Rates of Mixing in Models of Fluid Devices with Discontinuities

Total Page:16

File Type:pdf, Size:1020Kb

Rates of Mixing in Models of Fluid Devices with Discontinuities Rates of mixing in models of fluid devices with discontinuities Hannah Elizabeth Kreczak Submitted in accordance with the requirements for the degree of Doctor of Philosophy University of Leeds Centre for Doctoral Training in Fluid Dynamics September 2019 I confirm that the work submitted is my own, except where work which has formed part of jointly authored publications has been included. No material is included which has been accepted for the award of any other degree or diploma at any university or equivalent institution. The contribution of the candidate and the other authors to this work has been explicitly indicated below. The candidate confirms that appropriate credit has been given within the thesis where reference has been made to the work of others. The work in Chapter 5 of the thesis has appeared in publication as follows: Deceleration of one-dimensional mixing by discontinuous mappings, H. Kreczak, R. Sturman, and M. C. T. Wilson, Phys. Rev. E 96, 053112 (2017). Conception of the model that is investigated, computational simulations, data analysis of the results and writing of the paper is attributable to myself. Supervision of the research with suggestions on lines of enquiry, manuscript re- vision and suggested edits of the paper were carried out by my supervisor team Dr Rob Sturman and Dr Mark Wilson. 2 \That continued mixing results in uniformity, and that uniformity is only to be obtained by mixing, will be generally acknowledged, but how deeply and universally this enters into all the arts can but rarely have been apprehended." Osborne Reynolds, 1894 This thesis is dedicated to my parents, Stephen and Lynn. Acknowledgements First of all I would like to express my immense gratitude to my su- pervisors, Rob Sturman and Mark Wilson. I am thankful for the guidance they have both shown me throughout this supervisory pe- riod, not only relating to my academic studies, but also in my per- sonal wellbeing. I am appreciative of Mark's engineering eye, keeping the research grounded in reality, and patience during the discussions which spiralled into abstract dynamical theory. I extend additional gratitude to Rob, for the mentorship during my attendance at Snow- bird, and most importantly the initial encouragement to purse a PhD in the first place. I would like to thank Jean-Luc Thiffeualt, and the extended network of academics at the University of Madison-Wisconsin, who warmly received me during my academic placement. I would also like to thank the teams at Northwestern University, and the Universities of Exeter and Manchester, for inviting me to speak about my work and engaging me in insightful discussions, especially those over a few pints. I would like to thank EPSRC for providing the funding allowing me to undertake this research as part of the Leeds Centre of Doctoral training in Fluid Dynamics. I have benefited massively from the fi- nancial support, providing me with the opportunities to visit national and international conferences and academic institutions. I am par- ticularly grateful to Claire Savy and the CDT management team, for arranging extra professional development to accompany my academic studies, preparing me for my future career. On a personal note, I am extremely indebted to my friends and col- leagues for the necessary distractions over the last five years. Special mentions to Ollie, Inna, Georgie, Jacob, Jenny, and Andy, for the lunch time chats and cryptic crosswords, laughs over after work wines, and encouragements during climbs. I would especially like to thank my house mate Caitlin, for being both a fun and supportive friend over the years. Last but not least, I would like to thank my parents and brothers for the unending support I have received during my education to date. Although the financial support my parents have given me has helped dispel worries that would have made it difficult to complete this thesis, it is their unwavering love for which I am most grateful, and which has allowed me to pursue my passions and achieve my many successes. Abstract In the simplest sense, mixing acts on an initially heterogeneous sys- tem, transforming it to a homogeneous state through the actions of stirring and diffusion. The theory of dynamical systems has been suc- cessful in improving understanding of underlying features in fluid mix- ing, and how smooth stirring fields, coherent structures and bound- aries affect mixing rates. The main stirring mechanism in fluids at low Reynolds number is the stretching and folding of fluid elements, although this is not the only mechanism to achieve complicated dy- namics. Mixing by cutting and shuffling occurs in many situations, for example in micro–fluidic split and recombine flows, through the closing and re- orientation of values in sink{source flows, and within the bulk flow of granular material. The dynamics of this mixing mechanism are subtle and not well understood. Here, mixing rates arising from fundamental models capturing the essence of discontinuous, chaotic stirring with diffusion are investigated. In purely cutting and shuffling flows it is found that the number of cuts introduced iteratively is the most important mechanism driv- ing the approach to uniformity. A balance between cutting, shuffling and diffusion achieves a long-time exponential mixing rate, but sim- ilar mechanisms dominate the finite time mixing observed through the interaction of many slowly decaying eigenfunctions. The time to achieve a mixed condition varies polynomially with diffusivity rate κ, obeying t / κ−η. For the transformations meeting good stirring criteria, η < 1. Considering the time to achieve a mixed condition to be governed by a balance between cutting, shuffling, and diffusion derives η ∼ 1=2, which shows good agreement with numerical results. In stirring fields which are predominantly chaotic and exponentially mixing, it is observed that the addition of discontinuous transforma- tions contaminates mixing when the stretching rates are uniform, or close to uniform. The contamination comes from an increase in scales of the concentration field by the reassembly of striations when cut and shuffled. Mixing stemming from this process is unpredictable, and the discontinuities destroy the possibility to approximate early mixing rates from stretching histories. A speed up in mixing rate can be achieved if the discontinuity aids particle transport into islands of the original transformation, or chops and rearranges large striations generated from highly non-uniform stretching. The long-time mix- ing rates and time to achieve a mixed condition are shown to behave counter-intuitively when varying the diffusivity rate. A deceleration of mixing with increasing diffusion coefficient is observed, sometimes overshooting analytically derived bounds. 8 Contents 1 Introduction1 2 Literature Review7 2.1 Mixing and Applications . .8 2.1.1 Advection-diffusion equation . .8 2.1.2 Scaling numbers . .9 2.2 Fluid transport as a dynamical system . 11 2.2.1 Chaotic advection . 11 2.2.2 Ergodic hierarchy . 14 2.3 Mixing via chaotic advection . 16 2.3.1 Iterative advection-diffusion equation . 17 2.3.2 Properties of Transfer Operators . 17 2.3.3 Numerical approximations of transfer operators . 21 2.3.4 Numerical approach using Discrete Fourier expansion . 23 2.4 Measures of mixing . 26 2.4.1 Functional norms and the mix norm . 27 2.4.2 Measures of mixing in Fourier space . 29 2.4.3 Additional measures of mixing . 30 2.5 Mixing rates in chaotic advection . 31 2.5.1 Non-uniformity and strange-eigenmodes . 31 2.5.2 Boundaries and walls . 35 2.5.3 Barriers to mixing . 36 2.6 Discontinuous mixing . 37 2.6.1 Dynamics of Piecewise Isometries . 37 2.6.2 Examples of discontinuous mixing . 39 2.6.3 Dynamics of mixed SF and CS systems . 40 2.6.4 Dynamics of mixed CS and D systems . 41 i CONTENTS 3 Fundamental models of mixing by chaotic advection 45 3.1 Discrete maps as models for mixing . 45 3.1.1 Toral Automorphisms . 45 3.1.2 Poincar´esections . 50 3.1.3 Lyapunov exponents . 51 3.2 Discrete chaotic maps with diffusion . 55 3.2.1 Analytic solutions of idealised chaotic mixing . 55 3.2.2 Numerical solutions of non-uniform chaotic mixing . 58 3.2.3 Time to a mixed condition . 64 3.3 Conclusions . 65 4 Mixing by cutting and shuffling 67 4.1 Interval exchange transformations . 69 4.1.1 Formal definitions . 69 4.1.2 Model parameters for investigation . 71 4.2 Iterative Advection-Diffusion Transformation . 74 4.2.1 Transfer operators for permutations of equal sized cells . 74 4.2.2 Initial conditions of interest . 75 4.2.3 Resolution of Fourier Modes . 77 4.2.4 An initial example of mixing by Interval Exchange trans- formations with diffusion . 78 4.3 Stages of mixing in Diffusive Interval Exchange Transformations . 82 4.3.1 Asymptotic mixing rates . 83 4.3.2 Finite time mixing: interaction of slowly decaying eigen- functions . 85 4.3.3 Effect of initial condition . 91 4.4 Dependence on parameters . 93 4.4.1 Effect of permutation rearrangement . 93 4.4.2 Effect of sub-interval ratio r ................. 99 4.4.3 Effect of the number of sub-intervals N ........... 104 4.5 Polynomial dependence on the time to achieve a mixed condition with diffusivity rate . 107 4.5.1 Numerical results for t95 ................... 108 4.5.2 Comparison to leading eigenvalue . 110 4.5.3 Mechanism for polynomial scaling relations . 113 4.6 Conclusions . 117 ii CONTENTS 5 Mixing by piecewise, uniformly expanding maps 121 5.1 Formulation of the problem . 122 5.1.1 Baker's transformation with permutations . 122 5.2 Dynamics in the absence of diffusion . 124 5.2.1 Space-time plots of segregation . 124 5.2.2 Rate of decay of correlations .
Recommended publications
  • Deterministic Brownian Motion: the Effects of Perturbing a Dynamical
    1 Deterministic Brownian Motion: The Effects of Perturbing a Dynamical System by a Chaotic Semi-Dynamical System Michael C. Mackey∗and Marta Tyran-Kami´nska † October 26, 2018 Abstract Here we review and extend central limit theorems for highly chaotic but deterministic semi- dynamical discrete time systems. We then apply these results show how Brownian motion-like results are recovered, and how an Ornstein-Uhlenbeck process results within a totally determin- istic framework. These results illustrate that the contamination of experimental data by “noise” may, under certain circumstances, be alternately interpreted as the signature of an underlying chaotic process. Contents 1 Introduction 2 2 Semi-dynamical systems 5 2.1 Density evolution operators . ......... 5 2.2 Probabilistic and ergodic properties of density evolution ................ 12 2.3 Brownian motion from deterministic perturbations . ............... 16 2.3.1 Centrallimittheorems. ..... 16 2.3.2 FCLTfornoninvertiblemaps . ..... 20 2.4 Weak convergence criteria . ........ 31 3 Analysis 33 3.1 Weak convergence of v(tn) and vn. ............................ 35 3.2 Thelinearcaseinonedimension . ........ 36 3.2.1 Behaviour of the velocity variable . ......... 36 3.2.2 Behaviour of the position variable . ........ 38 4 Identifying the Limiting Velocity Distribution 41 4.1 Dyadicmap....................................... 42 arXiv:cond-mat/0408330v1 [cond-mat.stat-mech] 13 Aug 2004 4.2 Graphical illustration of the velocity density evolution with dyadic map perturbations 45 4.3 r-dyadicmap ..................................... 45 ∗e-mail: [email protected], Departments of Physiology, Physics & Mathematics and Centre for Nonlinear Dynamics, McGill University, 3655 Promenade Sir William Osler, Montreal, QC, CANADA, H3G 1Y6 †Corresponding author, email: [email protected], Institute of Mathematics, Silesian University, ul.
    [Show full text]
  • A Pseudo Random Numbers Generator Based on Chaotic Iterations
    A Pseudo Random Numbers Generator Based on Chaotic Iterations. Application to Watermarking Christophe Guyeux, Qianxue Wang, Jacques Bahi To cite this version: Christophe Guyeux, Qianxue Wang, Jacques Bahi. A Pseudo Random Numbers Generator Based on Chaotic Iterations. Application to Watermarking. WISM 2010, Int. Conf. on Web Information Systems and Mining, 2010, China. pp.202–211. hal-00563317 HAL Id: hal-00563317 https://hal.archives-ouvertes.fr/hal-00563317 Submitted on 4 Feb 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A Pseudo Random Numbers Generator Based on Chaotic Iterations. Application to Watermarking Christophe Guyeux, Qianxue Wang, and Jacques M. Bahi University of Franche-Comte, Computer Science Laboratory LIFC, 25030 Besanc¸on Cedex, France {christophe.guyeux,qianxue.wang, jacques.bahi}@univ-fcomte.fr Abstract. In this paper, a new chaotic pseudo-random number generator (PRNG) is proposed. It combines the well-known ISAAC and XORshift generators with chaotic iterations. This PRNG possesses important properties of topological chaos and can successfully pass NIST and TestU01 batteries of tests. This makes our generator suitable for information security applications like cryptography. As an illustrative example, an application in the field of watermarking is presented.
    [Show full text]
  • Transformations)
    TRANSFORMACJE (TRANSFORMATIONS) Transformacje (Transformations) is an interdisciplinary refereed, reviewed journal, published since 1992. The journal is devoted to i.a.: civilizational and cultural transformations, information (knowledge) societies, global problematique, sustainable development, political philosophy and values, future studies. The journal's quasi-paradigm is TRANSFORMATION - as a present stage and form of development of technology, society, culture, civilization, values, mindsets etc. Impacts and potentialities of change and transition need new methodological tools, new visions and innovation for theoretical and practical capacity-building. The journal aims to promote inter-, multi- and transdisci- plinary approach, future orientation and strategic and global thinking. Transformacje (Transformations) are internationally available – since 2012 we have a licence agrement with the global database: EBSCO Publishing (Ipswich, MA, USA) We are listed by INDEX COPERNICUS since 2013 I TRANSFORMACJE(TRANSFORMATIONS) 3-4 (78-79) 2013 ISSN 1230-0292 Reviewed journal Published twice a year (double issues) in Polish and English (separate papers) Editorial Staff: Prof. Lech W. ZACHER, Center of Impact Assessment Studies and Forecasting, Kozminski University, Warsaw, Poland ([email protected]) – Editor-in-Chief Prof. Dora MARINOVA, Sustainability Policy Institute, Curtin University, Perth, Australia ([email protected]) – Deputy Editor-in-Chief Prof. Tadeusz MICZKA, Institute of Cultural and Interdisciplinary Studies, University of Silesia, Katowice, Poland ([email protected]) – Deputy Editor-in-Chief Dr Małgorzata SKÓRZEWSKA-AMBERG, School of Law, Kozminski University, Warsaw, Poland ([email protected]) – Coordinator Dr Alina BETLEJ, Institute of Sociology, John Paul II Catholic University of Lublin, Poland Dr Mirosław GEISE, Institute of Political Sciences, Kazimierz Wielki University, Bydgoszcz, Poland (also statistical editor) Prof.
    [Show full text]
  • On the Topological Conjugacy Problem for Interval Maps
    On the topological conjugacy problem for interval maps Roberto Venegeroles1, ∗ 1Centro de Matem´atica, Computa¸c~aoe Cogni¸c~ao,UFABC, 09210-170, Santo Andr´e,SP, Brazil (Dated: November 6, 2018) We propose an inverse approach for dealing with interval maps based on the manner whereby their branches are related (folding property), instead of addressing the map equations as a whole. As a main result, we provide a symmetry-breaking framework for determining topological conjugacy of interval maps, a well-known open problem in ergodic theory. Implications thereof for the spectrum and eigenfunctions of the Perron-Frobenius operator are also discussed. PACS numbers: 05.45.Ac, 02.30.Tb, 02.30.Zz Introduction - From the ergodic point of view, a mea- there exists a homeomorphism ! such that sure describing a chaotic map T is rightly one that, after S ! = ! T: (2) iterate a randomly chosen initial point, the iterates will ◦ ◦ be distributed according to this measure almost surely. Of course, the problem refers to the task of finding !, if This means that such a measure µ, called invariant, is it exists, when T and S are given beforehand. −1 preserved under application of T , i.e., µ[T (A)] = µ(A) Fundamental aspects of chaotic dynamics are pre- for any measurable subset A of the phase space [1, 2]. served under conjugacy. A map is chaotic if is topo- Physical measures are absolutely continuous with respect logical transitive and has sensitive dependence on initial to the Lebesgue measure, i.e., dµ(x) = ρ(x)dx, being the conditions. Both properties are preserved under conju- invariant density ρ(x) an eigenfunction of the Perron- gacy, then T is chaotic if and only if S is also.
    [Show full text]
  • Arxiv:2108.08461V1 [Math.DS] 19 Aug 2021 References 48
    THE BOOTSTRAP FOR DYNAMICAL SYSTEMS KASUN FERNANDO AND NAN ZOU Abstract. Despite their deterministic nature, dynamical systems often exhibit seemingly random behaviour. Consequently, a dynamical system is usually represented by a probabilistic model of which the unknown parameters must be estimated using statistical methods. When measuring the uncertainty of such parameter estimation, the bootstrap stands out as a simple but powerful technique. In this paper, we develop the bootstrap for dynamical systems and establish not only its consistency but also its second-order efficiency via a novel continuous Edgeworth expansion for dynamical systems. This is the first time such continuous Edgeworth expansions have been studied. Moreover, we verify the theoretical results about the bootstrap using computer simulations. Contents 1. Introduction 1 2. Notation and Preliminaries5 I Continuous Edgeworth Expansions 7 3. Spectral Assumptions8 4. First-order Continuous Edgeworth Expansions 19 5. Examples 24 II The Bootstrap 33 6. The Bootstrap Algorithm 33 7. Asymptotic Accuracy of the Bootstrap 35 8. Application of the Bootstrap to our Examples 39 9. Computer Simulation of the Bootstrap 42 arXiv:2108.08461v1 [math.DS] 19 Aug 2021 References 48 1. Introduction After its establishment in late 19th century through the efforts of Poincar´e[64] and Lyapunov [49], the theory of dynamical systems was applied to study the qualitative behaviour of dynamical processes in the real world. For example, the theory of dynamical systems has proved useful in, 2010 Mathematics Subject Classification. 62F40, 37A50, 62M05. Key words and phrases. dynamical systems, the bootstrap, continuous Edgeworth expansions, expanding maps, Markov chains. 1 2 KASUN FERNANDO AND NAN ZOU among many others, astronomy [12], chemical engineering [3], biology [51], ecology [74], demography [81], economics [75], language processing [65], neural activity [71], and machine learning [9], [16].
    [Show full text]
  • Contents Ilorpy
    From Deterministic Chaos to Anomalous Diffusion Dr. habil. Rainer Klages Queen Mary University of London School of Mathematical Sciences Mile End Road, London E1 4NS e-mail: [email protected] Contents 1 Introduction...................................... ........................ 2 2 Deterministic chaos................................ ....................... 3 2.1 Dynamicsofsimplemaps. .. .. 3 2.2 Ljapunovchaos .................................. 5 2.3 Entropies ..................................... 9 2.4 Opensystems, fractalsandescaperates. ....... 14 3 Deterministic diffusion............................. ....................... 19 3.1 What is deterministic diffusion? . ..... 20 3.2 Escape rate formalism for deterministic diffusion . ........... 22 3.2.1 Thediffusionequation . 22 arXiv:0804.3068v3 [nlin.CD] 20 Jul 2009 3.2.2 Basicideaoftheescaperateformalism . .... 24 3.2.3 The escape rate formalism worked out for a simple map . ...... 25 4 Anomalous diffusion................................. ..................... 29 4.1 Anomalous diffusion in intermittent maps . ...... 30 4.1.1 Whatisanomalousdiffusion? . 30 4.1.2 Continuoustimerandomwalktheory . 32 4.1.3 Afractionaldiffusionequation . 36 4.2 Anomalous diffusion of migrating biological cells . ........... 38 4.2.1 Cellmigration............................... 38 4.2.2 Experimentalresults . 39 4.2.3 Theoreticalmodeling . 41 5 Summary ........................................... ..................... 43 Bibliography....................................... ....................... 45 1 Introduction Over
    [Show full text]
  • One Or Two Small Points in Thermodynamics
    One or two small points in thermodynamics Walter F. Wreszinski∗ May 28, 2020 Abstract I present my recollections of what I used to find to be “one or two small points in thermodynamics”, following Sommerfeld’s famous quote, and review them on the light of present knowledge. 1 Introduction and motivation During my student days, I enjoyed the famous quote from Arnold Sommerfeld [Cal12]: “ Thermodynamics is a funny subject. The first time you go through it, you don’t understand it at all. The second time you go through it, you think you understand it, except for one or two small points. The third time you go through it, you know you don’t understand it, but by that time you are so used to it, that it doesn’t bother you any more”. In fact, almost every student has found his “one or two small points”. This may be due to the fact that, in spite of being “the unique univer- sal science” [Had17], thermodynamics is populated with various logical and mathematical contradictions, to the point that - in another famous quote - the russian mathematician Vladimir I. Arnold was led to assert that “every mathematician knows it is impossible to understand an elementary course in thermodynamics” [Arn90]. arXiv:2003.03800v5 [cond-mat.stat-mech] 27 May 2020 Having written one such course (textbook) myself, I realized that I suc- ceeded only partially in trying to contradict Arnold’s quote, because, even after the completion of the second edition [Wre18], at least “two small points” did remain. The present note is my account of them.
    [Show full text]
  • Strongly Mixing Transformations and Geometric Diameters
    SARAJEVO JOURNAL OF MATHEMATICS DOI: 10.5644/SJM.08.2.06 Vol.8 (21) (2012), 245{257 STRONGLY MIXING TRANSFORMATIONS AND GEOMETRIC DIAMETERS HUSE FATKIC´ AND MEHMED BRKIC´ Dedicated to Professor Mustafa Kulenovi´con the occasion of his 60th birthday Abstract. In this paper, we investigate metric properties and disper- sive effects of strongly mixing transformations on general metric spaces endowed with a finite measure; in particular, we investigate their con- nections with the theory of generalized (geometric) diameters on general metric spaces. We first show that the known result by Rice [17,Theorem 2] (motivated by some physical phenomena and offer some clarifications of these phenomena), which is a substantial improvement of Theorems 1 and 2 due to Erber, Schweizer and Sklar [4], can be generalized in such a way that this result remains valid when \ordinary diameter" is replaced by \geometric diameter of any finite order". Next we show that \ordinary essential diameter" in the mentioned Rice's result can be replaced by \essential geometric diameter of any finite order". These results also complement the previous results of Fatki´c[ 6,8,10], Saff [18] and Sempi [20]. 1. Introduction and preliminaries In the broadest sense abstract dynamical systems and ergodic theory is the study of the qualitative properties of actions of groups on spaces (e.g. measure spaces, or topological spaces, or smooth manifolds). In this work we shall study actions of the group Z of integers on a measure space X, i.e., we study a transformation T : X ! X and its iterates T n, n 2 Z.
    [Show full text]
  • Some Examples in Ergodic Theory
    SOME EXAMPLES IN ERGODIC THEORY By YAEL NAIM DOWKER a& PBUL ERDBS [Received 22 February 1958.-Read 20 March 19581 Introduction THE purpose of this paper is to give some counter examples in ergodic theory. Some of the examples answer questions raised previously by some authors, some are counter examples to published theorems later withdrawn and some answer questions entertained privat,ely by the authors of this note. Let Y be an abstract space, y a a-field of subsets of Y and m a measure defined on y. We shall assume throughout that (Y, y, m) is a o-finite, non- atomic measure space. Let T be a 1: 1, ergodic measure preserving trans- formation of Y on to itself. Examples 1 and 2 deal with the case where (Y, y, a) is a finite measure space (in fact it is t,he ordinary line segment [O, 1). Example 1 shows that one cannot generalize theorems in Diophantine approximation t,heory like Theorem 2 (12, 76) to arbitrary ergodic conservative systems on [0, 1). Example 2 answers completely the questions raised by Halmos (7) and more recently by St’andish (13) concerning non-homogeneous ergodic theorems. We put and where fa(y) is the characteristic function of A. Examples 3, 4, and 5 and Theorems 1 and 2 deal with the case where m(Y) is infinite and study the relative behaviour of two ergodic measure preserving transformations T1 and T2. Example 3 shows that contrary to some expectations (1,2) the sequence -K(A, % $9 Y) = JfAG 4 Y)/~,(~, 4 Y) need not converge p.p.
    [Show full text]
  • NEW ADVANCES in SYMBOLIC DYNAMICS Bryna Kra. Symbolic
    NEW ADVANCES IN SYMBOLIC DYNAMICS MINI COURS Bryna Kra. Symbolic systems of low complexity This series of lectures will focus on shift systems of zero entropy, parti- cularly on the behaviors that arise when placing restrictions on the com- plexity and contrasting this behavior with that of general shifts. Starting with the simplest case of linear complexity, we discuss various properties of the system, such as the automorphism group and the number of inva- riant measures. We then discuss how these properties change as the growth rate becomes quadratic, a higher order polynomial, or higher growth, stu- dying both individual automorphisms and properties of the group of all automorphisms. Ronnie Pavlov. Entropy and mixing for multidimensional shifts of finite type I will speak about multidimensional shifts of finite type and their Gibbs measures. In particular, I will present results about computability of topo- logical entropy/pressure for SFTs and measure-theoretic entropy/pressure of Gibbs measures. I’ll focus on various mixing hypotheses, both topologi- cal and measure-theoretic, which imply different rates of computability for these objects, and give applications to various systems, including the hard square and Potts models. EXPOSÉS Shigeki Akiyama. On corona limits Given a tiling, we study the limit shape of successive coronas of the patches. It is shown that corona limit exists if and only if all directional speeds exist in all directions. If the directional speed are uniform in the sense of location, the corona limit is convex and symmetric with respect to the origin. Finally we see that if the tiling is periodic, all the conditions are satisfied and we see that the corona limit is convex symmetric polyhedron.
    [Show full text]
  • Dynamical Systems Notes
    Dynamical Systems Notes These are notes takento prepare for an oral exam in Dynamical Systems. The content comes from various sources, including from notes from a class taught by Arnd Scheel. Overview - Definitions : Dynamical System : Mathematical formalization for any fixed "rule" which describes the time dependence of a point’s position in its ambient space. The concept unifies very different types of such "rules" in mathematics: the different choices made for how time is measured and the special properties of the ambient space may give an idea of the vastness of the class of objects described by this concept. Time can be measured by integers, by real or complex numbers or can be a more general algebraic object, losing the memory of its physical origin, and the ambient space may be simply a set, without the need of a smooth space-time structure defined on it. There are two classes of definitions for a dynamical system: one is motivated by ordinary differential equations and is geometrical in flavor; and the other is motivated by ergodic theory and is measure theoretical in flavor. The measure theoretical definitions assume the existence of a measure-preserving transformation. This appears to exclude dissipative systems, as in a dissipative system a small region of phase space shrinks under time evolution. A simple construction (sometimes called the Krylov–Bogolyubov theorem) shows that it is always possible to construct a measure so as to make the evolution rule of the dynamical system a measure-preserving transformation. In the construction a given measure of the state space is summed for all future points of a trajectory, assuring the invariance.
    [Show full text]
  • Ergodic Theory and Linear Dynamics
    Introduction Gaussian measures Ergodic Gaussian measures for an operator How to find an ergodic measure Ergodic theory and linear dynamics Fr´ed´ericBayart Universit´eClermont-Ferrand 2 February 2011 Introduction Gaussian measures Ergodic Gaussian measures for an operator How to find an ergodic measure Ergodic theory Let (X ; B; µ) be a probability space and let T :(X ; B; µ) ! (X ; B; µ) be a measurable map. Definition (a) T is called a measure-preserving transformation if µ(T −1(A)) = µ(A) for all A 2 B. (b) T is called ergodic if it is measure-preserving and satisfies one of the following equivalent conditions: (i) Given any measurable sets A; B with positive measures, one can find an integer n ≥ 0 such that T n(A) \ B 6= ?; (ii) if A 2 B satisfies T (A) ⊂ A, then µ(A) = 0 or 1. Introduction Gaussian measures Ergodic Gaussian measures for an operator How to find an ergodic measure Example - Irrational rotations Let X = T, let B be the Borel σ-algebra on T and let µ be the Lebesgue measure on T. Let θ 2 RnQ. Then T :(X ; B; µ) ! (X ; B; µ) z 7! ei2πθz is ergodic. Introduction Gaussian measures Ergodic Gaussian measures for an operator How to find an ergodic measure Example - Dyadic transformation Let X = [0; 1), let B be the Borel σ-algebra on X and let µ be the Lebesgue measure on X . Then T :(X ; B; µ) ! (X ; B; µ) x 7! 2x mod 1 is ergodic. fx 2 X ;(xn;:::; xp) 2 En × · · · × Epg; Ej ⊂ {−1; 1g: µk is defined by µk (f1g) = 1=2 and µk ({−1g) = 1=2.
    [Show full text]