Diversityof Algae and Plants

Total Page:16

File Type:pdf, Size:1020Kb

Diversityof Algae and Plants Education: Biology B1001 DIVERSITY OF ALGAE AND PLANTS Dr. Memory Tekere Biology 1, Diversity of Algae and Plants Foreword The African Virtual University (AVU) is proud to participate in increasing access to education in African countries through the production of quality learning materials. We are also proud to contribute to global knowledge as our Open Educational Resources (OERs) are mostly accessed from outside the African continent. This module was prepared in collaboration with twenty one (21) African partner institutions which participated in the AVU Multinational Project I and II. From 2005 to 2011, an ICT-integrated Teacher Education Program, funded by the African Development Bank, was developed and offered by 12 universities drawn from 10 countries which worked collaboratively to design, develop, and deliver their own Open Distance and e-Learning (ODeL) programs for teachers in Biology, Chemistry, Physics, Math, ICTs for teachers, and Teacher Education Professional Development. Four Bachelors of Education in mathematics and sciences were developed and peer-reviewed by African Subject Matter Experts (SMEs) from the participating institutions. A total of 73 modules were developed and translated to ensure availability in English, French and Portuguese making it a total of 219 modules. These modules have also been made available as Open Educational Resources (OER) on oer.avu.org, and have since then been accessed over 2 million times. In 2012 a second phase of this project was launched to build on the existing teacher education modules, learning from the lessons of the existing teacher education program, reviewing the existing modules and creating new ones. This exercise was completed in 2017. On behalf of the African Virtual University and our patron, our partner institutions, the African Development Bank, I invite you to use this module in your institution, for your own education, to share it as widely as possible, and to participate actively in the AVU communities of practice of your interest. We are committed to be on the frontline of developing and sharing open educational resources. The African Virtual University (AVU) is a Pan African Intergovernmental Organization established by charter with the mandate of significantly increasing access to quality higher education and training through the innovative use of information communication technologies. A Charter, establishing the AVU as an Intergovernmental Organization, has been signed so far by nineteen (19) African Governments - Kenya, Senegal, Mauritania, Mali, Cote d’Ivoire, Tanzania, Mozambique, Democratic Republic of Congo, Benin, Ghana, Republic of Guinea, Burkina Faso, Niger, South Sudan, Sudan, The Gambia, Guinea-Bissau, Ethiopia and Cape Verde. The following institutions participated in the teacher education program of the Multinational Project I: University of Nairobi – Kenya, Kyambogo University – Uganda, Open University of Tanzania, University of Zambia, University of Zimbabwe – Zimbabwe, Jimma University – Ethiopia, Amoud University - Somalia; Université Cheikh Anta Diop (UCAD)-Senegal, Université d’ Antananarivo – Madagascar, Universidade Pedagogica – Mozambique, East African University - Somalia, and University of Hargeisa - Somalia 2 The following institutions participated in the teacher education program of the Multinational Project II: University of Juba (UOJ) - South Sudan, University of The Gambia (UTG), University of Port Harcourt (UNIPORT) – Nigeria, Open University of Sudan (OUS) – Sudan, University of Education Winneba (UEW) – Ghana, University of Cape Verde (UniCV) – Cape Verde, Institut des Sciences (IDS) – Burkina Faso, Ecole Normale Supérieure (ENSUP) - Mali, Université Abdou Moumouni (UAM) - Niger, Institut Supérieur Pédagogique de la Gombe (ISPG) – Democratic Republic of Congo and Escola Normal Superieur Tchicote – Guinea Bissau Bakary Diallo The Rector African Virtual University 3 Biology 1, Diversity of Algae and Plants Production Credits This second edition is the result of the revision of the first edition of this module. The informations provided below, at the exception of the name of the author of the first edition, refer to the second edition. Author Memory Tekere Reviewers Mamadou Sarr AVU - Academic Coordination Dr. Marilena Cabral Module Coordinator Mamadou Sarr Instructional Designers Elizabeth Mbasu Diana Tuel Benta Ochola Media Team Sidney McGregor Michal Abigael Koyier Barry Savala Mercy Tabi Ojwang Edwin Kiprono Josiah Mutsogu Kelvin Muriithi Kefa Murimi Victor Oluoch Otieno Gerisson Mulongo 4 Copyright Notice This document is published under the conditions of the Creative Commons http://en.wikipedia.org/wiki/Creative_Commons Attribution http://creativecommons.org/licenses/by/2.5/ Module Template is copyright African Virtual University licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. CC-BY, SA Supported By AVU Multinational Project II funded by the African Development Bank. 5 Biology 1, Diversity of Algae and Plants Table of Contents Foreword 2 Production Credits 4 Copyright Notice 5 Supported By 5 WELCOME MESSAGE 8 Prerequisites 8 TIME 8 Materials 8 MODULE RATIONALE 9 CONTENT 10 Outline 10 CONCEPT MAP REPRESENTING THE CONTENT OF THE MODULE 13 GENERAL OBJECTIVE(S) 14 SPECIFIC LEARNING OBJECTIVES (INSTRUCTIONAL OBJECTIVES) 14 Unit 1: Diversity of Algae: 15 Unit 2: Lower plants 16 Bryophytes 16 Pteridophytes 16 Unit 3 : Higher/Seed Plants (Gymnosperms and Angiosperms): 18 TEACHING AND LEARNING ACTIVITIES 19 Title of Pre-assessment : Diversity of Algae and Plants (Module 1) 19 KEY CONCEPTS (GLOSSARY) 24 PEDAGOGICAL COMMENT FOR LEARNERS 24 COMPULSORY READINGS 25 Reading 1: Alga 25 Reading #2 26 Reading Resource #3: Pteridophytes 27 COMPULSORY RESOURCES 28 6 Resource # 1: Course overview video 28 Resource #2: “Protists” Power point lecture presentation on Protista 28 USEFUL LINKS 30 Useful Link #1 Diversity of Lower Plants 30 Useful Link #2 31 Resource # 3: Algae 31 Useful Link #4 32 Useful Link #5 32 Useful Link # 6 33 LEARNING ACTIVITIES 34 Learning activity # 1 34 Key Concepts 35 LEARNING ACTIVITIES : 36 Learning activity # 2 40 Title of Learning Activity : Diversity of Lower Plants 40 List of relevant readings : 41 Key Concepts / Glossary 41 LEARNING ACTIVITIES : 43 Learning activity # 3 45 Title of Activity: Diversity of Higher Plants 45 Key Concepts 46 List of relevant readings: 46 Learning activities : 48 Diversity of Gymnosperms 49 Diversity of Angiosperms 50 Flower structure 50 Formative evaluation 51 Learning activity # 4 52 Title of Learning Activity : Herbarium Techniques 52 5 Biology 1, Diversity of Algae and Plants List of relevant readings : 53 Glossary/ key concepts 53 References 56 Formative evaluation : 56 Synthesis of the Module 56 Summative Evaluation 57 BIOLOGY MODULE 1 : DIVERSITY OF ALGAE AND PLANTS 59 Student Records 65 Main Author of the Module 65 File Structure 66 6 WELCOME MESSAGE WELCOME MESSAGE Phylogenetic reconstruction of the possible relationships between plant groups and their green algal ancestors. http://www.emc.maricopa.edu/faculty/farabee/BIOBK/biobookDiversity Website accessed 26/8/06 Prerequisites High school / secondary school exit qualification acceptable for entry into University for Biology Science Education as required by your university. Special exemption can be extended to in-service biology teachers and those with relevant experience in biological sciences as determined by your university. This implies that you should have a basic understanding of plant structure and function as it relates to the work to be done in this module. TIME 120 hours will be required to complete the module Materials Course materials include study materials (print,CD, videos,online text) For the successful completion of this module, you will need - access to a computer and internet, - CD-ROMS, interactive discussions and group sessions - recommended text books and reference materials. - it will also be to your benefit should you have access to a well equiped central laboratory for the pratical work. 7 Biology 1, Diversity of Algae and Plants - Field trips for field work on observing plant diversity, the ecology, collection, and preservation of plants. Preparing to mount a plant. http://en.wikipedia.org/wiki/herbarium Accessed 11/08/06 MODULE RATIONALE The module is meant to educate you (pre-service and in-service) as secondary school biology teacher with specific reference to the diversity of algae and plants. The content of the module is designed to provide you with a sound background on the teaching and learning of the algae and plant diversity through the use of ICT. Understanding the diversity of plants and algae will help you appreciate the diversity of life forms, phylogenetic relationships, ecology and economic importance. The module also forms the basis of the other biology modules such as plant physiology, cell biology, genetics and ecology. You will also be introduced to aspects of laboratory and fieldwork. These are enriching activities supplemental to the work done in this module. The “six” kingdom taxonomic scheme. This figure shows the position of Plants and Algae (Protist) in the diversity of life. Source : online biology book, 8 WELCOME MESSAGE http://www.emc.maricopa.edu/faculty/farabee/biobk/biobookDiversity_3.html Accessed 26/8/2006 CONTENT Overview In this module you will cover the diversity of algae (green, red and brown algae), lower plants (Bryophytes and Pteridophytes), and higher plants (Angiosperms and Gymnosperms), emphasizing their major
Recommended publications
  • Gymnosperms the MESOZOIC: ERA of GYMNOSPERM DOMINANCE
    Chapter 24 Gymnosperms THE MESOZOIC: ERA OF GYMNOSPERM DOMINANCE THE VASCULAR SYSTEM OF GYMNOSPERMS CYCADS GINKGO CONIFERS Pinaceae Include the Pines, Firs, and Spruces Cupressaceae Include the Junipers, Cypresses, and Redwoods Taxaceae Include the Yews, but Plum Yews Belong to Cephalotaxaceae Podocarpaceae and Araucariaceae Are Largely Southern Hemisphere Conifers THE LIFE CYCLE OF PINUS, A REPRESENTATIVE GYMNOSPERM Pollen and Ovules Are Produced in Different Kinds of Structures Pollination Replaces the Need for Free Water Fertilization Leads to Seed Formation GNETOPHYTES GYMNOSPERMS: SEEDS, POLLEN, AND WOOD THE ECOLOGICAL AND ECONOMIC IMPORTANCE OF GYMNOSPERMS The Origin of Seeds, Pollen, and Wood Seeds and Pollen Are Key Reproductive SUMMARY Innovations for Life on Land Seed Plants Have Distinctive Vegetative PLANTS, PEOPLE, AND THE Features ENVIRONMENT: The California Coast Relationships among Gymnosperms Redwood Forest 1 KEY CONCEPTS 1. The evolution of seeds, pollen, and wood freed plants from the need for water during reproduction, allowed for more effective dispersal of sperm, increased parental investment in the next generation and allowed for greater size and strength. 2. Seed plants originated in the Devonian period from a group called the progymnosperms, which possessed wood and heterospory, but reproduced by releasing spores. Currently, five lineages of seed plants survive--the flowering plants plus four groups of gymnosperms: cycads, Ginkgo, conifers, and gnetophytes. Conifers are the best known and most economically important group, including pines, firs, spruces, hemlocks, redwoods, cedars, cypress, yews, and several Southern Hemisphere genera. 3. The pine life cycle is heterosporous. Pollen strobili are small and seasonal. Each sporophyll has two microsporangia, in which microspores are formed and divide into immature male gametophytes while still retained in the microsporangia.
    [Show full text]
  • California's Native Ferns
    CALIFORNIA’S NATIVE FERNS A survey of our most common ferns and fern relatives Native ferns come in many sizes and live in many habitats • Besides living in shady woodlands and forests, ferns occur in ponds, by streams, in vernal pools, in rock outcrops, and even in desert mountains • Ferns are identified by producing fiddleheads, the new coiled up fronds, in spring, and • Spring from underground stems called rhizomes, and • Produce spores on the backside of fronds in spore sacs, arranged in clusters called sori (singular sorus) Although ferns belong to families just like other plants, the families are often difficult to identify • Families include the brake-fern family (Pteridaceae), the polypody family (Polypodiaceae), the wood fern family (Dryopteridaceae), the blechnum fern family (Blechnaceae), and several others • We’ll study ferns according to their habitat, starting with species that live in shaded places, then moving on to rock ferns, and finally water ferns Ferns from moist shade such as redwood forests are sometimes evergreen, but also often winter dormant. Here you see the evergreen sword fern Polystichum munitum Note that sword fern has once-divided fronds. Other features include swordlike pinnae and round sori Sword fern forms a handsome coarse ground cover under redwoods and other coastal conifers A sword fern relative, Dudley’s shield fern (Polystichum dudleyi) differs by having twice-divided pinnae. Details of the sori are similar to sword fern Deer fern, Blechnum spicant, is a smaller fern than sword fern, living in constantly moist habitats Deer fern is identified by having separate and different looking sterile fronds and fertile fronds as seen in the previous image.
    [Show full text]
  • General Botany Lab Review Fungi, Algae, Bryophytes, Ferns & Fern Allies
    General Botany Lab Review Fungi, Algae, Bryophytes, Ferns & Fern Allies You have looked at a lot of stuff – both live and via prepared slides. You’ve also labeled at least one Life Cycle Diagram for each of the groups. Know what your benchmarks are for a general life cycle diagram and be able to label them. I will not ask you to identify anything to species or genus; be able to identify things to “group” (i.e., ascomycete, bryophyta, etc.) Be able to identify growth form (e.g., unicell, filamentous, etc.). Recognize the differences between sexual and asexual reroductive structures. All questions will be multiple choice. Material looked at: UNIT 1: FUNGI EXERCISE 1: CHYTRIDS/ CHYTRIDOMYCOTA: Allmyces arbusculus – life and prepared slides EXERCISE 2: ZYGOMYCETES/ ZYGOMYCOTA: Rhizopus stolonifer – live and prepared slides EXERCISE 2: MYCORRHIZA and the GLOMEROMYCETES/ GLOMEROMYCOTA – prepared slides only EXERCISE 3: ASCOMYCETES/ ASCOMYCOTA Aspergillus sp., Penicillium sp., Saccharomyces cerevisiae, Peziza sp., Sordaria fimicola, and Morchella sp. – a mixture of live and prepared materials EXERCISE 4: BASIDIOMYCETES/BASIDIOMYCETES Agaricus, Coprinus, Cronartium (a rust), Ustilago (a smut) – slides, fresh, and dried EXERCISE 5: SLIME MOLDS – live and prepared Physarum EXERCISE 6: LICHENS – live and prepared slides be able to identify the various growth forms UNIT 2: ALGAE EXERCISE 1: CYANOBACTERIA Anabaena sp., Nostoc, and Oscillaroria – live and prepared material EXERCISE 2: SUPERGROUP EXCAVATA (Phylum Euglenophyta) – live and prepared material
    [Show full text]
  • Plant Evolution an Introduction to the History of Life
    Plant Evolution An Introduction to the History of Life KARL J. NIKLAS The University of Chicago Press Chicago and London CONTENTS Preface vii Introduction 1 1 Origins and Early Events 29 2 The Invasion of Land and Air 93 3 Population Genetics, Adaptation, and Evolution 153 4 Development and Evolution 217 5 Speciation and Microevolution 271 6 Macroevolution 325 7 The Evolution of Multicellularity 377 8 Biophysics and Evolution 431 9 Ecology and Evolution 483 Glossary 537 Index 547 v Introduction The unpredictable and the predetermined unfold together to make everything the way it is. It’s how nature creates itself, on every scale, the snowflake and the snowstorm. — TOM STOPPARD, Arcadia, Act 1, Scene 4 (1993) Much has been written about evolution from the perspective of the history and biology of animals, but significantly less has been writ- ten about the evolutionary biology of plants. Zoocentricism in the biological literature is understandable to some extent because we are after all animals and not plants and because our self- interest is not entirely egotistical, since no biologist can deny the fact that animals have played significant and important roles as the actors on the stage of evolution come and go. The nearly romantic fascination with di- nosaurs and what caused their extinction is understandable, even though we should be equally fascinated with the monarchs of the Carboniferous, the tree lycopods and calamites, and with what caused their extinction (fig. 0.1). Yet, it must be understood that plants are as fascinating as animals, and that they are just as important to the study of biology in general and to understanding evolutionary theory in particular.
    [Show full text]
  • Number of Living Species in Australia and the World
    Numbers of Living Species in Australia and the World 2nd edition Arthur D. Chapman Australian Biodiversity Information Services australia’s nature Toowoomba, Australia there is more still to be discovered… Report for the Australian Biological Resources Study Canberra, Australia September 2009 CONTENTS Foreword 1 Insecta (insects) 23 Plants 43 Viruses 59 Arachnida Magnoliophyta (flowering plants) 43 Protoctista (mainly Introduction 2 (spiders, scorpions, etc) 26 Gymnosperms (Coniferophyta, Protozoa—others included Executive Summary 6 Pycnogonida (sea spiders) 28 Cycadophyta, Gnetophyta under fungi, algae, Myriapoda and Ginkgophyta) 45 Chromista, etc) 60 Detailed discussion by Group 12 (millipedes, centipedes) 29 Ferns and Allies 46 Chordates 13 Acknowledgements 63 Crustacea (crabs, lobsters, etc) 31 Bryophyta Mammalia (mammals) 13 Onychophora (velvet worms) 32 (mosses, liverworts, hornworts) 47 References 66 Aves (birds) 14 Hexapoda (proturans, springtails) 33 Plant Algae (including green Reptilia (reptiles) 15 Mollusca (molluscs, shellfish) 34 algae, red algae, glaucophytes) 49 Amphibia (frogs, etc) 16 Annelida (segmented worms) 35 Fungi 51 Pisces (fishes including Nematoda Fungi (excluding taxa Chondrichthyes and (nematodes, roundworms) 36 treated under Chromista Osteichthyes) 17 and Protoctista) 51 Acanthocephala Agnatha (hagfish, (thorny-headed worms) 37 Lichen-forming fungi 53 lampreys, slime eels) 18 Platyhelminthes (flat worms) 38 Others 54 Cephalochordata (lancelets) 19 Cnidaria (jellyfish, Prokaryota (Bacteria Tunicata or Urochordata sea anenomes, corals) 39 [Monera] of previous report) 54 (sea squirts, doliolids, salps) 20 Porifera (sponges) 40 Cyanophyta (Cyanobacteria) 55 Invertebrates 21 Other Invertebrates 41 Chromista (including some Hemichordata (hemichordates) 21 species previously included Echinodermata (starfish, under either algae or fungi) 56 sea cucumbers, etc) 22 FOREWORD In Australia and around the world, biodiversity is under huge Harnessing core science and knowledge bases, like and growing pressure.
    [Show full text]
  • XI MOBILE NO:9340839715 CHAPTER-3 Plant Kingd
    NAME OF THE TEACHER: SR. RENCY GEORGE SUBJECT: BIOLOGY TOPIC: CHAPTER -1 CLASS: XI MOBILE NO:9340839715 CHAPTER-3 Plant Kingdom Objectives :- Observe plants closely to notice features and characteristics of growth and development. Observe and identify differences in plants and animals. Observe similarities among plants (seeds, roots, stems, leaves, flowers, fruit) Learning Strategies:- • Explain Different systems of Classification. • Differentiate between Artificial and Natural System of Classification. • Explain Algae and its significance. • Differentiate between various classes of Algae. • Explain various modes of reproduction in Algae. RESOURCES: i.Text books ii.Learning Materials iii.Lab manual iv.E-Resources,video ,L.C.D etc… CLICK HERE TO PLAY CONTENT RELATED VIDEO ON YOU TUBE. https://youtu.be/SWlVX1gDd98 https://youtu.be/P_MyyxIQzm4 https://youtu.be/KmbFGIiwP4k https://youtu.be/mepU8gStVpg https://youtu.be/fnE01M0YlTc https://youtu.be/xir7xvLi8XE Contents Introduction Plant kingdom includes algae, bryophytes, pteridophytes, gymnosperms and angiosperms. ... Depending on the type of pigment possessed and the type of stored food, algae are classified into three classes, namely Chlorophyceae, Phaeophyceae and Rhodophyceae. Eukaryotic, multicellular, chlorophyll containing and having cell wall, are grouped under the kingdom Plantae. It is popularly known as plant kingdom. • Phylogenetic system of classification based on evolutionary relationship is presently used for classifying plants. • Numerical Taxonomy use computer by assigning code for each character and analyzing the features. • Cytotaxonomy is based on cytological information like chromosome number, structure and behaviour. • Chemotaxonomy uses chemical constituents of plants to resolve the confusion. Algae: These include the simplest plants which possess undifferentiated or thallus like forms, reproductive organs single celled called gametangia.
    [Show full text]
  • The Big Bloom—How Flowering Plants Changed the World
    The Big Bloom—How Flowering Plants Changed the World Written by Michael Klesius Republished from the pages of National Geographic magazine -- July 2002 In the summer of 1973 sunflowers appeared in my father's vegetable garden. They seemed to sprout overnight in a few rows he had lent that year to new neighbors from California. Only six years old at the time, I was at first put off by these garish plants. Such strange and vibrant flowers seemed out of place among the respectable beans, peppers, spinach, and other vegetables we had always grown. Gradually, however, the brilliance of the sunflowers won me over. Their fiery halos relieved the green monotone that by late summer ruled the garden. I marveled at birds that clung upside down to the shaggy, gold disks, wings fluttering, looting the seeds. Sunflowers defined flowers for me that summer and changed my view of the world. Flowers have a way of doing that. They began changing the way the world looked almost as soon as they appeared on Earth about 130 million years ago, during the Cretaceous period. That's relatively recent in geologic time: If all Earth's history were compressed into an hour, flowering plants would exist for only the last 90 seconds. But once they took firm root about 100 million years ago, they swiftly diversified in an explosion of varieties that established most of the flowering plant families of the modern world. Today flowering plant species outnumber by twenty to one those of ferns and cone-bearing trees, or conifers, which had thrived for 200 million years before the first bloom appeared.
    [Show full text]
  • The Associations Between Pteridophytes and Arthropods
    FERN GAZ. 12(1) 1979 29 THE ASSOCIATIONS BETWEEN PTERIDOPHYTES AND ARTHROPODS URI GERSON The Hebrew University of Jerusalem, Faculty of Agriculture, Rehovot, Israel. ABSTRACT Insects belonging to 12 orders, as well as mites, millipedes, woodlice and tardigrades have been collected from Pterldophyta. Primitive and modern, as well as general and specialist arthropods feed on pteridophytes. Insects and mites may cause slight to severe damage, all plant parts being susceptible. Several arthropods are pests of commercial Pteridophyta, their control being difficult due to the plants' sensitivity to pesticides. Efforts are currently underway to employ insects for the biological control of bracken and water ferns. Although Pteridophyta are believed to be relatively resistant to arthropods, the evidence is inconclusive; pteridophyte phytoecdysones do not appear to inhibit insect feeders. Other secondary compounds of preridophytes, like prunasine, may have a more important role in protecting bracken from herbivores. Several chemicals capable of adversely affecting insects have been extracted from Pteridophyta. The litter of pteridophytes provides a humid habitat for various parasitic arthropods, like the sheep tick. Ants often abound on pteridophytes (especially in the tropics) and may help in protecting these plants while nesting therein. These and other associations are discussed . lt is tenatively suggested that there might be a difference in the spectrum of arthropods attacking ancient as compared to modern Pteridophyta. The Osmundales, which, in contrast to other ancient pteridophytes, contain large amounts of ·phytoecdysones, are more similar to modern Pteridophyta in regard to their arthropod associates. The need for further comparative studies is advocated, with special emphasis on the tropics.
    [Show full text]
  • Chlorophyta Is a Division of Green Algae, Informally Called
    Chlorophyta is a division of green algae, informally waters of the Sargasso Sea. Many brown algae, such as called chlorophytes. The name is used in two very members of the order Fucales, commonly grow along different senses so that care is needed to determine the rocky seashores. Some members of the class are used as use by a particular author. In older classification food for humans. systems, it refers to a highly paraphyletic group of all Worldwide there are about 1500–2000 species of brown the green algae within the green plants (Viridiplantae), algae.[4] Some species are of sufficient commercial and thus includes about 7,000 species [4] [5] of mostly importance, such as Ascophyllum nodosum , that they aquatic photosynthetic eukaryotic organisms. Like the have become subjects of extensive research in their own land plants (bryophytes and tracheophytes), green algae right.[5] [4] contain chlorophylls a and b, and store food as starch Brown algae belong to a very large group, the in their plastids. Heterokontophyta, a eukaryotic group of organisms In newer classifications, it refers to one of the two distinguished most prominently by having chloroplasts clades making up the Viridiplantae, which are the surrounded by four membranes, suggesting an origin chlorophytes and the streptophytes or charophytes.[6][7] from a symbiotic relationship between a basal In this sense it includes only about 4,300 species.[3] eukaryote and another eukaryotic organism. Most brown algae contain the pigment fucoxanthin, which is responsible for the distinctive greenish-brown color that The red algae, or Rhodophyta ( / r o ʊ ˈ d ɒ f ɨ t ə / or / gives them their name.
    [Show full text]
  • Tucson Cactus and Succulent Society Guide to Common Cactus and Succulents of Tucson
    Tucson Cactus and Succulent Society Guide to Common Cactus and Succulents of Tucson http://www.tucsoncactus.org/c-s_database/index.html Item ID: 1 Item ID: 2 Family: Cactaceae Family: Cactaceae Genus: Ferocactus Genus: Echinocactus Species: wislizenii Species: grusonii Common Name: Fishhook Barrel Common Name: Golden Barrel Habitat: Various soil types from 1,000 Cactus to 6,000 feet elevation from grasslands Habitat: Located on rolling hills to rocky mountainous areas. and cliffs. Range: Arizona, southwestern New Range: Limited to small areas in Mexico, limited extremes of western Queretaro, Mexico. The popula- Texas, Sonora, northwest Chihuahua tion had become very low in num- and northern Sinaloa, Mexico bers over the years but is just Care: An extremely easy plant to grow now beginning to increase due to in and around the Tucson area. It re- protective laws and the fact that Photo Courtesy of Vonn Watkins quires little attention or special care as this plant is now in mass cultiva- ©1999 it is perfectly at home in almost any tion all over the world. garden setting. It is very tolerant of ex- Photo Courtesy of American Desert Care: The Golden Barrel has slow- Description treme heat as well as cold. Cold hardi- Plants ly become one of the most pur- This popular barrel cactus is noted ness tolerance is at around 10 degrees chased plants for home landscape for the beautiful golden yellow farenheit. Description in Tucson. It is an easy plant to spines that thickly surround the Propagation: Propagation of this cac- This plant is most recognized by the grow and takes no special care.
    [Show full text]
  • The Origin of Alternation of Generations in Land Plants
    Theoriginof alternation of generations inlandplants: afocuson matrotrophy andhexose transport Linda K.E.Graham and LeeW .Wilcox Department of Botany,University of Wisconsin, 430Lincoln Drive, Madison,WI 53706, USA (lkgraham@facsta¡.wisc .edu ) Alifehistory involving alternation of two developmentally associated, multicellular generations (sporophyteand gametophyte) is anautapomorphy of embryophytes (bryophytes + vascularplants) . Microfossil dataindicate that Mid ^Late Ordovicianland plants possessed such alifecycle, and that the originof alternationof generationspreceded this date.Molecular phylogenetic data unambiguously relate charophyceangreen algae to the ancestryof monophyletic embryophytes, and identify bryophytes as early-divergentland plants. Comparison of reproduction in charophyceans and bryophytes suggests that the followingstages occurredduring evolutionary origin of embryophytic alternation of generations: (i) originof oogamy;(ii) retention ofeggsand zygotes on the parentalthallus; (iii) originof matrotrophy (regulatedtransfer ofnutritional and morphogenetic solutes fromparental cells tothe nextgeneration); (iv)origin of a multicellularsporophyte generation ;and(v) origin of non-£ agellate, walled spores. Oogamy,egg/zygoteretention andmatrotrophy characterize at least some moderncharophyceans, and arepostulated to represent pre-adaptativefeatures inherited byembryophytes from ancestral charophyceans.Matrotrophy is hypothesizedto have preceded originof the multicellularsporophytes of plants,and to represent acritical innovation.Molecular
    [Show full text]
  • Handouts-Lect. 30 Gymnosperms and Angiosperms.Pdf
    Lecture 30 Gymnosperms and Angiosperms Gymnosperms Gymnosperms means “naked seed” and are are nonflowering plants. Their seeds that do not develop within an enclosed structure. Examples are conifers, cycads, Ginkgo, and Gnetales. Gymnosperm seeds develop either on the surface of scale or a leaf-like appendage of cones or at the end of short stalks. Evolution of gymnosperms Seed ferns were the first seed plants, protecting their reproductive parts in structures called capsules. Seed ferns gave rise to the gymnosperms during the Paleozoic Era, about 390 million years ago. Gymnosperms include the gingkoes and conifers and inhabit many, ecosystem such as the taiga and the alpine forests, because they are well adapted for cold weather. True seed plants became more numerous and diverse during the Carboniferous period around 319 million years ago; an explosion that appears to be due to a whole genome duplication event. Gymnosperms do not depend on water for fertilization (have air‐borne pollen). Life Cycle of Gymnosperms 1. Gymnosperms are vascular plants that produce seeds in cones. Examples include conifers such as pine and spruce trees. The gymnosperm life cycle has a dominant sporophyte generation. Both gametophytes and the next generation’s new sporophytes develop on the sporophyte parent plant. 2. Cones form on a mature sporophyte plant. Inside male cones, male spores develop into male gametophytes. Each male gametophyte consists of several cells enclosed within a grain of pollen. Inside female cones, female spores develop into female gametophytes. Each female gametophyte produces an egg inside an ovule. 3. Pollination occurs when pollen is transferred from a male to female cone.
    [Show full text]