Thorium Research in the Manhattan Project Era
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Wahlen, R. K. History of 100-B Area
WHC-EP-0273 History of 100-B Area R. K. Wahlen Date Published October 1989 Prepared for the U.S. Department of Energy Assistant Secretary for Management and Administration w Westinghouse P.O. Box 1970 0- Hanford mpany Richland, Washington &I352 Hanford Operations and Engineering Contractor for the U.S. Department of Energy under Contract DE-ACO6-87RLlOg30 WHC-EP-0273 EXECUTIVE SUMMARY In August 1939, Albert Einstein wrote a letter to President Roosevelt that informed him of the work that had been done by Enrico Fermi and L. Szilard on converting energy from the element uranium. He also informed President Roosevelt that there was strong evidence that the Germans were also working on this same development. This letter initiated a program by the United States to develop an atomic bomb. The U.S. Army Corps of Engineers, under the Department of Defense, was assigned the task. The program, which involved several locations in the United States, was given the code name, Manhattan Project. E. I. du Pont de Nemours & Company (Du Pont) was contracted to build and operate the reactors and chemical separations plants for the production of plutonium. On December 14, 1942, officials of Du Pont met in Wilmington, Delaware, to develop a set of criteria for the selection of a site for the reactors and separations plants. The basic criteria specified four requirements: (1) a large supply of clean water, (2) a large supply of electricity, (3) a large area with low population density, and (4) an area that would cover at least 12 by 16 mi. -
The Hanford Laboratories and the Growth of Environmental Research in the Pacific Northwest
AN ABSTRACT OF THE THESIS OF D. Erik Ellis for the degree of Master of Science in History of Science, presented on December 17,2002. Title: The Hanford Laboratories and the Growth of Environmental Research in the Pacific Northwest. 1943 to 1965. Redacted for privacy Abstract approved: William G. Robbins The scientific endeavors that took place at Hanford Engineer Works, beginning in World War II and continuing thereafter, are often overlooked in the literature on the Manhattan Project, the Atomic Energy Commission, and in regional histories. To historians of science, Hanford is described as an industrial facility that illustrates the perceived differences between academic scientists on the one hand and industrial scientists and engineers on the other. To historians of the West such as Gerald Nash, Richard White, and Patricia Limerick, Hanford has functioned as an example of the West's transformation during in World War II, the role of science in this transformation, and the recurring impacts of industrialization on the western landscape. This thesis describes the establishment and gradual expansion of a multi-disciplinary research program at Hanford whose purpose was to assess and manage the biological and environmental effects of plutonium production. By drawing attention to biological research, an area in which Hanford scientists gained distinction by the mid 1950s, this study explains the relative obscurity of Hanford's scientific research in relation to the prominent, physics- dominated national laboratories of the Atomic Energy Commission. By the mid 1960s, with growing public concern over radiation exposure and changes in the government's funding patterns for science, Hanford's ecologically relevant research provided a recognizable and valuable identity for the newly independent, regionally-based research laboratory. -
The Online Version of Catalogue 32 Does Not Contain the Printed
Please note: The online version of Catalogue 32 does not contain the printed version’s 172 black and white illustrations—this is because the illustrations in the printed catalogue were submitted to the printer as hard copy, rather than electronic files. Future catalogues will have digitized illustrations, so that their online versions will be exact counterparts of the printed ones. Catalogue 32 CLASSICS OF SCIENCE & MEDICINE With 172 black & white and 6 color illustrations Table of Contents Science & Medicine Page 5 Recent Books, History & Reference 80 Norman Publishing 83 About Our Cover. The cover of Catalogue 32 features the following: (1) No. 198, a beautifully executed bronze bust of Ambroise Paré by the 19th century French sculptor Emile Picault (ca. 1893); (2) No. 109, Domenico Fontana’s Della transportatione dell’obelisco (1590), a classic of Renaissance engineering describing the removal of the Vatican obelisk to its present site in the Piazza of St. Peter; (3) No. 127, George Robert Gray’s Genera of Birds (1849), with magniWcent plates by David William Mitchell, Joseph Wolf, Edward Lear and others; (4) On the Fabric of the Human Body (1998), the English translation of the Wrst book of Andreas 1543 1 4 Vesalius’s De humani corporis fabrica ( ); 5 (5) No. 112, Narrative of a Journey to the Shores of the Polar Sea (1823), John Franklin’s clas- 23 sic account of his Wrst Arctic expedition of 1819–22; (6) No. 103, Oliver Byrne’s edition of The First Six Books of the Elements of Euclid 6 (1847), one of the most striking and attrac- tive examples of color printing issued by the noted Victorian publisher William Pickering; and (7) No. -
Fizzling the Plutonium Economy: Origins of the April 1977 Carter Administration Fuel Cycle Policy Transition
Fizzling the Plutonium Economy: Origins of the April 1977 Carter Administration Fuel Cycle Policy Transition The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Williams, Peter King. 2010. Fizzling the Plutonium Economy: Origins of the April 1977 Carter Administration Fuel Cycle Policy Transition. Master's thesis, Harvard University, Extension School. Citable link https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37367548 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Fizzling the Plutonium Economy: Origins of the April 1977 Carter Administration Fuel Cycle Policy Transition Peter Williams A Thesis in the Field of History for the Degree of Master of Liberal Arts in Extension Studies Harvard University May 2010 © 2010 Peter Williams Abstract This study examines the scientific advocacy that shaped President Carter’s April 1977 policy decision to block the domestic implementation of so-called “plutonium economy” technologies, and thereby mandate the use of an “open” or “once–through” fuel cycle for U.S. nuclear power reactors. This policy transition was controversial, causing friction with U.S. allies, with the nuclear power industry, and with Congress. Early in his presidential campaign, Carter criticized the excessive federal financial commitment to developing plutonium-based reactors and adopted the view that the weapons proliferation risks of plutonium economy technologies were serious and needed to be addressed. -
Testimony of L Wayne,D Dupont,B Norton,M Kaku,M Pulido, R Kohn
_ _ __ l I - PA N E L- [ " * u hv/s3 | CNEMICAI, REACTIONS I | Introduction 1. In 1957,~a very serious fire occurred at a non-power reactor located at Vindscale, England. Although the reactor was a production reactor, it had a number of sinhities to the UCIA reacter-- fuel containing uranium metal clad in aluminum, with a graphite moderator / reflector, and normal operation at relatively low temperatures, which permitted build-up of stored "Vigner" energy in the graphite. Release of that r stored energy contributed to the cause of the fire, which resulted in extensive daanse and 20,000 curies of iodine-131 being released to the environment. Milk contaminated with I-131 had to be disposed of in an area of 200 square miles around the reactor because of the accident. , l 2 In 1960, the UCIA Argonaut-type reactor began operation. Its Hasards Analysis did not addrissa Vigner energy storage, and a brief paragraph ; dismissed the potential for fire largely based on the assertion that | "none of the anterials of construction of the reactor are infh==mble." (p.62) 3. As the Windacale fire showed, and as shall be discussed in detail below, that assertion is dangerously untrue.* The graphite can burns i the uranium metal can burns the angnesium can burns even the aluminum ' under sono circumstances will burn. And ignoring Vigner energy can like- vise be dangerous. 4 It has further been asserted that the only chemical reaction of signif- icance to be considered for the UCIA reactor is a water reaction with aluminum, and that aluminum weald have to be in the form of metal filings | for such a reaction to occur. -
Wolfgang Pauli Niels Bohr Paul Dirac Max Planck Richard Feynman
Wolfgang Pauli Niels Bohr Paul Dirac Max Planck Richard Feynman Louis de Broglie Norman Ramsey Willis Lamb Otto Stern Werner Heisenberg Walther Gerlach Ernest Rutherford Satyendranath Bose Max Born Erwin Schrödinger Eugene Wigner Arnold Sommerfeld Julian Schwinger David Bohm Enrico Fermi Albert Einstein Where discovery meets practice Center for Integrated Quantum Science and Technology IQ ST in Baden-Württemberg . Introduction “But I do not wish to be forced into abandoning strict These two quotes by Albert Einstein not only express his well more securely, develop new types of computer or construct highly causality without having defended it quite differently known aversion to quantum theory, they also come from two quite accurate measuring equipment. than I have so far. The idea that an electron exposed to a different periods of his life. The first is from a letter dated 19 April Thus quantum theory extends beyond the field of physics into other 1924 to Max Born regarding the latter’s statistical interpretation of areas, e.g. mathematics, engineering, chemistry, and even biology. beam freely chooses the moment and direction in which quantum mechanics. The second is from Einstein’s last lecture as Let us look at a few examples which illustrate this. The field of crypt it wants to move is unbearable to me. If that is the case, part of a series of classes by the American physicist John Archibald ography uses number theory, which constitutes a subdiscipline of then I would rather be a cobbler or a casino employee Wheeler in 1954 at Princeton. pure mathematics. Producing a quantum computer with new types than a physicist.” The realization that, in the quantum world, objects only exist when of gates on the basis of the superposition principle from quantum they are measured – and this is what is behind the moon/mouse mechanics requires the involvement of engineering. -
Norman Hilberry' Dr
Norman Hilberry' Dr. Norman Hilberry, now retired, was formerly director of Argonne Na tional Laboratory, one of the principal research and development centers in the field of nuclear science and engineering in the United States. The Laboratory is operated by the University of Chicago for the U. S. Atomic Energy Commis sion. Dr. Hilberry's association with the nuclear energy program began late in 1941 when, as personal aide, he joined Dr. A. H. Compton who had just been designated as project director for the Metallurgical Project, later known as the Plutonium Project. In this capacity Dr. Hilberry was associated with the group under Fermi which first achieved a self sustaining, controlled nuclear chain re action on December 2, 1942. As associate project director of the Metallurgical Project, he acted as the project office's representative at Clinton Laboratories during the start-up of the X-10 reactor in the Fall of 1943. Starting in the summer of 1944 he served ( again in his capacity as associate project director) as head of the resident project group which provided the official liaison between the DuPont organization and the Metallurgical Project during the start-up of the production facilities at the Hanford Engineer Works. With the successful operation of Hanford an accomplished fact, Dr. Hilberry returned to the Metallurgical Project office during the winter of 1945. After Dr. Compton's move to St. Louis as Chancellor of Washington University in July, 1945, he took over the closing out of the affairs of the central project office. Dur ing this period he assisted the Manhattan District of the U. -
Potentialities of a Low-Energy Detector Based on $^ 4$ He Evaporation to Observe Atomic Effects in Coherent Neutrino Scattering and Physics Perspectives
Potentialities of a low-energy detector based on 4He evaporation to observe atomic effects in coherent neutrino scattering and physics perspectives M. Cadeddu,1, ∗ F. Dordei,2, y C. Giunti,3, z K. A. Kouzakov,4, x E. Picciau,1, { and A. I. Studenikin5, 6, ∗∗ 1Universit`adegli studi di Cagliari and Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Cagliari, Complesso Universitario di Monserrato - S.P. per Sestu Km 0.700, 09042 Monserrato (Cagliari), Italy 2Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Cagliari, Complesso Universitario di Monserrato - S.P. per Sestu Km 0.700, 09042 Monserrato (Cagliari), Italy 3Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Torino, Via P. Giuria 1, I{10125 Torino, Italy 4Department of Nuclear Physics and Quantum Theory of Collisions, Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia 5Department of Theoretical Physics, Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia 6Joint Institute for Nuclear Research, Dubna 141980, Moscow Region, Russia We propose an experimental setup to observe coherent elastic neutrino-atom scattering (CEνAS) using electron antineutrinos from tritium decay and a liquid helium target. In this scattering process with the whole atom, that has not beeen observed so far, the electrons tend to screen the weak charge of the nucleus as seen by the electron antineutrino probe. The interference between the nucleus and the electron cloud produces a sharp dip in the recoil spectrum at atomic recoil energies of about 9 meV, reducing sizeably the number of expected events with respect to the coherent elastic neutrino-nucleus scattering case. We estimate that with a 60 g tritium source surrounded by 500 kg of liquid helium in a cylindrical tank, one could observe the existence of CEνAS processes at 3σ in 5 years of data taking. -
Molten-Salt Technology and Fission Product Handling
Molten-Salt Technology and Fission Product Handling Kirk Sorensen Flibe Energy, Inc. ORNL MSR Workshop October 4, 2018 2018-10-16 Hello, my name is Kirk Sorensen and I’d like to talk with you today about fission products and their handling in molten-salt reactors. One of the things that initially attracted me to molten-salt reactor technology was the array of options that it gave for the intelligent handling of fission products. It represented such a contrast to solid-fueled systems, which mixed fission products in with unburned nuclear fuel in a form that was difficult to separate, one from another. While my focus will be on our work on molten-salt reactor fission product handling, many of the principles are general to molten-salt reactors as a whole. Fundamental Nuclear Reactor Concept In its simplest form, a nuclear reactor generates thermal energy that is carried away by a coolant. That coolant heats the working fluid of a power conversion system, which generates electricity from part of the thermal energy and rejects the remainder to the environment. coolant working fluid fresh fuel electricity Power Nuclear Heat Conversion Reactor Exchanger System spent fuel heated water or air coolant working fluid The primary coolant chosen for a nuclear reactor determines, in large part, its size and manufacturability. The temperature of the coolant determines the efficiency of electrical generation. Fundamental Nuclear Reactor Concept In its simplest form, a nuclear reactor generates thermal energy that is carried away by a coolant. That coolant heats the working fluid of a power conversion system, which generates electricity from part of the thermal energy and rejects the remainder to the environment. -
A Comparison of Advanced Nuclear Technologies
A COMPARISON OF ADVANCED NUCLEAR TECHNOLOGIES Andrew C. Kadak, Ph.D MARCH 2017 B | CHAPTER NAME ABOUT THE CENTER ON GLOBAL ENERGY POLICY The Center on Global Energy Policy provides independent, balanced, data-driven analysis to help policymakers navigate the complex world of energy. We approach energy as an economic, security, and environmental concern. And we draw on the resources of a world-class institution, faculty with real-world experience, and a location in the world’s finance and media capital. Visit us at energypolicy.columbia.edu facebook.com/ColumbiaUEnergy twitter.com/ColumbiaUEnergy ABOUT THE SCHOOL OF INTERNATIONAL AND PUBLIC AFFAIRS SIPA’s mission is to empower people to serve the global public interest. Our goal is to foster economic growth, sustainable development, social progress, and democratic governance by educating public policy professionals, producing policy-related research, and conveying the results to the world. Based in New York City, with a student body that is 50 percent international and educational partners in cities around the world, SIPA is the most global of public policy schools. For more information, please visit www.sipa.columbia.edu A COMPARISON OF ADVANCED NUCLEAR TECHNOLOGIES Andrew C. Kadak, Ph.D* MARCH 2017 *Andrew C. Kadak is the former president of Yankee Atomic Electric Company and professor of the practice at the Massachusetts Institute of Technology. He continues to consult on nuclear operations, advanced nuclear power plants, and policy and regulatory matters in the United States. He also serves on senior nuclear safety oversight boards in China. He is a graduate of MIT from the Nuclear Science and Engineering Department. -
Decoherence and the Transition from Quantum to Classical—Revisited
Decoherence and the Transition from Quantum to Classical—Revisited Wojciech H. Zurek This paper has a somewhat unusual origin and, as a consequence, an unusual structure. It is built on the principle embraced by families who outgrow their dwellings and decide to add a few rooms to their existing structures instead of start- ing from scratch. These additions usually “show,” but the whole can still be quite pleasing to the eye, combining the old and the new in a functional way. What follows is such a “remodeling” of the paper I wrote a dozen years ago for Physics Today (1991). The old text (with some modifications) is interwoven with the new text, but the additions are set off in boxes throughout this article and serve as a commentary on new developments as they relate to the original. The references appear together at the end. In 1991, the study of decoherence was still a rather new subject, but already at that time, I had developed a feeling that most implications about the system’s “immersion” in the environment had been discovered in the preceding 10 years, so a review was in order. While writing it, I had, however, come to suspect that the small gaps in the landscape of the border territory between the quantum and the classical were actually not that small after all and that they presented excellent opportunities for further advances. Indeed, I am surprised and gratified by how much the field has evolved over the last decade. The role of decoherence was recognized by a wide spectrum of practic- 86 Los Alamos Science Number 27 2002 ing physicists as well as, beyond physics proper, by material scientists and philosophers. -
0409-TOFE-Elguebaly
BBenenefitsefits ooff RRadadialial BBuuildild MinMinimimizatioizationn anandd RReqequuirirememenentsts ImImposedposed onon AARRIEIESS CComompapacctt SStetellallararatotorr DDeesigsignn Laila El-Guebaly (UW), R. Raffray (UCSD), S. Malang (Germany), J. Lyon (ORNL), L.P. Ku (PPPL) and the ARIES Team 16th TOFE Meeting September 14 - 16, 2004 Madison, WI Objectives • Define radial builds for proposed blanket concepts. • Propose innovative shielding approach that minimizes radial standoff. • Assess implications of new approach on: – Radial build – Tritium breeding – Machine size – Complexity – Safety – Economics. 2 Background • Minimum radial standoff controls COE, unique feature for stellarators. • Compact radial build means smaller R and lower Bmax fi smaller machine and lower cost. • All components provide shielding function: – Blanket protects shield Magnet Shield FW / Blanket – Blanket & shield protect VV Vessel Vacuum – Blanket, shield & VV protect magnets Permanent Components • Blanket offers less shielding performance than shield. • Could design tolerate shield-only at Dmin (no blanket)? • What would be the impact on T breeding, overall size, and economics? 3 New Approach for Blanket & Shield Arrangement Magnet Shield/VV Shield/VV Blanket Plasma Blanket Plasma 3 FP Configuration WC-Shield Dmin Magnet Xn through nominal Xn at Dmin blanket & shield (magnet moves closer to plasma) 4 Shield-only Zone Covers ~8% of FW Area 3 FP Configuration Beginning of Field Period f = 0 f = 60 Middle of Field Period 5 Breeding Blanket Concepts Breeder Multiplier Structure FW/Blanket Shield VV Coolant Coolant Coolant ARIES-CS: Internal VV: Flibe Be FS Flibe Flibe H2O LiPb – SiC LiPb LiPb H2O * LiPb – FS He/LiPb He H2O Li4SiO4 Be FS He He H2O External VV: * LiPb – FS He/LiPb He or H2O He Li – FS He/Li He He SPPS: External VV: Li – V Li Li He _________________________ * With or without SiC inserts.