Primitive cuts......................... 24 1.2.2 Cut admissibility....................... 29 1.3 Meet-semilattices........................... 39 1.3.1 Sequent calculus for meet-semilattices........... 40 1.3.2 Natural deduction for meet-semilattices.......... 44 1.4 Categories with products...................... 47 1.5 Categories with coproducts..................... 56 1.6 Universal properties and modularity................ 61 1.7 Presentations and theories...................... 63 1.7.1 Group presentations..................... 64 1.7.2 Category presentations.................... 66 1.7.3 ×-presentations........................ 68 1.7.4 Theories............................ 75 2 Simple type theories 85 2.1 Towards multicategories....................... 85 2.2 Introduction to multicategories................... 89 2.3 Multiposets and monoidal posets.................. 93 2.3.1 Multiposets.......................... 93 2.3.2 Sequent calculus for monoidal posets............ 95 2.3.3 Natural deduction for monoidal posets........... 99 2.4
    [Show full text]
  • Product Category Rule for Environmental Product Declarations
    Product Category Rule for Environmental Product Declarations BIFMA PCR for Seating: UNCPC 3811 Version 3 Program Operator NSF International National Center for Sustainability Standards Valid through September 30, 2019 Extended per PCRext 2019-107 valid through September 30, 2020 [email protected] Product Category Rule for Environmental Product Declarations BIFMA PCR for Seating: UNCPC 3811 – Version 3 PRODUCT CATEGORY RULES REVIEW PANEL Thomas P. Gloria, Ph. D. Industrial Ecology Consultants 35 Bracebridge Rd. Newton, MA 02459-1728 [email protected] Jack Geibig, P.E. Ecoform 2624 Abelia Way Knoxville, TN 37931 [email protected] Dr. Michael Overcash Environmental Clarity 2908 Chipmunk Lane Raleigh, NC 27607-3117 [email protected] PCR review panel comments may be obtained by contacting NSF International’s National Center for Sustainability Standards at [email protected]. No participation fees were charged by NSF to interested parties. NSF International ensured that reasonable representation among the members of the PCR committee was achieved and potential conflicts of interest were resolved prior to commencing this PCR development. NSF International National Center for Sustainability Standards Valid through September 30, 2019 Extended per PCRext 2019-107 valid through September 30, 2020 Page 2 Product Category Rule for Environmental Product Declarations BIFMA PCR for Seating: UNCPC 3811 – Version 3 TABLE OF CONTENTS BIFMA PRODUCT CATEGORY RULES....................................................................................................................4
    [Show full text]