From COX-2 Inhibitor Nimesulide to Potent Anti-Cancer Agent: Synthesis, in Vitro, in Vivo and Pharmacokinetic Evaluation

Total Page:16

File Type:pdf, Size:1020Kb

From COX-2 Inhibitor Nimesulide to Potent Anti-Cancer Agent: Synthesis, in Vitro, in Vivo and Pharmacokinetic Evaluation Cleveland State University EngagedScholarship@CSU Chemistry Faculty Publications Chemistry Department 1-1-2012 From COX-2 Inhibitor Nimesulide to Potent Anti-Cancer Agent: Synthesis, In Vitro, In Vivo and Pharmacokinetic Evaluation Bo Zhong Cleveland State University Xiaohan Cai Cleveland State University Snigdha Chennamaneni Cleveland State University Xin Yi Cleveland State University Lili Liu Case Western Reserve University See next page for additional authors Follow this and additional works at: https://engagedscholarship.csuohio.edu/scichem_facpub Part of the Medicinal-Pharmaceutical Chemistry Commons How does access to this work benefit ou?y Let us know! Recommended Citation Zhong, Bo; Cai, Xiaohan; Chennamaneni, Snigdha; Yi, Xin; Liu, Lili; Pink, John J.; Dowlati, Afshin; Xu, Yan; Zhou, Aimin; and Su, Bin, "From COX-2 Inhibitor Nimesulide to Potent Anti-Cancer Agent: Synthesis, In Vitro, In Vivo and Pharmacokinetic Evaluation" (2012). Chemistry Faculty Publications. 196. https://engagedscholarship.csuohio.edu/scichem_facpub/196 This Article is brought to you for free and open access by the Chemistry Department at EngagedScholarship@CSU. It has been accepted for inclusion in Chemistry Faculty Publications by an authorized administrator of EngagedScholarship@CSU. For more information, please contact [email protected]. Authors Bo Zhong, Xiaohan Cai, Snigdha Chennamaneni, Xin Yi, Lili Liu, John J. Pink, Afshin Dowlati, Yan Xu, Aimin Zhou, and Bin Su This article is available at EngagedScholarship@CSU: https://engagedscholarship.csuohio.edu/scichem_facpub/196 432 433 shown to protect against N nitrosobis(2 oxopropyl)amine induced mixture was stirred at room temperature overnight to obtain the pancreatic tumors in hamster [32]. In some in vitro experiments, N,N bimethanesulfonamido b. Compound b was hydrolyzed with nimesulide is able to inhibit the proliferation and to increase the 10% NaOH solution to generate c as a monomethanesulfonamido apoptosis rate of various types of cancer cells [18,25,33e38]. compound. Compound c was treated with sodium hydride and However, the nimesulide concentrations used in these studies are methyl iodine in DMF at room temperature to obtain compound d. ranged from 200 to 500 mM, which greatly exceed the concentra Then the nitro group was reduced to an amine group to obtain tion necessary to inhibit COX 2 activity. These facts suggest that compound e. Compound e was treated with different substituted nimesulide inhibits cancer cell growth and induces cancer cell acetyl chloride and K2CO3 to generate the substituted benzamides apoptosis independent of COX 2. 1e39, respectively. Structures of all the synthesized compounds JCC76 is a non COX 2 active nimesulide analog (Fig. 1) [39e41], were determined by 1H NMR, MS, and their purity was confirmed and it inhibits SKBR 3 breast cancer cell growth with an IC50 of by HPLC with two mobile phases. 1.38 mM, which is about 100 fold more active than nimesulide (Table 1). The N Methylation of JCC76 blocks the ionization of the Biological evaluation of the new analogs with breast cancer cell sulfonamide group, which abolishes the potential COX 2 activity line SKBR 3 [42e44]. In addition, the aromatic nitro group is converted to an amide moiety on the structure of JCC76, which could diminish the The compounds were tested for the inhibition of SKBR 3 breast potential hepatotoxicity, since nimesulide shows hepatotoxicity cancer cell growth (Table 1). Subsequently, a detailed structure due to the multistep nitroreductive bioactivation that produces the activity analysis was performed based on the structure and the hazardous nitroanion radical and nitroso intermediate [45]. Based anti cancer activity. The new derivatives have same core structure on the structure of JCC76, more analogs were designed and as JCC76, the different activity is correlated with the different amide synthesized in the current studies. Some new analogs such as moieties. CSUOH0901 (NSC751382) inhibited SKBR 3 breast cancer cell For the substituted benzamide moiety in the structure, para m e m growth with IC50s around 0.1 M 0.2 M, which is about 10 fold position bulky halogen substituted benzamide such as 9 (bromine) more active than JCC76 and almost 1000 fold more active than with an IC50 of 0.22 mM and 29 (iodine) with an IC50 of 0.13 mM nimesulide. In addition, CSUOH0901 inhibited the growth of show better potency than JCC76, whereas small halogen chlorine at a broad range of cancer cell lines with IC s of 0.2 mM to 0.5 mM. It 50 para position (28) slightly decreases the activity with an IC50 of also inhibited the growth of HT29 colorectal xenograft in nude mice 2.15 mM. It is also possible that the activity is related to the elec as well. All the studies suggest that the newly developed JCC76 tronegativity or electron density of the halogens. Iodine has the derivatives are promising anti cancer drug candidates. lowest electronegativity and highest electron density, which may contribute to the potent anti cancer activity. 2, 8, 25, 20, and 27, Results and discussion which have single meta substitution groups, display weaker inhibitory activity with IC50s ranging from 1.97 mM to 7.34 mM. It Compound design and parallel synthesis of JCC76 derivatives seems that single meta substitution is predominated by steric effect. The activity is decreased no matter the substitution is In previous studies, systematic modification was performed on electron donating or withdrawing group. Dual chlorine substitu the structure of nimesulide to improve the anti cancer activity and tion (4 and 14) slightly increases the activity compared to JCC76, erase the COX 2 inhibitory activity [41,46]. SAR result suggests that with IC50 of 0.91 mM and 0.80 mM respectively. 1, 2, 3, 7, 8, 15, 21 and the dimethyl benzyl and methylsulfonamide moieties are critical 34, which have electron withdrawing groups as substitution, for the nimesulide analogs to inhibit cancer cell growth (Fig. 1). exhibit IC50s among 1.0 mMe3.0 mM. The results suggest that Further, the conversion of the nitro group to a bulky amide moiety electron withdrawing groups such as nitro, cynao, multi fluoro, generated novel anti cancer agent JCC76 [39e41,46]. In the current and trifluoro methyl substituted benzamide do not increase the study, dimethyl benzyl and methylsulfonamide groups which are activity. 26 shows very weaker activity with an IC50 of 55.35 mM, important for the anti cancer activity of the derivatives were which possibly is due to the very strong electron withdrawing maintained, and we focused on the modification of the amide effect and the meta position steric effect of the di trifluoro moiety of JCC76. Various chemical structures including alkyl amide methyl groups. Most of the strong electron donating groups such groups, electron donating or withdrawing group substituted ben as methoxyl and multi methoxyl substituted benzamide (10, 11, 16, zamides, bulky or small group substituted benzamides, and 18 and 19) increase the activity with IC50s among 0.19 mMe0.68 mM. heterocyclic amides were introduced at this moiety. However, para methyl benzamide (33) and para ethyl benzamide The synthesis is described in Scheme 1. The starting material 2 (36) show lesser potency with IC50s of 2.48 mM and 2.82 mM amino 5 nitrophenol was refluxed with K2CO3 and 2, 5 dimethyl respectively, although both methyl and ethyl groups are electron benzyl chloride to obtain compound a. Sodium hydride and donating substitution. It suggests that para position steric effect methanesulfonyl chloride were added to compound a in dry reduces the activity, but strong electron donating group at para dimethylformamide (DMF) at room temperature and the reaction position overall increase the activity because the electron donating H O N O O N O H 2 O N O NH N N O S O O S O O S O O JCC76 Nimesulide O First generation of Nimesulide CSUOH0901 analog as anti-cancer agent Second generation Fig. 1. Anti-cancer drug development based on COX-2 inhibitor nimesulide. 434 Table 1 Table 1 (continued ) Inhibition of cancer cell growth of the JCC76 anlogs. Entry H IC50 against Entry IC50 against H N O SKBR-3 breast N O SKBR-3 breast R cancer cell growth R cancer cell growth N N O S O O S O O O CF3 Æ m JCC76 R= 1.38 Æ 0.10 mM 15 R= 2.78 0.29 M O O R= 1 1.13 Æ 0.10 mM OCH3 16 R= 0.19 Æ 0.14 mM NO2 OCH3 O OCH NO 3 2 R= 2 1.97 Æ 0.21 mM R= 17 34.02 Æ 2.01 mM O OCH3 O O R= NO2 R= 3 3.35 Æ 0.40 mM 18 0.15 Æ 0.05 mM Cl OCH3 O O OCH Cl 3 4 R= 0.91 Æ 0.05 mM 19 R= 0.68 Æ 0.32 mM Cl O O 5 R= 0.21 Æ 0.01 mM OCH 20 R= 3 6.88 Æ 3.18 mM O O F R= Æ m 6 2.28 0.09 M R= OCH3 21 2.16 Æ 1.08 mM F O F 7 R= 1.46 Æ 0.06 mM O CN 22 R= 51.24 Æ 4.49 mM O O CN 8 R= 3.01 Æ 0.12 mM 23 R= 11.21 Æ 4.47 mM O R= 9 0.22 Æ 0.01 mM R= 24 >100 mM Br O O O 10 (CSUOH0901; R= O 0.20 Æ 0.01 mM R= NSC751382) 25 3.95 Æ 2.09 mM O O R= OCH3 O 11 0.30 Æ 0.02 mM CF 3 OCH3 R= 26 55.35 Æ 4.11 mM OCH3 O O CF3 12 43.27 Æ 7.38 mM R= Br 27 R= 7.34 Æ 3.99 mM O 13 R= 11.05 Æ 4.76 m3M 14 O 2.15 Æ 0.94 mM O 28 R= 14 0.80 Æ 0.01 mM R= Cl Cl Cl 435 Table 1 (continued ) effect of meta substitution.
Recommended publications
  • INDEX to PESTICIDE TYPES and FAMILIES and PART 180 TOLERANCE INFORMATION of PESTICIDE CHEMICALS in FOOD and FEED COMMODITIES
    US Environmental Protection Agency Office of Pesticide Programs INDEX to PESTICIDE TYPES and FAMILIES and PART 180 TOLERANCE INFORMATION of PESTICIDE CHEMICALS in FOOD and FEED COMMODITIES Note: Pesticide tolerance information is updated in the Code of Federal Regulations on a weekly basis. EPA plans to update these indexes biannually. These indexes are current as of the date indicated in the pdf file. For the latest information on pesticide tolerances, please check the electronic Code of Federal Regulations (eCFR) at http://www.access.gpo.gov/nara/cfr/waisidx_07/40cfrv23_07.html 1 40 CFR Type Family Common name CAS Number PC code 180.163 Acaricide bridged diphenyl Dicofol (1,1-Bis(chlorophenyl)-2,2,2-trichloroethanol) 115-32-2 10501 180.198 Acaricide phosphonate Trichlorfon 52-68-6 57901 180.259 Acaricide sulfite ester Propargite 2312-35-8 97601 180.446 Acaricide tetrazine Clofentezine 74115-24-5 125501 180.448 Acaricide thiazolidine Hexythiazox 78587-05-0 128849 180.517 Acaricide phenylpyrazole Fipronil 120068-37-3 129121 180.566 Acaricide pyrazole Fenpyroximate 134098-61-6 129131 180.572 Acaricide carbazate Bifenazate 149877-41-8 586 180.593 Acaricide unclassified Etoxazole 153233-91-1 107091 180.599 Acaricide unclassified Acequinocyl 57960-19-7 6329 180.341 Acaricide, fungicide dinitrophenol Dinocap (2, 4-Dinitro-6-octylphenyl crotonate and 2,6-dinitro-4- 39300-45-3 36001 octylphenyl crotonate} 180.111 Acaricide, insecticide organophosphorus Malathion 121-75-5 57701 180.182 Acaricide, insecticide cyclodiene Endosulfan 115-29-7 79401
    [Show full text]
  • Synthesis and Herbicidal Activity of Sulfonanilides Having a Pyrimidinyl-Containing Group at the 2-Position
    J. Pestic. Sci., 36(2), 212–220 (2011) DOI: 10.1584/jpestics.G10-87 Original Article Synthesis and herbicidal activity of sulfonanilides having a pyrimidinyl-containing group at the 2؅-position Takumi YOSHIMURA,†* Masao NAKATANI,† Sohei ASAKURA,†† Ryo HANAI,†† Manabu HIRAOKA††† and Shigefumi KUWAHARA†††† † K-I Chemical Research Institute Co., Ltd., Iwata, Shizuoka 437–1213, Japan †† Life Science Research Institute, Kumiai Chemical Industry Co., Ltd., Kikugawa, Shizuoka 439–0031, Japan ††† Formulation Technology Institute, Kumiai Chemical Industry Co., Ltd., Shimizu, Shizuoka 424–0053, Japan †††† Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai 981–8555, Japan (Received October 27, 2010; Accepted November 16, 2010) A novel series of sulfonanilides having a pyrimidinyl-containing group at the 2Ј-position was prepared and their herbicidal activities against paddy weeds and selectivity against rice plants were assessed. The structure-activity relationships were probed by substitution of the sulfonyl group, bridge and benzene ring. Among the sulfon- amides, difluoromethyl compound showed comparatively high activity and a broad spectrum to control weeds, including Echinochloa oryzicola. The most preferable substitution position on the benzene ring was in the 6-po- sition and the lower alkyl group showed high herbicidal activity and a broad weed control spectrum, and among the compounds tested, the methoxymethyl group was the best. In respect of the bridge moiety, the hydroxyl group was the best. Among the compounds examined, 2Ј-[(4,6-dimethoxypyrimidin-2-yl)(hydroxy)methyl]-1,1- difluoro-6Ј-(methoxymethyl)methanesulfonanilide, applied at rates between 4 to 16 g a.i./ha, showed excellent pre-emergence herbicidal activity with a broad spectrum against grass, sedge and broadleaf weeds without injury to rice plants.
    [Show full text]
  • IUPAC Provisional Recommendations
    Preferred IUPAC Names 177 Chapter 6, Sect 66 September, 2004 P-66 Amides, imides, hydrazides, nitriles, aldehydes, their chalcogen analogues and derivatives P-66.0 Introduction P-66.1 Amides P-66.2 Imides P-66.3 Hydrazides P-66.4 Amidines, amidrazones, hydrazidines P-66.5 Nitriles P-66.6 Aldehydes P-66.0 Introduction The classes dealt with in this Section have in common the fact that their retained names are derived from those of acids by changing the ‘ic acid’ ending to a class name, for example ‘amide’, ‘ohydrazide’, ‘nitrile’ or ‘aldehyde’. Their systematic names are formed substitutively by the suffix mode using one of two types of suffix, one that includes the carbon atom, for example, ‘carbonitrile’ for −CN, and one that does not, for example, ‘-nitrile’ for −(C)N,. Amidines are named as amides, hydrazidines as hydrazides, and amidrazones as amides or hydrazides. P-66.1 Amides P-66.1.0 Introduction P-66.1.1 Primary amides P-66.1.2 Secondary and tertiary amides P-66.1.3 Chalcogen analogues of amides P-66.1.4 Lactams, lactims, sultams and sultims P-66.1.5 Amides of carbonic, oxalic, cyanic, and polycarbonic acids P-66.1.6 Polyfunctional amides P-66.1.0 Introduction Amides are derivatives of oxoacids in which each hydroxy group has been replaced by an amino or substituted amino group. Chalcogen replacement analogues are called thio-, seleno- and telluroamides. Compounds having one, two or three acyl groups on a single nitrogen atom are generically included and may be designated as primary, secondary and tertiary amides, respectively.
    [Show full text]
  • Standard X-Ray Diffraction Powder Patterns NATIONAL BUREAU of STANDARDS
    NATIONAL INSTITUTE OF STANDARDS & TECHNOLOGY Research Information Center Gaithersburg, MD 20899 NATL INST OF STANDARDS & TECH R.I.C. A1 11 00988606 /NBS monograph QC100 .U556 V25-12;1975 C.1 NBS-PUB-C 19 NBS MONOGRAPH 25 " SECTION 12 U.S. DEPARTMENT OF COMMERCE / National Bureau of Standards Standard X-ray Diffraction Powder Patterns NATIONAL BUREAU OF STANDARDS 1 The National Bureau of Standards was established by an act of Congress March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau consists of the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Institute for Computer Sciences and Technology, and the Office for Information Programs. THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. The Institute consists of a Center for Radiation Research, an Office of Meas- urement Services and the following divisions: Applied Mathematics — Electricity — Mechanics — Heat — Optical Physics — Nuclear Sciences 2 — Applied Radiation 2 — Quantum Electronics 3 — Electromagnetics 3 — Time 3 3 3 and Frequency — Laboratory Astrophysics — Cryogenics .
    [Show full text]
  • Sulfonanilide Compounds
    ~" ' Nil II II II Nil 1 1 Nil II MINI II J European Patent Office o «i -» © Publication number: 0 31/ 332 B1 Office europeen* des.. brevets , © EUROPEAN PATENT SPECIFICATION © Date of publication of patent specification: 19.05.93 © Int. CI.5: C07C 311/08, C07D 309/12, C07D 211/46, C07C 317/14, © Application number: 88310899.5 C07C 323/18, C07D 335/02, A61K 31/18, A61K 31/33 (5)nn, Date of filing: 18.11.88AOAAOO ' © Sulfonanilide compounds. ® Priority: 19.11.87 JP 292856/87 Urawa-shi(JP) Inventor: Ohuchi, Yutaka @ Date of publication of application: Azumaso 101, 12-11 Oyaba-2-chome 24.05.89 Bulletin 89/21 Urawa-shl(JP) Inventor: Sekluchl, Kazuto © Publication of the grant of the patent: 2716-4-1-204 Oaza Kawarabukl 19.05.93 Bulletin 93/20 Ageo-shl(JP) Inventor: Salto, Shlujl © Designated Contracting States: Pakusaldo Maehara 202 31-12, Torocho- AT BE CH DE FR GB IT LI LU NL SE 1 - chome Omlya-shl(JP) © References cited: Inventor: Hatayama, Katsuo EP-A- 0 093 591 Danchl 35-3 1200-215, Horlsaklcho FR- A- 2 244 473 Omlya- shl(JP) US- A- 3 725 451 Inventor: Sota, Kaoru US-A- 3840 597 1158- 11, Shlmotoml US- A- 3 856 859 Tokorozawa- shl(JP) © Proprietor: TAISHO PHARMACEUTICAL CO. LTD © Representative: Colelro, Raymond et al 00 24- 1 Takata 3- chome Toshlma- ku MEWBURN ELLIS & CO. 2/3 Cursltor Street CM Tokyo 1 71 (JP) London EC4A 1BQ (GB) CO CO @ Inventor: Yoshlkawa, Kensel IV 2878, Dalmon CO Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted.
    [Show full text]
  • Light in Gold Catalysis Sina Witzel, A
    pubs.acs.org/CR Review Light in Gold Catalysis Sina Witzel, A. Stephen K. Hashmi, and Jin Xie* Cite This: https://dx.doi.org/10.1021/acs.chemrev.0c00841 Read Online ACCESS Metrics & More Article Recommendations ABSTRACT: Within the wide family of gold-catalyzed reactions, gold photocatalysis intrinsically features unique elementary steps. When gold catalysis meets photocatalysis, a valence change of the gold center can easily be achieved via electron transfer and radical addition, avoiding the use of stoichiometric sacrificial external oxidants. The excellent compatibility of radicals with gold catalysts opens the door to a series of important organic transformations, including redox-neutral C−C and C−X coupling, C−H activation, and formal radical−radical cross-coupling. The photocatalysis with gold complexes nicely complements the existing photoredox catalysis strategies and also opens a new avenue for gold chemistry. This review covers the achieved transformations for both mononuclear gold(I) catalysts (with and without a photosensitizer) and dinuclear gold(I) photocatalysts. Various fascinating methodologies, their value for organic chemists, and the current mechanistic understanding are discussed. The most recent examples also demonstrate the feasibility of both, mononuclear and dinuclear gold(I) complexes to participate in excited state energy transfer (EnT), rather than electron transfer. The rare applications of gold(III) photocatalysts, both homogeneous and heterogeneous, are also summarized. CONTENTS Authors AZ Notes AZ 1. Introduction A Biographies AZ 1.1. Redox Au(I)/Au(III) Catalysis A Acknowledgments AZ 1.2. Gold Photoredox Catalysis B References AZ 2. Mononuclear Gold(I) Complexes D 2.1. Dual Gold/Photoredox Catalysis D 2.1.1.
    [Show full text]
  • Korea Industrial Tariff Schedule
    DRAFT Subject to Legal Review for Accuracy, Clarity, and Consistency Annex 2-B Industrial Schedule for the Republic of Korea Staging HSK 10 Description Base Rate Category 0301101000 Gold carp 10 C 0301102000 Tropical fish 10 C 0301109000 Other 10 A 0301911000 Salmo trutta, Oncorhynchus mykiss,Oncorhynchus clarki, Oncorhynchus 10 C aguabonita,Oncorhynchus gilae 0301912000 Oncorhynchus apache and Oncorhynchus chrysogaster 10 C 0301921000 Glass eel 10 A 0301929000 Other 30% or I ₩1,908/kg 0301930000 Carp 10 C 0301992000 Yellow tail 10 A 0301994000 Sea-bream 45% or G ₩3,292/kg 0301995000 Conger eel 10 G 0301996000 Sharp toothed eel 10 G 0301997000 Salad eel 10 C 0301998000 Flat fish 10 C 0301999010 True bass 10 G 0301999020 Puffers 10 G 0301999030 Tilapia 10 C 0301999040 Rock fish(including pacific ocean perch) 10 C 0301999050 Sea bass 40 C 0301999060 Mullets 10 C 0301999070 Loaches 10 C 0301999080 Cat fishes 10 A 0301999091 Rock Trout(Hexagrammos spp., Agrammus spp.) 10 C 0301999092 Crusian carp 10 C 0301999093 Salmon 10 A 0301999094 Grass carp 10 A 0301999095 Croakers 36 G 0301999099 Other 10 G 0302111000 Salmo trutta, Oncorhynchus mykiss, Oncorhynchus clarki,Oncorhynchus 20 G aquabonita, Oncorhynchus gilae 0302112000 Oncorhynchus apache and Oncorhynchus chrysogaster 20 A 0302120000 Pacific salmon(Oncorhynchus nerka, Oncorhynchus gorbuscha, Oncorhynchus 20 A keta, Oncorhynchus tschawytscha, Oncorhynchus kisutch, Oncorhynchus masou and Oncorhynchus rhodurus), Atlantic salmon(Salmo salar)and Danube salmon(Hucho hucho) 0302190000 Other 20
    [Show full text]
  • Alkyl Mercury-Induced Toxicity: Multiple Mechanisms of Action
    Alkyl Mercury-Induced Toxicity: Multiple Mechanisms of Action John F. Risher and Pamela Tucker Contents 1 Preface 1.1 How Alkyl Mercury Compounds Get into the Food Web 2 Introduction 3 Methylmercury: Mechanisms of Toxic Action 3.1 Altered Membrane Permeability 3.2 Altered Intracellular Calcium Homeostasis 3.3 Oxidative Stress/Reactive Oxygen Species (ROS) 3.4 Effects on Receptor Binding/Neurotransmitter Release 3.5 Effects Involving Arachidonic Acid 3.6 Effects on Cell Cycle/Cell Division 3.7 Effects on Glutathione (GSH) Activity 3.8 Involvement with Nitric Oxide Synthetase 3.9 Effects on Glial Cells and Glutamate-Glutamine Uptake and Homeostasis 3.10 Other Mechanisms 4 Ethylmercury: Mechanisms of Toxic Action 4.1 Mobilization of Intracellular Ca++ 4.2 Effects on Mitochondria (Membrane and ROS) 4.3 Effects on Arachidonic Acid, Leukotriene Synthesis, and Membrane Integrity 4.4 Effects on Glutathione (GSH) 4.5 Effects on Glutamate Transport 4.6 Effects on Neurotransmitter Availability 5 Summary and Conclusions References J.F. Risher (*) • P. Tucker Division of Toxicology and Human Health Sciences, Agency for Toxic Substances and Disease Registry, 1600 Clifton Road (MS F-58), Atlanta, GA 30333, USA e-mail: [email protected]; [email protected] © Springer International Publishing 2016 Reviews of Environmental Contamination and Toxicology, DOI 10.1007/398_2016_1 J.F. Risher and P. Tucker Abstract There are a number of mechanisms by which alkylmercury compounds cause toxic action in the body. Collectively, published studies reveal that there are some similarities between the mechanisms of the toxic action of the mono-alkyl mercury compounds methylmercury (MeHg) and ethylmercury (EtHg).
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,298,992 B2 Stern Et Al
    US008298.992B2 (12) United States Patent (10) Patent No.: US 8,298,992 B2 Stern et al. (45) Date of Patent: Oct. 30, 2012 (54) LOW ODOR, LOW VOLATILITY SOLVENT (56) References Cited FOR AGRICULTURAL CHEMICALS U.S. PATENT DOCUMENTS (75) Inventors: Alan J. Stern, Magnolia, TX (US); 2,778,826 A * 1/1957 Schmidle ...................... 546,192 David Ferguson, Spring, TX (US); 3,074,940 A * 1/1963 Benzing ............. ... 544,178 Howard Stridde, George West, TX (US) 3,342,673 A * 9, 1967 Kaufman et al. ............. 514,443 5,283,229 A 2/1994 Narayanan et al. (73) Assignee: Huntsman Petrochemical LLC. The 2005, 0137091 A1 6, 2005 Herold et al. Woodlands, TX (US) 2005/0215433 A1 9, 2005 Benitez et al. (*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS patent is extended or adjusted under 35 Masuyama A. Preparation and Surface Active Properties of Terminal U.S.C. 154(b) by 743 days. Amide Type of Alcohol Ethoxylates, Jun. 1989, JAOCS, vol. 66, No. (21) Appl. No.: 12/300,482 6, pppp. 834-837.* * cited by examiner (22) PCT Filed: May 25, 2007 86) PCT No.: PCT/US2007/069793 Primary Examiner — Brian-Yong S Kwon (86) O Assistant Examiner — Andriae M Holt S371 (c)(1), (74) Attorney, Agent, or Firm — Huntsman International (2), (4) Date: Nov. 12, 2008 LLC (87) PCT Pub. No.: WO2007/140332 (57) ABSTRACT PCT Pub. Date: Dec. 6, 2007 A composition includes an agricultural component in an (65) Prior Publication Data amount of at least about 27% by weight and a solvent com position in an amount not greater than about 55% by weight.
    [Show full text]
  • The Preparation of Derivatives Related to Novocain
    University of Louisville ThinkIR: The University of Louisville's Institutional Repository Electronic Theses and Dissertations 1-1927 The preparation of derivatives related to novocain. Helen Peil University of Louisville Follow this and additional works at: https://ir.library.louisville.edu/etd Recommended Citation Peil, Helen, "The preparation of derivatives related to novocain." (1927). Electronic Theses and Dissertations. Paper 1108. https://doi.org/10.18297/etd/1108 This Master's Thesis is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of the author, who has retained all other copyrights. For more information, please contact [email protected]. UNIVERSITY OF LOUISVILLE THE PREPARATION OF DERIVATIVES RELATED TO NOVOCAIN A Dissertation Submitted to the Faculty Of the Graduate School of the College of Liberal Arts In Partial Fulfillment of the Requirements for the Degree Of Master of Science Department of Chemistry By Helen Peil 1927 COYTENTS Part 1 THE PREP RATION OF DERIVA.TIVES REUTED TO NOVOCAIN Page 1 . Introduction 1 2. Experiments 7 3 . Conclusions 17 4. Bibliography 18 Part 2 THE OXIDII. TION OF n- BUTYL THIOCYA.NA TE WITH NITRIC ACID Page 1. Introduction 19 2. Experiments 20 3. Conclusions 28 4. BIbliography 29 INTRODUCTION \ I • 1. PREP/~RA'l'IUN OF DlillIVATIV.I!:S REL.A,Tl.;D TO NOVOCAIN The study of the relationship between chemica.l constitution - snd physiological effect emb~ cas m~ ny very interesting pro­ blems which are, however, frequently difficuJt to solve In the investigation of any dru the first step i s to determine the princ~ple to which the physiological effect is due, and then b:' ane.lysis and synthesis assign t 1e correct chemic" 1 constitution t o this principle.
    [Show full text]
  • Korea Tariff Schedule
    Annex 2-B Tariff Schedule of Korea HSK Description Base rate Staging Category Safeguard 0101101000 Horses 8 D 0101109000 Other 8 D 0101901010 Horses for racing 8 D 0101901090 Other 8 D 0101909000 Other 8 G 0102101000 Milch cows 89.1 A 0102102000 Beef cattle 89.1 A 0102109000 Other 89.1 A 0102901000 Milch cows 40 M 0102902000 Beef cattle 40 H 0102909000 Other 0 K 0103100000 1. Pure-bred breeding animals 18 A 0103910000 Weighing less than 50kg 18 G 0103920000 Weighing 50kg or more 18 G 0104100000 Sheep 8 A 0104201000 Milch goats 8 G 0104209000 Other 8 A 0105111000 Pure-bred breeding animals 9 A 0105119000 Other 9 A 0105120000 B. Turkeys 9 A 0105191000 Ducks 18 G 0105199000 Other 9 A 0105921000 (1) Pure-bred breeding animals 9 A 0105929000 (2)Other 9 A 0105931000 (1) Pure-bred breeding animals 9 A 0105939000 (2) Other 9 A 0105991000 Ducks 18 G 0105992000 Turkeys 9 A 0105999000 Other 9 A 0106110000 Primates 8 A Whales, dolphins and porpoises(mammals 0106120000 of the order Cetacea); manatees and 8A dugongs(mammals of the order Sirenia) 0106191000 Dogs 8 D 0106192000 Rabbits and hares 8 D 0106193000 Deer 8 G 0106194000 Bears 8 A 0106199000 Other 8 D 0106201000 Snakes 8 A 0106202000 Fresh-water tortoises 8 D 0106203000 Turtles 8 A 0106209000 Other 8 A 0106310000 Birds of prey 8 D Psittaciformes (including parrots, 0106320000 8D parakeets, macaws and cockatoos) 0106390000 Other 8 A 0106901000 Amphibia 8 A 0106902010 Honey bees 8 D 0106902090 Other 8 A 0106903010 Lug worms 8 A 0106903020 Yarn earth worms 8 A 0106903090 Other 8 A 0106909000 Other
    [Show full text]
  • Multidirectional Efficacy of Biologically Active Nitro Compounds Included in Medicines
    Review Multidirectional Efficacy of Biologically Active Nitro Compounds Included in Medicines Dorota Olender, Justyna Żwawiak * and Lucjusz Zaprutko Department of Organic Chemistry, Pharmaceutical Faculty, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; [email protected] (D.O.); [email protected] (L.Z.) * Correspondence: e-mail: [email protected]; Tel.: +48-618-546-678 Received: 8 May 2018; Accepted: 25 May 2018; Published: 29 May 2018 Abstract: The current concept in searching for new bioactive products, including mainly original active substances with potential application in pharmacy and medicine, is based on compounds with a previously determined structure, well-known properties, and biological activity profile. Nowadays, many commonly used drugs originated from natural sources. Moreover, some natural materials have become the source of leading structures for processing further chemical modifications. Many organic compounds with great therapeutic significance have the nitro group in their structure. Very often, nitro compounds are active substances in many well-known preparations belonging to different groups of medicines that are classified according to their pharmacological potencies. Moreover, the nitro group is part of the chemical structure of veterinary drugs. In this review, we describe many bioactive substances with the nitro group, divided into ten categories, including substances with exciting activity and that are currently undergoing clinical trials. Keywords: nitro group; nitro compounds; drugs with the nitro group; veterinary medicines with the nitro group 1. Introduction Drugs exert a local action, or, after being absorbed into the body, a general effect. The chemical structure of the active substance is fundamental because of its therapeutic effect on the body.
    [Show full text]