50 Jahre Plasmaphysik Und Fusionsforschung an Der Universität Innsbruck 1958 - 2008

Total Page:16

File Type:pdf, Size:1020Kb

50 Jahre Plasmaphysik Und Fusionsforschung an Der Universität Innsbruck 1958 - 2008 50 Jahre Plasmaphysik und Fusionsforschung an der Universität Innsbruck 1958 - 2008 A. Kendl (Hg.) 4 50 Jahre Plasmaphysik an der Universität Innsbruck 5 Inhalt 1 Vorwort des Vizerektors für Forschung ( Tilmann Märk) 7 2 Grußworte 11 3 Geschichte der Plasmaphysik in Innsbruck 17 3.1 Die Anfänge der Plasmaphysik in Innsbruck ab 1958 ( Ferdinand Cap ) 19 3.2 Weitere Entwicklung seit 1988 am Institut für Theoretische Physik 31 3.2.1 Plasmatheorie (Siegbert Kuhn) 33 3.2.2 Fusions- und Energiephysik (Klaus Schöpf) 41 3.3 Plasmaphysik am Institut für Ionenphysik und Angewandte Physik 53 3.3.1 Ionenphysik und Angewandte Physik (Tilmann Märk) 53 3.3.2 Experimentelle Plasmaphysik ( Roman Schrittwieser) 63 3.3.3 Komplexe Systeme (Alexander Kendl) 76 4 Wissenschaft im Kontext 79 4.1 1958-2008: 50 Jahre Fusionsforschung für den Frieden ( Karl Lackner) 81 4.2 Europäische Fusionsforschung in Österreich: Die Assoziation EURATOM-ÖAW an der Österreichischen Akademie der Wissenschaften ( Harald W. Weber) 94 4.3 Ionen- und Plasmaphysik / Angewandte Physik: ein Schwerpunkt der Physik ( Paul Scheier) 100 5 Aktuelle Forschung und Perspektiven: Laufende Projekte 2008 107 6 Publikationen der Innsbrucker Plasmaphysiker 123 7 Nachdruck: Scientific Report No. 100 „17 Years Plasma Physics in Innsbruck“ 167 6 50 Jahre Plasmaphysik an der Universität Innsbruck 7 1 50 Jahre Plasmaphysik Innsbruck Vorwort aus der Sicht des Vizerektors für Forschung Als erstsemestriger Physikstudent im Jahre 1962 hatte man keine sehr große Auswahl an Vor- lesungen, es gab verschiedene Mathematikvorlesungen und es gab die eine eher experimentell ausgerichtete Einführungsvorlesung für alle Physik- und Medizinstudenten von Professor Steinmaurer. Es gab zu dieser Zeit nur einen einzigen anderen Physikprofessor, den Theoreti- ker Professor Ferdinand Cap. Er las damals einen mehrjährigen Zyklus aus theoretischer Phy- sik und je nachdem, wann man gerade mit dem Studium anfing, musste man einige Zeit war- ten um gerade den Anfang, nach entsprechenden vorbereitenden Vorlesungen aus Mathema- tik und Experimentalphysik, nämlich die Vorlesung Mechanik I zu erwischen. In meinem Falle hätte das bedeutet, dass ich mindestens zwei Jahre hätte warten müssen und so ent- schloss ich mich entgegen allen Ratschlägen mich bereits im ersten Semester in die mit Ehr- furcht als sehr schwierig gehandelten theoretischen Vorlesungen zu setzen. Ich habe von An- fang an jede einzelne Vorlesung genossen, Professor Cap hat es als begnadeter Vortragender verstanden auch die schwierigsten Zusammenhänge und mathematischen Ableitungen in kla- rer, verständlicher und spannender Weise vorzutragen. Der einzige Wermutstropfen, man musste unheimlich schnell und viel mitschreiben. In seinen Spezialvorlesungen zur Plasma- physik hat er in einer Reihe von Schülern in diesen Jahren das Interesse und die Liebe zur diesem hochaktuellen Forschungsgebiet der modernen Physik geweckt. Prof. Cap war bereits in den 60er Jahren ein moderner, extrem aktiver Professor, er be- schränkte sich nicht nur auf die Vorlesungstätigkeit, sondern er führte eine aktive For- schungsgruppe auf dem Gebiet der Plasmaphysik, publizierte bereits viel mehr als andere und 8 50 Jahre Plasmaphysik schrieb nebenbei noch Bücher. Besonders erwähnenswert, in einer beispiellosen Modernität, überwand er die damals und auch teilweise heute noch im europäischen Raum in der Physik vorherrschende Trennung zwischen Theorie und Experiment und gründete ein eigenes experi- mentelles Labor und initiierte als Theoretiker erfolgreiche Experimente im Bereich der Plas- maphysik. Heute ist es eine Selbstverständlichkeit, dass man Fragestellungen in der Physik mit beiden Methoden zugleich behandeln muss, wenn man erfolgreich sein will. Er war auch in anderer Beziehung seiner Zeit voraus, wir reden heute davon wie wichtig Wis- senstransfer von der Universität in die Wirtschaft ist, Prof. Cap hat bereits in den 60er Jahren Erfindungen realisiert und Patente angemeldet. Er war auch zusammen mit Professor Maxi- milian Pahl, vom Institut für Atomphysik (Ionenphysik) die treibende Kraft dafür, dass nach Installierung des Schwerpunktprogrammes des FWF aufgrund eines hervorragenden Antrages einer der ersten Schwerpunkte nach Innsbruck vergeben wurde, wobei im Rahmen dieses Schwerpunktes auf dem Gebiet der Plasmaphysik auch junge Assistenten Projektleiter sein konnten, was damals üblicherweise Professoren vorbehalten war. Die Förderung der Plasma- physik in Innsbruck durch dieses Schwerpunktprogramm in den beiden Förderperioden 1973- 1978 und 1978-1983 führten zu einem enormen Aufschwung der Plasmaphysik, im speziellen der Fusionsforschung, in Innsbruck und im speziellen der experimentellen Gruppen am Insti- tut für Atomphysik (Ionenphysik). Dieser Aufschwung fand seine Fortsetzung in der Innsbru- cker Teilnahme an der von Professor Hannspeter Winter in den 90er Jahren initiierten Asso- ziation Euratom-ÖAW (heute unter der Leitung von Professor Harald Weber), in der fünf von den acht österreichischen Physikprojekten in Innsbruck angesiedelt sind. Mit dem Baube- schluss von ITER in Europa ist nunmehr sichergestellt, dass Fusionsforschung auf europäi- scher und internationaler Ebene in den nächsten Jahrzehnten einen wesentlichen Schwerpunkt bilden wird. Insofern ist es auch wichtig sicherzustellen, dass auch in Österreich adäquate Forschungs- und Lehrkapazitäten zur Verfügung stehen. Der Standort Innsbruck nimmt in diesem Zusammenhang aus Sicht des Wissenschaftsministeriums, der Österreichischen Aka- demie der Wissenschaften und von EURATOM, Brüssel, eine Schlüsselrolle auf dem Gebiet der theoretischen Plasmaphysik und der experimentellen Ionen- und Plasmaphysik ein. Wenn heute die Physik Innsbruck eines der ganz großen Glanzlichter der LFUI darstellt und international hohes Ansehen genießt, wenn heute Innsbruck und auch Österreich auf der inter- nationalen Landkarte der Plasmaforschung prominent vertreten ist (u.a. durch den LFUI Schwerpunkt Ionen- und Plasmaphysik / Angewandte Physik), dann verdanken wir dies den Visionen von Professor Cap und Professor Pahl. Diese beiden Professoren haben in den schwierigen Nachkriegszeiten den Grundstein zu dieser rasanten Entwicklung gelegt. In ei- nem einzigen Punkt hat sich allerdings Professor Cap geirrt, schon in den Vorlesungen, die ich als junger Student anfangs der 60er besuchte und in denen er uns von dem vierten Mate- riezustand berichtete und überzeugte, hat er uns damit fasziniert, dass es nur mehr ein kurzer an der Universität Innsbruck 9 Schritt bis zur Realisierung des Fusionsreaktors sei. Aus seiner damaligen Sicht hätte der Schritt vielleicht 10-20 Jahre dauern sollen, wie wir heute wissen, könnten daraus eher 50- 100 Jahre werden. Als Vizerektor für Forschung der Leopold-Franzens-Universität wünsche ich mir und der Plasmaphysik Innsbruck auch für die nächsten 50 Jahre eine ebenso erfolgreiche Entwicklung wie in den bisherigen 50 Jahren. Neben der Quantenphysik und der Astrophysik ist dieser Teilbereich der Physik das dritte wesentliche Standbein, auf dem die internationalen Erfolge und Anerkennung der Innsbrucker Physik beruhen. Univ.-Prof. Dr.phil. Dr.h.c. mult. Tilmann Märk Vizerektor für Forschung, Universität Innsbruck 10 50 Jahre Plasmaphysik an der Universität Innsbruck 11 2 Grußworte 12 50 Jahre Plasmaphysik 2.1 Grußwort Univ.-Prof. Dr. Karlheinz Töchterle Rektor der Universität Innsbruck Die Plasmaphysik und Fusionsforschung ist nun bereits seit 50 Jahren ein wichtiges Arbeits- gebiet der Physik an der Universität Innsbruck. Ferdinand Cap, seit 1958 Professor für theore- tische Physik und einer der Gründerväter der österreichischen Plasmaforschung, hat sich früh- zeitig und gegen manche Widrigkeiten für die Beteiligung österreichischer Forscherinnen und Forscher an der internationalen Fusionsforschung stark gemacht. Ziel war unter anderem be- reits damals die friedliche Nutzung der Kernverschmelzung zur Energiegewinnung. Ein For- schungsfeld, das mit dem internationalen Forschungsprojekt ITER zum Bau eines Versuchs- reaktors für die großtechnische Nutzung der Kernfusion gerade heute wieder hochaktuell ge- worden ist. Innsbrucker Forscher sind mit eigenen Experimenten und Simulationen an vielen großen Fusionsanlagen weltweit beteiligt und arbeiten auch an theoretischen und numeri- schen Modellierungen für ITER mit. Die Mitglieder der Innsbrucker Plasmaphysikgruppe haben in den vergangenen Jahrzehnten im engen Austausch mit internationalen Partnern in Ost und West anerkannte Beiträge auf den Gebieten der Plasmatheorie, der Plasma-Wand-Wechselwirkung und der Plasmadiagnos- tik geleistet. Sie zeichneten aber auch für die Anfänge des wissenschaftlichen Hochleistungs- rechnens in Innsbruck verantwortlich. In der Mitte des vergangenen Jahrhunderts entstand in Innsbruck rund um die Nobelpreisträ- ger Victor F. Hess und Erwin Schrödinger sowie den Quantentheoretiker Arthur March ein internationales Zentrum der Physik. Auf diesen Fundamenten konnte Ferdinand Cap als As- sistent von Schrödinger und Nachfolger von March aufbauen und Innsbruck als international beachtete Forschungsstätte der Physik etablieren. Gemeinsam mit den erfolgreichen Arbeits- gruppen der Ionenphysik, der Quantenphysik und der Astrophysik trägt die Plasmaphysik auch heute wesentlich zum Ruf des Physikstandortes Innsbruck bei. Als Rektor möchte ich allen Mitarbeiterinnen und Mitarbeitern zu diesem Erfolg gratulieren und ihnen im Namen der Universität für den großen Einsatz und das nicht nachlassende Engagement danken. an der Universität Innsbruck 13 2.2
Recommended publications
  • Geschichte Der Chemischen Institute in Innsbruck Und Die Verantwortung Von Natur- Und Geisteswissenschaften an Schulen Und Der Universität
    LEOPOLD-FRANZENS-UNIVERSITÄT INNSBRUCK Philosophisch-Historische Fakultät Institut für Zeitgeschichte Geschichte der Chemischen Institute in Innsbruck und die Verantwortung von Natur- und Geisteswissenschaften an Schulen und der Universität DIPLOMARBEIT zur Erlangung des akademischen Grades eines Magisters der Philosophie (Mag. phil.) eingereicht bei Univ.-Prof. Mag. Dr. Dirk Rupnow von Simon Hermann Schöpf 00718216 Philippine-Welser-Straße 1; 6020 Innsbruck Innsbruck, im Juni 2019 „Alles ist Chemie!“ Alle Chemiker*innen, immer. Eidesstattliche Erklärung Ich erkläre hiermit ehrenwörtlich, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht verwendet und die den benützten Quellen wörtlich oder inhaltlich entnommenen Stellen als solche kenntlich gemacht habe. Innsbruck, im Juni 2019 Simon Hermann Schöpf Vorwort Hiermit möchte ich mich bei allen bedanken, die zur Entstehung dieser Arbeit beigetragen und dabei mitgeholfen haben. Auch möchte ich mich bei allen bedanken, die mich in meiner gesamten Studienzeit unterstützt und motiviert haben! Ein herzliches Dankeschön an meinen Betreuer, Univ.- Prof. Mag. Dr. Dirk Rupnow, welcher es mir ermöglichte, meine beiden wissenschaftlichen Interessen, die Geistes- und die Naturwissenschaften, in einer Arbeit zu vereinen und mir immer hilfreiche Tipps gab. Auch bei MMag. Ina Friedmann und Mag. Dr. Christof Aichner, mit denen ich das wunderbare „Einhornbüro“ teilen konnte, möchte ich meinen Dank für die Unterstützung und die nette Zeit aussprechen. Danke auch an ao.Univ.-Prof. Mag. Dr. Margret Friedrich für ihr Feedback und ihre Hilfestellungen. Einen besonderen Dank möchte ich auch Dr. Ludwig Call aussprechen, der sich für diese Arbeit als Zeitzeuge zur Verfügung stellte und mir neue Einblicke in die „alte Chemie“ gab.
    [Show full text]
  • Erika Cremer (20.05.1900 München – 21.09.1996 Innsbruck) Pionierin Der Gaschromatographie
    310 Please take notice of: (c)Beneke. Don't quote without permission. Erika Cremer (20.05.1900 München – 21.09.1996 Innsbruck) Pionierin der Gaschromatographie Klaus Beneke Institut für Anorganische Chemie der Christian-Albrechts-Universität der Universität D-24098 Kiel [email protected] Aus: Klaus Beneke Biographien und wissenschaftliche Lebensläufe von Kolloidwis- senschaftlern, deren Lebensdaten mit 1996 in Verbindung stehen. Beiträge zur Geschichte der Kolloidwissenschaften, VIII Mitteilungen der Kolloid-Gesellschaft, 1999, Seite 311-334 Verlag Reinhard Knof, Nehmten ISBN 3-934413-01-3 311 Cremer, Erika (20.05.1900 München - 21.09.1996 Innsbruck) Erika Cremer wurde als als einzige Tochter, als zweites von von drei Kindern, dem Professor für Physiologie in München, Max Cremer, gebo- ren. Dieser gilt als der Entdecker der Glaselek- trode (Cremer, 1906). Ihr Vater stammte aus Ürdingen. Großvater und Vater der Mutter, Els- beth Rothmund, waren berühmte Kliniker an der Münchner Universität. Ihr Onkel Viktor Rothmund war Ordinarius für Physikalische Chemie in Prag. Die Berufung des Vaters nach Köln (1909) und nach Berlin an die Tierärztilche Hochschule (1911) war ein schwerer Eingriff in dem jungen Leben der gebürtigen Münchnerin. Zuerst wurde ihr in Köln der Dialekt radikal abgewöhnt, und der Schulwechsel in das preußische Berlin war wohl Erika Cremer auch nicht ganz im Sinne der kleinen Erika. Hei- misch wurde sie weder in Köln noch Berlin. Ihre Sehnsucht waren München und Miesbach wo sie einen Teil ihrer Kindheit verbrachte und vorallem die Alpen (Patat, 1965; Bobleter, 1990, 1997; Stöger, 1990). Mit dem Reifezeugnis an der Oberrealschule in der Kochstraße in Berlin immatri- kulierte sich Erika Cremer im Sommer 1921 an der Friedrich-Wilhelm-Universität in Berlin.
    [Show full text]
  • A Century of Chromatography — Gas Analysis in the First 50 Years
    GC CONNECTIONS A Century of Chromatography — Gas Analysis in the First 50 Years John V. Hinshaw, Serveron Corp., Hillsboro, Oregon, USA. Although many decades intervened between the beginnings of chromatography as a liquid–solid adsorption technique and the formal invention of gas–liquid-phase chromatography, those years were full of advances in gaseous chemical separations. This month in “GC Connections,” John Hinshaw reviews the developments before 1952 that established the basis for the modern practice of gas chromatography. The date 21 March 2003 marked the twenty-first century separation scientists, Gas Adsorption passage of 100 years since Mikhail Tswett between gas- and liquid-based Modern chromatographers are familiar (1872–1919) presented a lecture to the chromatography separations; they worked with gas chromatography (GC) column Biological Section of the Warsaw Society of in entirely different disciplines with packings that are the direct descendents of Natural Scientists on his 1901–1903 divergent goals. Not until the 1940s did charcoal. These packings include investigations of liquid–solid adsorptive some begin to draw the analogy between Carbopack-B (Supelco-Sigma-Aldrich, separations of plant pigments at Warsaw their work with gaseous separations and Bellefonte, Pennsylvania, USA), which University.1 This lecture is generally separations with a liquid mobile phase. Yet, contains a surface area of 100 m2 — recognized as the first public disclosure of various separation techniques based upon roughly equal to the area of my laboratory the chromatographic technique, although gas adsorption, which scientists now floor — in 1 g. Adsorption is the primary the term chromatography, which Tswett consider to have been forms of physical effect used in the various gas coined, did not appear in print until several chromatography, gained significance in the separation techniques discussed in this years later in 1906.
    [Show full text]
  • On the Nature of Discrete Space-Time: Part 1: the Distance
    – final manuscript accepted for publication in Logique et Analyse – On the Nature of Discrete Space-Time Part 1: The distance formula, relativistic time dilation and length contraction in discrete space-time DAVID CROUSE and JOSEPH SKUFCA Abstract In this work, the relativistic phenomena of Lorentz-Fitzgerald contrac- tion and time dilation are derived using a modified distance formula that is appropriate for discrete space. This new distance formula is different than the Pythagorean theorem but converges to it for distances large rela- tive to the Planck length. First, four candidate formulas developed by dif- ferent people over the last 70 years is discussed. Three of the formulas are shown to be identical for conditions that best describe discrete space. It is shown that this new distance formula is valid for all size-scales – from the Planck length upwards – and solves two major problems historically asso- ciated with the discrete space-time (DST) model. One problem it solves is the widely believed anisotropic nature of most discrete space models. Just as commonly believed is the second problem – the incompatibility of DST’s concept of an immutable atom of space and the length contraction of this atom required by special relativity. The new formula for distance in DST solves this problem. It is shown that length contraction of the atom of space does not occur for any relative velocity of two reference frames. It is also shown that time dilation of the atom of time does not occur. Also discussed is the possibility of any object being able to travel at the speed of light for specific temporal durations given by an equation derived in this work.
    [Show full text]
  • Michael Polanyi and the Social Studies of Science
    Michael Polanyi and the Social Studies of Science: Comments on Mary Jo Nye’s Michael Polanyi and His Generation Theodore L. Brown ABSTRACT Key Words: Michael Polanyi, Mary Jo Nye, Weimar Berlin, republic of science, scientific authority, social construction of science,Thomas Kuhn, Robert Merton, Ludwik Fleck, J. D. Bernal. This review offers comments on the book, Michael Polanyi and His Generation: Origins of the Social Construction of Science by Mary Jo Nye. Mary Jo Nye’s book about Michael Polanyi and his fellow pioneers in social studies of science is a joy to read. Her perspectives on the development of this field of inquiry, and her assessment of Polanyi’s role are presented through an unusual organizational structure. While her book is not intended to be primarily biographical, her account of Polanyi’s career, with its twists and turns, triumphs and defeats, is filled with many fascinating insights into his life and work. Nye begins by relating her own early introduction to the social aspects of science as a member of the 1960s graduate school generation studying the history of science. It was at about this time that study of the social aspects of science was ceded as having an importance in its own right, apart from science’s intellectual history. Nye has aimed to show that the origins of new social conceptions of science can be traced to the scientific culture and political events of Europe in the 1930s. Michael Polanyi’s story is an excellent vehicle for conveying just how those conceptions arose and evolved over time into a full-blown field of intellectual endeavor.
    [Show full text]
  • Early Stages in the History of Gas Chromatography
    Accepted Manuscript Title: Early Stages in the History of Gas Chromatography Authors: Ivan G. Kolomnikov, Alexander M. Efremov, Tatyana I. Tikhomirova, Nadezhda M. Sorokina, Yury A. Zolotov PII: S0021-9673(18)30006-2 DOI: https://doi.org/10.1016/j.chroma.2018.01.006 Reference: CHROMA 359132 To appear in: Journal of Chromatography A Received date: 10-10-2017 Revised date: 28-12-2017 Accepted date: 2-1-2018 Please cite this article as: Ivan G.Kolomnikov, Alexander M.Efremov, Tatyana I.Tikhomirova, Nadezhda M.Sorokina, Yury A.Zolotov, Early Stages in the History of Gas Chromatography, Journal of Chromatography A https://doi.org/10.1016/j.chroma.2018.01.006 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Early Stages in the History of Gas Chromatography Ivan G. Kolomnikova, Alexander M. Efremova, Tatyana I. Tikhomirovaa, Nadezhda M. Sorokinaa, Yury A. Zolotova, b, * aDepartment of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, GSP-1, Moscow 119991, Russia b Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, 119991 Russia *Corresponding author. Tel.: +7(495)939-55-64 E-mail: * [email protected] ACCEPTED MANUSCRIPT 1 Highlights The history of gas chromatography began earlier than famous Archer Martin’s works Most of the earlier chromatographic studies dealt with gas-adsorption chromatography Early studies were carried out mostly in Germany, Austria, UK and USSR Abstract The creation of gas chromatography is traditionally associated with the names of Nobel Prize winner Archer Martin and his colleagues Richard Synge and Anthony James.
    [Show full text]
  • Guide to the Michael Polanyi Papers 1900-1975
    University of Chicago Library Guide to the Michael Polanyi Papers 1900-1975 © 2009 University of Chicago Library Table of Contents Descriptive Summary 4 Information on Use 4 Access 4 Citation 4 Biographical Note 5 Scope Note 7 Related Resources 18 Subject Headings 18 INVENTORY 18 Series I: Correspondence 18 Subseries 1: General 19 Subseries 2: John R. Baker and the Society for Freedom in Science 32 Subseries 3: Joseph H. Oldham and the "Moot" 32 Subseries 4: Marjorie Grene and the Unity of Knowledge Group 33 Subseries 5: Harry Prosch 33 Subseries 6: Karl and Ilona Polanyi 34 Subseries 7: Cecile Polanyi 35 Series II: Notes 37 Subseries 1: Subject 37 Subseries 2: Author 39 Subseries 3: File Cards 52 Series III: Manuscripts 54 Subseries 1: 1936 55 Subseries 3: 1939 56 Subseries 4: 1940 56 Subseries 5: 1941 56 Subseries 6: 1942 58 Subseries 7: 1943 58 Subseries 8: 1944 60 Subseries 9: 1945 60 Subseries 10: 1946 61 Subseries 11: 1947 62 Subseries 12: 1948 63 Subseries 13: 1949 64 Subseries 14: 1950 64 Subseries 15: 1951 65 Subseries 16: 1952 65 Subseries 17: 1953 66 Subseries 18: 1954 66 Subseries 19: 1955, 1956, 1957 66 Subseries 20: 1958 67 Subseries 21: 1959 67 Subseries 22: 1960 67 Subseries 23: 1961 68 Subseries 24: 1962 68 Subseries 25: 1963 69 Subseries 26: 1964 70 Subseries 27: 1965 72 Subseries 28: 1966 73 Subseries 29: 1967 73 Subseries 30: 1968 73 Subseries 31: 1969 74 Subseries 32: 1970 75 Subseries 33: 1971 75 Subseries 34: 1972 76 Subseries 35: Undated 76 Subseries 36: Notebooks, Travel Diaries, and Bibliographies 78 Series IV: Offprints and Memorabilia 79 Subseries 1: Photographs and Postcards 79 Subseries 2: General Memorabilia 79 Subseries 3: Clippings 80 Subseries 4: Offprints, works by Michael Polanyi 82 Subseries 5: Offprints by Other Authors 83 Subseries 6: Michael Polanyi Library, photocopied title pages of Polanyi’s library,85 dispersed July 1994 Descriptive Summary Identifier ICU.SPCL.POLANYI Title Polanyi, Michael.
    [Show full text]
  • Karl Popper's Engagement in Quantum Physics in the 1960S
    Karl Popper’s engagement in quantum physics in the 1960s Flavio Del Santo ‒ University of Vienna ‒ [email protected] Abstract: The philosopher Karl R. Popper has been, since as early as 1934, one of the foremost critics of the Copenhagen interpretation of quantum mechanics, accusing it of subjectivism. In 1967, Popper published the paper “Quantum Mechanics without the Observer”, which had a certain resonance among the physicists and gathered appreciations from many illustrious ones (e.g. L. De Broglie, D. Bohm, A. Landé, M. Bunge, H. Bondi, B. van der Waerden). It belongs to the same period one of Popper’s most controversial publications in the highly quoted journal Nature, in which the author claimed to have found an error in a momentous paper, by G. Birkhoff and J. von Neumann, that initiated the research on Logic of Quantum Mechanics. Consequently, Popper entered an intense debate which divided the physics community. I present, for the first time, a reconstruction of this debate, also thanks to Popper’s personal correspondence and unpublished documents. As a matter of fact, in the late 1960s, Popper essentially became part of the community of physicists concerned with foundation of quantum mechanics. Keywords: Foundations of quantum mechanics, Karl Popper, logic of quan- tum mechanics, Copenhagen interpretation. 1. Introduction: Popper’s early interest in Quantum Mechanics It is by now common knowledge that Karl R. Popper (1902-1994) has been one of the greatest philosophers of twentieth century. His contributions to political philosophy, probability theory, and especially to philosophy of science have nowadays the most profound impact also on society in general.
    [Show full text]
  • James, Steinhauser, Hoffmann, Friedrich One Hundred Years at The
    James, Steinhauser, Hoffmann, Friedrich One Hundred Years at the Intersection of Chemistry and Physics Published under the auspices of the Board of Directors of the Fritz Haber Institute of the Max Planck Society: Hans-Joachim Freund Gerard Meijer Matthias Scheffler Robert Schlögl Martin Wolf Jeremiah James · Thomas Steinhauser · Dieter Hoffmann · Bretislav Friedrich One Hundred Years at the Intersection of Chemistry and Physics The Fritz Haber Institute of the Max Planck Society 1911–2011 De Gruyter An electronic version of this book is freely available, thanks to the support of libra- ries working with Knowledge Unlatched. KU is a collaborative initiative designed to make high quality books Open Access. More information about the initiative can be found at www.knowledgeunlatched.org Aut ho rs: Dr. Jeremiah James Prof. Dr. Dieter Hoffmann Fritz Haber Institute of the Max Planck Institute for the Max Planck Society History of Science Faradayweg 4–6 Boltzmannstr. 22 14195 Berlin 14195 Berlin [email protected] [email protected] Dr. Thomas Steinhauser Prof. Dr. Bretislav Friedrich Fritz Haber Institute of the Fritz Haber Institute of the Max Planck Society Max Planck Society Faradayweg 4–6 Faradayweg 4–6 14195 Berlin 14195 Berlin [email protected] [email protected] Cover images: Front cover: Kaiser Wilhelm Institute for Physical Chemistry and Electrochemistry, 1913. From left to right, “factory” building, main building, director’s villa, known today as Haber Villa. Back cover: Campus of the Fritz Haber Institute of the Max Planck Society, 2011. The Institute’s his- toric buildings, contiguous with the “Röntgenbau” on their right, house the Departments of Physical Chemistry and Molecular Physics.
    [Show full text]
  • 02Lc Master 128-141
    128 LCGC NORTH AMERICA VOLUME 20 NUMBER 2 FEBRUARY 2002 www.chromatographyonline.com Fifty Years of Gas Chromatography — The Pioneers I Knew, Part I MMilestonesilestones inin he First International Congress on longer among us. In the first three decades Chromatography Analytical Chemistry was held in of GC they were most active in the devel- T September 1952 in Oxford, United opment of the technique and its applica- Kingdom. The highlight of this meeting tions. They participated at the meetings, was a lecture on “Gas–Liquid Chromatog- lecturing on their newest results, and one raphy: a Technique for the Analysis of could not find any publication in which Volatile Materials,” by A.J.P. Martin (1). their work would not be quoted. They were Almost simultaneously, the seminal paper the true pioneers of GC. of A.T. James and A.J.P. Martin on the the- Rudolf Kaiser, one of the still-active pio- This column is the first of ory and practice of this technique (the neers, once said that chemists usually don’t a two-part “Milestones in manuscript of which was submitted on quote any paper that is more than seven Chromatography” series 5 June 1951) was published in Biochemical years old; this material belongs in the Journal (2), and within a few weeks it was archives and is no longer part of a “living dealing with the life and announced that Martin and R.L.M. Synge science.” In this two-part “Milestones in activities of key would receive the Nobel Prize in Chemistry Chromatography” column, I want to chromatographers who “for the invention of partition chromatog- change this opinion.
    [Show full text]
  • Training Quantum Mechanics: Enrollments and Epistemology in Modern Physics
    Training Quantum Mechanics: Enrollments and Epistemology in Modern Physics David Kaiser Program in Science, Technology, and Society, MIT and Department of Physics, MIT Building E51-185 Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge, MA 02139 [email protected] Abstract*. The classrooms of American colleges and universities bulged like never before after World War II. Several major changes, including the G. I. Bill, brought over two million veterans into the nation’s institutions of higher education. Enrollments in nearly every department rose exponentially. Yet graduate enrollments in physics departments grew fastest, at almost twice the rate of all other fields combined. Twenty- five years later, enrollments in nearly all fields underwent a major contraction; again, physics led the way, falling faster and deeper than any other field. This paper examines some effects of these violent demographic swings on the subject of physics itself. How, in short, did the enrollment bubble affect the stuff of knowledge? I focus on how the subject of quantum mechanics—physicists’ description of matter at the atomic scale, the cornerstone of modern physics—was taught in the decades after World War II. Faced with runaway enrollments, American physicists re-crafted the subject in the classroom, accentuating those elements that could lend themselves to high throughput pedagogy—a cache of exemplars that could be routinized into problem sets and exam questions—while quietly dropping the last vestiges of “philosophy” or “interpretation” that had long been considered crucial to understanding the topic. Introduction: The Cold War Bubble “Physical scientists are in vogue these days,” announced a commentator in Harper’s a few years after the end of World War II.
    [Show full text]
  • Heisenberg and Schrodinger Famous Physicists of the 20Th and Its Contributions - an Overview *Dr.Shivaraj Gadigeppa Gurikar
    © 2016 JETIR August 2016, Volume 3, Issue 8 www.jetir.org (ISSN-2349-5162) Heisenberg and Schrodinger Famous Physicists of the 20th and its Contributions - An Overview *Dr.Shivaraj Gadigeppa Gurikar. Asst Professor of Physics. Govt First Grade College, Yelburga. Abstract This paper deals with works of Heisenberg and Schrodinger famous physicists of the 20th century and their contribution to the society. By its very nature, inventive thought usually requires breaking away from the status quo. Usually something unanticipated, innovation can mark the death of old methods and the starting point of new paradigms. Theoretical physicists are the shooting stars of science. They do their best work in their 20's, then seemingly burn out. Theorists commonly retire, intellectually speaking, by their 30's to become ''elder statesmen'' of physics. Four of the giants of quantum mechanics - Paul Dirac, Werner Heisenberg, Wolfgang Pauli and Niels Bohr - all crafted their greatest theories as very young men. (Dirac and Heisenberg, in fact, were accompanied by their mothers to Stockholm to accept their Nobel Prizes.) Dirac summed up the phenomenon in a poem he once wrote, the sentiment of which is that a physicist is better off dead once past his 30th birthday.Heisenberg introduced his famous relations in an article of 1927, entitled Ueber den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. A (partial) translation of this title is: “On the anschaulich content of quantum theoretical kinematics and mechanics”. Here, the term anschaulich is particularly notable. Apparently, it is one of those German words that defy an unambiguous translation into other languages.
    [Show full text]