In Trans Variant Calling Reveals Enrichment for Compound Heterozygous Variants in Genes Involved in Neuronal Development and Growth
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mapping Autosomal Recessive Intellectual Disability: Combined Microarray and Exome
bioRxiv preprint doi: https://doi.org/10.1101/092346; this version posted March 15, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Mapping Autosomal Recessive Intellectual Disability: Combined Microarray and Exome Sequencing Identifies 26 Novel Candidate Genes in 192 Consanguineous Families Ricardo Harripaul, MSc1,2, Nasim Vasli, PhD1, Anna Mikhailov, BSc1, Muhammad Arshad Rafiq, PhD 1,3, Kirti Mittal, PhD 1, Christian Windpassinger, PhD4, Taimoor I. Sheikh, MPhil1,2, Abdul Noor, PhD5,6, Huda Mahmood, BSc1, Samantha Downey1,7, Maneesha Johnson1,7, Kayla Vleuten1,7, Lauren Bell1,7, Muhammad Ilyas, M.Phil8, Falak Sher Khan, MS9, Valeed Khan, MS9, Mohammad Moradi, MSc10, Muhammad Ayaz11, Farooq Naeem, PhD 11,12, Abolfazl Heidari, PhD1,13, Iltaf Ahmed, PhD14, Shirin Ghadami, PhD15, Zehra Agha, PhD3, Sirous Zeinali, PhD15, Raheel Qamar, PhD3,16, Hossein Mozhdehipanah, MD17, Peter John, PhD14, Asif Mir, PhD8, Muhammad Ansar, PhD9, Leon French, PhD18, Muhammad Ayub, MBBS, MD11,12, John B. Vincent, PhD1,2,19 1Molecular Neuropsychiatry & Development (MiND) Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; 2Institute of Medical Science, University of Toronto, Toronto, ON, Canada; 3Dept. of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan; 4Institute of Human Genetics, Medical University of Graz, Graz, Austria; 5Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada; 6 Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; 1 bioRxiv preprint doi: https://doi.org/10.1101/092346; this version posted March 15, 2017. -
(12) Patent Application Publication (10) Pub. No.: US 2002/0152483 A1 Reue Et Al
US 2002O1524.83A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2002/0152483 A1 Reue et al. (43) Pub. Date: Oct. 17, 2002 (54) NOVEL GENE ASSOCATED WITH Publication Classification REGULATION OF ADPOSITY AND INSULIN RESPONSE (51) Int. Cl." ............................ A01K 67/00; C12O 1/68; C12P 19/34 (75) Inventors: Karen Reue, Torrance, CA (US); (52) U.S. Cl. .................................. 800/9; 435/6; 435/91.2 Miklos Peterfy, Los Angeles, CA (US) (57) ABSTRACT Correspondence Address: This invention pertains to the identification and isolation of LAW OFFICES OF JONATHAN ALAN QUINE a gene implicated in the fatty liver dystrophy (fld) pheno PO BOX 458 type. Mouse and human forms of the novel gene, designated ALAMEDA, CA 94501 herein as Lpin1/LPIN1 (mouse and human genes, respec tively), are identified. This invention additionally provides (73) Assignee: The Regents of the University of Cali methods of Screening for agents that alter adipose tissue fornia development. The methods involve contacting a cell con taining a Lpin1 gene With a test agent, and detecting a (21) Appl. No.: 10/028,056 change in the expression or activity of a Lpin1 gene product, (22) Filed: Dec. 19, 2001 where a difference in the expression or activity of Lpin1 in the contacted cell indicates that the agent alters or is likely Related U.S. Application Data to alter adipose tissue development. Also provided are methods of identifying Lpin1 mutations, and methods of (60) Provisional application No. 60/257,772, filed on Dec. mitigating Symptoms of lipodystrophy, obesity, diabetes, 22, 2000. atherOSclerosis and related pathologies. -
Abstracts Genome 10K & Genome Science 29 Aug - 1 Sept 2017 Norwich Research Park, Norwich, Uk
Genome 10K c ABSTRACTS GENOME 10K & GENOME SCIENCE 29 AUG - 1 SEPT 2017 NORWICH RESEARCH PARK, NORWICH, UK Genome 10K c 48 KEYNOTE SPEAKERS ............................................................................................................................... 1 Dr Adam Phillippy: Towards the gapless assembly of complete vertebrate genomes .................... 1 Prof Kathy Belov: Saving the Tasmanian devil from extinction ......................................................... 1 Prof Peter Holland: Homeobox genes and animal evolution: from duplication to divergence ........ 2 Dr Hilary Burton: Genomics in healthcare: the challenges of complexity .......................................... 2 INVITED SPEAKERS ................................................................................................................................. 3 Vertebrate Genomics ........................................................................................................................... 3 Alex Cagan: Comparative genomics of animal domestication .......................................................... 3 Plant Genomics .................................................................................................................................... 4 Ksenia Krasileva: Evolution of plant Immune receptors ..................................................................... 4 Andrea Harper: Using Associative Transcriptomics to predict tolerance to ash dieback disease in European ash trees ............................................................................................................ -
UNIVERSITY of CALIFORNIA, SAN DIEGO Functional Analysis of Sall4
UNIVERSITY OF CALIFORNIA, SAN DIEGO Functional analysis of Sall4 in modulating embryonic stem cell fate A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Molecular Pathology by Pei Jen A. Lee Committee in charge: Professor Steven Briggs, Chair Professor Geoff Rosenfeld, Co-Chair Professor Alexander Hoffmann Professor Randall Johnson Professor Mark Mercola 2009 Copyright Pei Jen A. Lee, 2009 All rights reserved. The dissertation of Pei Jen A. Lee is approved, and it is acceptable in quality and form for publication on microfilm and electronically: ______________________________________________________________ ______________________________________________________________ ______________________________________________________________ ______________________________________________________________ Co-Chair ______________________________________________________________ Chair University of California, San Diego 2009 iii Dedicated to my parents, my brother ,and my husband for their love and support iv Table of Contents Signature Page……………………………………………………………………….…iii Dedication…...…………………………………………………………………………..iv Table of Contents……………………………………………………………………….v List of Figures…………………………………………………………………………...vi List of Tables………………………………………………….………………………...ix Curriculum vitae…………………………………………………………………………x Acknowledgement………………………………………………….……….……..…...xi Abstract………………………………………………………………..…………….....xiii Chapter 1 Introduction ..…………………………………………………………………………….1 Chapter 2 Materials and Methods……………………………………………………………..…12 -
Open Dogan Phdthesis Final.Pdf
The Pennsylvania State University The Graduate School Eberly College of Science ELUCIDATING BIOLOGICAL FUNCTION OF GENOMIC DNA WITH ROBUST SIGNALS OF BIOCHEMICAL ACTIVITY: INTEGRATIVE GENOME-WIDE STUDIES OF ENHANCERS A Dissertation in Biochemistry, Microbiology and Molecular Biology by Nergiz Dogan © 2014 Nergiz Dogan Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2014 ii The dissertation of Nergiz Dogan was reviewed and approved* by the following: Ross C. Hardison T. Ming Chu Professor of Biochemistry and Molecular Biology Dissertation Advisor Chair of Committee David S. Gilmour Professor of Molecular and Cell Biology Anton Nekrutenko Professor of Biochemistry and Molecular Biology Robert F. Paulson Professor of Veterinary and Biomedical Sciences Philip Reno Assistant Professor of Antropology Scott B. Selleck Professor and Head of the Department of Biochemistry and Molecular Biology *Signatures are on file in the Graduate School iii ABSTRACT Genome-wide measurements of epigenetic features such as histone modifications, occupancy by transcription factors and coactivators provide the opportunity to understand more globally how genes are regulated. While much effort is being put into integrating the marks from various combinations of features, the contribution of each feature to accuracy of enhancer prediction is not known. We began with predictions of 4,915 candidate erythroid enhancers based on genomic occupancy by TAL1, a key hematopoietic transcription factor that is strongly associated with gene induction in erythroid cells. Seventy of these DNA segments occupied by TAL1 (TAL1 OSs) were tested by transient transfections of cultured hematopoietic cells, and 56% of these were active as enhancers. Sixty-six TAL1 OSs were evaluated in transgenic mouse embryos, and 65% of these were active enhancers in various tissues. -
The LRRC8A:C Heteromeric Channel Is a Cgamp Transporter and the Dominant
bioRxiv preprint doi: https://doi.org/10.1101/2020.02.13.948273; this version posted February 14, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The LRRC8A:C Heteromeric Channel Is a cGAMP Transporter and the Dominant cGAMP Importer in Human Vasculature Cells Lauren J. Lahey1,2, Xianlan Wen3, Rachel E. Mardjuki2,4, Volker Böhnert2,5, Christopher Ritchie2,5, Jacqueline A. Carozza2,4, Gaelen T. Hess2,6, Merritt Maduke3, Michael C. Bassik2,6, and Lingyin Li2,5,7,* 1Biophysics Program, 2Stanford ChEM-H, 3Department of Molecular and Cellular Physiology, 4Department of Chemistry, 5Department of Biochemistry, 6Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 USA. 7Lead Contact *Correspondence: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.02.13.948273; this version posted February 14, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. SUMMARY Extracellular 2'3'-cyclic-GMP-AMP (cGAMP) is an immunotransmitter secreted by cancer cells and taken up by host cells to activate the anti-cancer STING pathway. No cGAMP exporter has been identified, and SLC19A1, a recently identified cGAMP importer, does not account for the import actiVity in most cell types. Here, we identify the LRRC8A:C heteromeric channel, a volume-regulated anion channel (VRAC), as a cGAMP transporter. This channel mediates cGAMP import or export depending on the cGAMP chemical gradient. cGAMP influences anion influx through VRAC, indicating it is likely a direct substrate of the channel. -
Selective Transport of Neurotransmitters and Modulators by Distinct Volume-Regulated LRRC8 Anion Channels Darius Lutter1,2,3, Florian Ullrich1,2, Jennifer C
© 2017. Published by The Company of Biologists Ltd | Journal of Cell Science (2017) 130, 1122-1133 doi:10.1242/jcs.196253 RESEARCH ARTICLE Selective transport of neurotransmitters and modulators by distinct volume-regulated LRRC8 anion channels Darius Lutter1,2,3, Florian Ullrich1,2, Jennifer C. Lueck1,2,3, Stefan Kempa2 and Thomas J. Jentsch1,2,4,* ABSTRACT volume regulation (Jentsch, 2016; Nilius et al., 1997; Pedersen In response to swelling, mammalian cells release chloride and et al., 2016). This plasma membrane channel, which appears to be organic osmolytes through volume-regulated anion channels expressed in all cells, is normally closed but can be activated by cell swelling or other cellular signaling cascades. In most cells, VRAC (VRACs). VRACs are heteromers of LRRC8A and other LRRC8 − isoforms (LRRC8B to LRRC8E), which are co-expressed in HEK293 opening leads to an efflux of Cl , which, together with an efflux of + + and most other cells. The spectrum of VRAC substrates and its K through independent K channels, lowers the intracellular dependence on particular LRRC8 isoforms remains largely unknown. osmolarity and, by secondarily driving water efflux, results in We show that, besides the osmolytes taurine and myo-inositol, regulatory volume decrease. Cell swelling also stimulates an efflux ‘ ’ myo LRRC8 channels transport the neurotransmitters glutamate, of organic osmolytes such as -inositol, taurine and glutamate. aspartate and γ-aminobutyric acid (GABA) and the co-activator It was controversial whether this release occurs through VRAC or D-serine. HEK293 cells engineered to express defined subsets of through a distinct channel named VSOAC (for volume-sensitive LRRC8 isoforms were used to elucidate the subunit-dependence organic osmolyte/anion channel) (Jackson and Strange, 1993; of transport. -
Supplementary Table 1: Adhesion Genes Data Set
Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like, -
Oncogenic Inhibition by a Deleted in Liver Cancer Gene Requires Cooperation Between Tensin Binding and Rho-Specific Gtpase-Activating Protein Activities
Oncogenic inhibition by a deleted in liver cancer gene requires cooperation between tensin binding and Rho-specific GTPase-activating protein activities Xiaolan Qian*, Guorong Li*, Holly K. Asmussen*, Laura Asnaghi*, William C. Vass*, Richard Braverman*, Kenneth M. Yamada†, Nicholas C. Popescu‡, Alex G. Papageorge*, and Douglas R. Lowy*§ *Laboratory of Cellular Oncology and ‡Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and †Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892 Communicated by Ira Pastan, National Institutes of Health, Bethesda, MD, April 2, 2007 (received for review March 1, 2007) The three deleted in liver cancer genes (DLC1–3) encode Rho- The prototypic member, designated DLC1, is localized to GTPase-activating proteins (RhoGAPs) whose expression is fre- chromosome 8p21–22 in a region that is commonly deleted in quently down-regulated or silenced in a variety of human malig- hepatocellular carcinoma (5). Its expression is frequently down- nancies. The RhoGAP activity is required for full DLC-dependent regulated or silenced in various solid tumors and hematologic tumor suppressor activity. Here we report that DLC1 and DLC3 bind malignancies, predominantly by promoter methylation (6–13). to human tensin1 and its chicken homolog. The binding has been Ectopic reexpression in DLC1-deficient cancer cell lines can mapped to the tensin Src homology 2 (SH2) and phosphotyrosine suppress cell proliferation, induce apoptosis, and reduce tumor- binding (PTB) domains at the C terminus of tensin proteins. Distinct igenicity. The RhoGAP activity appears to be required for these DLC1 sequences are required for SH2 and PTB binding. -
Noelia Díaz Blanco
Effects of environmental factors on the gonadal transcriptome of European sea bass (Dicentrarchus labrax), juvenile growth and sex ratios Noelia Díaz Blanco Ph.D. thesis 2014 Submitted in partial fulfillment of the requirements for the Ph.D. degree from the Universitat Pompeu Fabra (UPF). This work has been carried out at the Group of Biology of Reproduction (GBR), at the Department of Renewable Marine Resources of the Institute of Marine Sciences (ICM-CSIC). Thesis supervisor: Dr. Francesc Piferrer Professor d’Investigació Institut de Ciències del Mar (ICM-CSIC) i ii A mis padres A Xavi iii iv Acknowledgements This thesis has been made possible by the support of many people who in one way or another, many times unknowingly, gave me the strength to overcome this "long and winding road". First of all, I would like to thank my supervisor, Dr. Francesc Piferrer, for his patience, guidance and wise advice throughout all this Ph.D. experience. But above all, for the trust he placed on me almost seven years ago when he offered me the opportunity to be part of his team. Thanks also for teaching me how to question always everything, for sharing with me your enthusiasm for science and for giving me the opportunity of learning from you by participating in many projects, collaborations and scientific meetings. I am also thankful to my colleagues (former and present Group of Biology of Reproduction members) for your support and encouragement throughout this journey. To the “exGBRs”, thanks for helping me with my first steps into this world. Working as an undergrad with you Dr. -
1 Mutational Heterogeneity in Cancer Akash Kumar a Dissertation
Mutational Heterogeneity in Cancer Akash Kumar A dissertation Submitted in partial fulfillment of requirements for the degree of Doctor of Philosophy University of Washington 2014 June 5 Reading Committee: Jay Shendure Pete Nelson Mary Claire King Program Authorized to Offer Degree: Genome Sciences 1 University of Washington ABSTRACT Mutational Heterogeneity in Cancer Akash Kumar Chair of the Supervisory Committee: Associate Professor Jay Shendure Department of Genome Sciences Somatic mutation plays a key role in the formation and progression of cancer. Differences in mutation patterns likely explain much of the heterogeneity seen in prognosis and treatment response among patients. Recent advances in massively parallel sequencing have greatly expanded our capability to investigate somatic mutation. Genomic profiling of tumor biopsies could guide the administration of targeted therapeutics on the basis of the tumor’s collection of mutations. Central to the success of this approach is the general applicability of targeted therapies to a patient’s entire tumor burden. This requires a better understanding of the genomic heterogeneity present both within individual tumors (intratumoral) and amongst tumors from the same patient (intrapatient). My dissertation is broadly organized around investigating mutational heterogeneity in cancer. Three projects are discussed in detail: analysis of (1) interpatient and (2) intrapatient heterogeneity in men with disseminated prostate cancer, and (3) investigation of regional intratumoral heterogeneity in -
1 First Presentation of LPIN1 Acute Rhabdomyolysis in Adolescence and Adulthood
Manuscript File Click here to view linked References 1 First presentation of LPIN1 acute rhabdomyolysis in adolescence and adulthood 2 3 Chiara Pizzamiglioa, Nayana Lahirib, Niranjanan Nirmalananthanc, Bhrigu Soodd, Subash 4 Somalankad, Philip Ostrowskie, Rahul Phadkef, Dominic Gerard O’Donovang, Francesco 5 Muntonih, Rosaline Quinlivana 6 7 a. MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology and National Hospital for 8 Neurology and Neurosurgery, Queen Square, London, United Kingdom 9 10 b. Clinical Genetics Department, St George's University Hospitals NHS Foundation Trust, London, 11 United Kingdom 12 13 c. Departments of Neurology and Neuroradiology, Atkinson Morley Regional Neurosciences 14 Centre, St George's Hospital, London, United Kingdom 15 16 d. South West Thames Renal & Transplantation Unit and South West Thames Institute for Renal 17 Research, Saint Helier Hospital, Carshalton, Surrey, United Kingdom 18 19 e. South West Thames Regional Genetics Service, St George's University NHS Foundation Trust, 20 London, United Kingdom 21 22 f. Division of Neuropathology, Dubowitz Neuromuscular Centre, UCL Great Ormond Street 23 Hospital for Children, United Kingdom; Division of Neuropathology, National Hospital for 24 Neurology and Neurosurgery, Queen Square, London, United Kingdom 25 1 26 g. Neuropathology, Department of Histopathology, Addenbrooke’s Hospital, Cambridge University 27 Hospitals NHS Foundation Trust, Cambridge, United Kingdom 28 29 h. Paediatric Neurology, Dubowitz Neuromuscular Centre, UCL Institute of Child Health and Great 30 Ormond Street Hospital for Children, London, United Kingdom 31 32 Corresponding author: Chiara Pizzamiglio ([email protected]) 33 34 Abstract: LPIN1 mutations are a known common cause of autosomal recessive, recurrent and life- 35 threatening acute rhabdomyolysis of childhood-onset.