Deformation of the Oceanic Crust Between the North American and South American Plates

Total Page:16

File Type:pdf, Size:1020Kb

Deformation of the Oceanic Crust Between the North American and South American Plates JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 98, NO. B5, PAGES 8275-8291, MAY 10, 1993 Deformation of the Oceanic Crust Between the North American and South American Plates R. DIETMAR MOLLER ScrippsInstitution of Oceanography,La Jolla, California WALTER H.F. SMITH 1 Instituteof Geophysicsand PlanetaryPhysics, Scripps Institution of Oceanography,La Jolla, California Fracturezone trends and •nagneticanomalies in the AtlanticOcean indicate that the NorthAmerican plate must have movedwith respectto the SouthAmerican plate during the openingof the Ariantic. A comparisonof platetectonic flow lineswith fracturezones identified from Geosatand Seasat altimeter data suggests that the NorthAmerican-South American plateboundary nilgrated northward from theGuinea-Demarara shear margin to theVerna Fracture Zone before chron 34 (84 Ma), to north of the DoldrumsFracture Zone before chron22 (51.9 Ma), and to north of the MercuriusFracture Zone betweenchron 32 (72.5 Ma) and chron13 (35.5 Ma). The palcoridgeoffset through time identifiedfrom magnetic anomaliesand the computedcmnulative strike slip motionin theplate boundary area, indicate that the triplejunction may havebeen located between the Mercuriusand the Fifteen-Twentyfracture zones after 67 Ma (chron30). Platereconstructions indicatea DateCretaceous phase of transtension,followed by transpressionin the Tertiary for theTiburon/Barracuda Ridge areasouth of theFifteen-Twenty Fracture Zone. The oceanfloor in thisarea is characterizedby a seriesof ridgesand troughs withlarge Bouguer gravity anomalies (up to ~135 regal). We usesmoothing spline estimation to invertBouguer anomalies for crustallayer structure. Our modelresults suggest that the Mohois uplifted2-4 km overshort wavelengths (-70 ksn)at the Barracudaand Tiburon ridges and imply large anelastic strains. The severelythinned crust at thetwo ridgesimplies that crustalextension must have taken place before they were uplifted. We proposethat the North-SouthAmerican plate boundarymigrated to the latitudeof the TiburonRidge, bounded by theVerna and Marathon fracture zones, before chron 34 (84 Ma). Post-chron34 crustalthinning during a transtensionaltectonic regi•ne may have been localized at preexisting structuralweaknesses such ,as the Vema,Marathon, Mercurius, and Fifteen-Twenty fracture zone troughs, but reachingthe Fifteen-TwentyFracture Zone and future Barracuda Ridge area only after chron 32 (72.5 Ma). Tlfisinterpretation concurs with our crustalstructural model, wlfich shows stronger crustal thinning underneath the TiburonRidge than at the Barracuda Ridge. Subsequenttranspression may have continued along the existingzones of weaknessin the Tertiary,creating the presentlyobserved crustal deformation and uplift of the Moho,accompanied by anela.stic failure of the crust.Middle-Eocene- UpperOligocene turbidites on theslope of theTiburon Ridge, now located 800 m abovethe abyssalplain, suggest that most of its uplift occurredat post-Oligocenetimes. The unusuallyshallow Moho underneath the Tiburon and Barracuda ridges representsan unstabledensity distribution, which may indicate that compressivestresses are still presentto maintainthese anomalies,and that the NorthAmerican-South American plate boundary may still be locatedin thisarea. INTRODUCTION Africa and SouthAmerica southof the Guinea-Demararamargin startedin the Early Cretaceousand the first NOAM-SOAM-African A densepattem of inostlyInedium to largeoffset fracture zones oceanictriple junction is thoughtto have formed at about 110 Ma aswell asa seriesof unusualridges and troughs with largegravity (Late Albian-Early Cenomanian)along the Guinea-Demararashear anomaliesis found in the regionbounded by the Fifteen-Twenty margin[Mascle et al., 1988], as shownon a tentativereconstruction Fracture Zone to the north and the Romanche Fracture Zone to the for 100 Ma (Figure 2). All fracturezones identified froln satellite south(Figure 1), in thispaper referred to as the equatorialAtlantic. altimetry data older than about 100 Ma preservedon the African One reasonfor the tectoniccomplexity of this areamay be that it plate show North American-African spreadingdirections (Figure recordedthe migration of theplate boundary between the Northand 2), confirmingthat the triple junction was locatedat the Guinea- SouthAmerican plates. However, the tectonichistory of thisarea is Delnararashear Inargin at thatthne. notwell lmowndue to the lackof identifiedmagnetic anomalies. A comparisonof tectonicflow lines computedfroln published It has been suggestedby severalauthors [Roest and Collette, platemodels with the fracturezones in the equatorialNorth Atlantic 1986;Roest, 1987; Candeet al., 1988] thatthis plate boundary was showsthat North American-Africanflow linesclearly mismatch all locatedin theequatorial Atlantic for a significantthne span between fracturezones south of the Fifteen-TwentyFracture Zone younger theLate Cretaceousand the Late Tertiary;this suggestion is based than chron 13 (36 m.y.) (Figure 3a), and that the South Atlantic mainly on evidencefrom fracturezone trends. Rifting between flow lines mismatchthe fracturezone segmentsolder than chron5 (10 Ma) north of the MarathonFracture Zone (Figure 3b). This means that the NOAM-SOAM plate boundarymust have been INowat GeosciencesLaboratory, Ocean and Earth Sciences, National OceanService, NOAA, Rockville, Maryland. locatedin the area boundedby the Marathonand Fifteen-Twenty fracture zones between chrons 13 and 5, and that it migrated Copyfight 1993 by the AmericanGeophysical Union. northwardfrom its initial positionat the Guinea-Demararashear inarginto this areasolne thne beforechron 13. Paper number92JB02863. South Atlantic flow lines are cotnpatiblewith fracture zones 0148-0227/93/9ZIB-02863 $05.00 southof the Kane and north of the Fifteen-Twentyfracture zone 8275 8276 MOLLER AND SMITH: DEFORMATION OF THE OCEANIC CRUST 60øW 40øW 20øW 0 ø 20øN AFR 15øN 0 o 10øN NAM 18øN ,en-Twen' ,-----. Royal Trough M 16øN __Barracuda Rid: t 5øN Tiburon Ridge 25øW 20øW 15øW 14øN ResearcherRidg• ! Fig. 2. Tentativereconstruction for 100 Ma, when rifting betweenAfrica Toe of Barbados and Souill America south of file Guinea-Demarara margin had started. 12øN Accretionary Complex The first Norill-South American-African oceanic triple junction is thoughtto haveformed at about110 Ma (Late Albian-EarlyCenomanian) alongfile Guinea-Demararashear margin [Mascle et al., 1988]. Evidence 60øW 58øW 56øW 54øW 52øW 50øW 48øW 46øW for the locationof the NOAM-SOAM plate boundaryat that time is Fig. 1. (Top) Tectonicmap of the centralAtlantic Ocean. Heavy lines providedby fracturezones older than about 100 Ma northwestof the indicateidentified plate boundaries(Mid-Atlantic Ridge, and the toe of Guinea Plateau, which show North American-African spreading the Barbadosaccretionary complex). Continentalmargins are dotted. directions. Central North Atlantic and South Atlantic isochrons(shown ,as dfin lines) formedby North American-Africanand SouthAmerican-African plate tnofions. Central North Atlantic isochronsare constructedfor chrons5, 6, gravity data to obtain a more detailedimage of fracturezone trends 13, 21, 25, 30, 32, 33y, 330, 34, M-0, M-4, M-10N, M-16, M-21, M-25; South Atlantic isochronsare drawn for chrons5, 6, 13, 18, 21, 25, 31, 34. in the equatorialAtlantic andcompare these with tectonicflow lines Magnetic anomaliescannot be identified near the magnetic equator. computedfrom publishedfinite rotationpoles, as summarizedby 03ottore) Insetmap silowing anotnalous ridge and trotlghfeatures which Miiller and Roest [ 1992]. We calculateestimates for the cumulative we suggestwere formed by tectonism at the North American-Soulh transpressio•fftranstensionalong the plate boundaryand compare the Americanplate boundary. The Fifteen-TwentyFracture Zone runsalong predicted strike slip componentwith reconstructedpaleoridge theBarracuda Ridge and Royal Trough and meets the MAR at 15ø20'N. offsetsat the Fifteen-Twenty transformto better confine the time intervalwhen the plate boundarymay have beenlocated in this area. Second, we combine ship and satellite gravity data with ship only for the youngeststage (chron 5, 10 Ma, to present). This bathymetrydata to model the crustaldeformation underneath the h•dicatesthat the NOAM-SOAM-African triplejunction may have Barracudaand Tiburon ridges by inversionof smoothedBouguer migratedto northof the Fifteen-TwentyFracture Zone after chron 5. anomaliesfor relief in a multilayermodel of oceancrust. Another bathymetric feature of this region in addition to the SUMMARY OF PREVIOUS INVESTIGATIONS densefracture zone pattern is a seriesof ridgesand troughsin the OF THE NOAM-SOAM PLATE BOUNDARY vicinity of the Fifteen-TwentyFracture Zone: the BarracudaRidge andTrough, the TiburonRidge eastof the LesserAntilles Arc, and The tectoniccomplexity of the equatorialAtlantic, in particular, the ResearcherRidge and Royal Troughwest of the Fifteen-Twenty the history and timing of the NOAM-SOAM plate boundary transform fault (Figure 1). The Barracuda and Tiburon ridges migration, has been the subjectof controversyin the past. Roest exhibitunusually large gravity anomalieswhich may be indicative and Collette [1986] suggestedthat the plate boundarymigrated of plate boundarydeformation processes. The Royal Trough northwardfrotn south of 10ø N to the Fifteen-Twenty Fracture exhibits en 6chelonshaped tectonic fabric and fresh basaltson a Zone at about10 Ma, creatingthe BarracudaRidge andTrough by basementcharacterized by spreadingcenter type faultingidentified means of N-S compressionin
Recommended publications
  • Ifm-Geomar Report
    FS Sonne Fahrtbericht / Cruise Report SO201-1b KALMAR Kurile-Kamchatka and ALeutian MARginal Sea-Island Arc Systems: Geodynamic and Climate Interaction in Space and Time Yokohama, Japan - Tomakomai, Japan 10.06. - 06.07.2009 IFM-GEOMAR REPORT Berichte aus dem Leibniz-Institut für Meereswissenschaften an der Christian-Albrechts-Universität zu Kiel Nr. 32 November 2009 FS Sonne Fahrtbericht / Cruise Report SO201-1b KALMAR Kurile-Kamchatka and ALeutian MARginal Sea-Island Arc Systems: Geodynamic and Climate Interaction in Space and Time Yokohama, Japan - Tomakomai, Japan 10.06. - 06.07.2009 Berichte aus dem Leibniz-Institut für Meereswissenschaften an der Christian-Albrechts-Universität zu Kiel Nr. 32 November 2009 ISSN Nr.: 1614-6298 Das Leibniz-Institut für Meereswissenschaften The Leibniz-Institute of Marine Sciences is a ist ein Institut der Wissenschaftsgemeinschaft member of the Leibniz Association Gottfried Wilhelm Leibniz (WGL) (Wissenschaftsgemeinschaft Gottfried Wilhelm Leibniz). Herausgeber / Editor: Reinhard Werner & Folkmar Hauff IFM-GEOMAR Report ISSN Nr.: 1614-6298 Leibniz-Institut für Meereswissenschaften / Leibniz Institute of Marine Sciences IFM-GEOMAR Dienstgebäude Westufer / West Shore Building Düsternbrooker Weg 20 D-24105 Kiel Germany Leibniz-Institut für Meereswissenschaften / Leibniz Institute of Marine Sciences IFM-GEOMAR Dienstgebäude Ostufer / East Shore Building Wischhofstr. 1-3 D-24148 Kiel Germany Tel.: ++49 431 600-0 Fax: ++49 431 600-2805 www.ifm-geomar.de 1 CONTENTS Page Summary..........................................................................................................................................................2
    [Show full text]
  • Zeszyt 10. Morza I Oceany
    Uwaga: Niniejsza publikacja została opracowana według stanu na 2008 rok i nie jest aktualizowana. Zamieszczony na stronie internetowej Komisji Standaryzacji Nazw Geograficznych poza Granica- mi Rzeczypospolitej Polskiej plik PDF jest jedynie zapisem cyfrowym wydrukowanej publikacji. Wykaz zalecanych przez Komisję polskich nazw geograficznych świata (Urzędowy wykaz polskich nazw geograficznych świata), wraz z aktualizowaną na bieżąco listą zmian w tym wykazie, zamieszczo- ny jest na stronie internetowej pod adresem: http://ksng.gugik.gov.pl/wpngs.php. KOMISJA STANDARYZACJI NAZW GEOGRAFICZNYCH POZA GRANICAMI RZECZYPOSPOLITEJ POLSKIEJ przy Głównym Geodecie Kraju NAZEWNICTWO GEOGRAFICZNE ŚWIATA Zeszyt 10 Morza i oceany GŁÓWNY URZĄD GEODEZJI I KARTOGRAFII Warszawa 2008 KOMISJA STANDARYZACJI NAZW GEOGRAFICZNYCH POZA GRANICAMI RZECZYPOSPOLITEJ POLSKIEJ przy Głównym Geodecie Kraju Waldemar Rudnicki (przewodniczący), Andrzej Markowski (zastępca przewodniczącego), Maciej Zych (zastępca przewodniczącego), Katarzyna Przyszewska (sekretarz); członkowie: Stanisław Alexandrowicz, Andrzej Czerny, Janusz Danecki, Janusz Gołaski, Romuald Huszcza, Sabina Kacieszczenko, Dariusz Kalisiewicz, Artur Karp, Zbigniew Obidowski, Jerzy Ostrowski, Jarosław Pietrow, Jerzy Pietruszka, Andrzej Pisowicz, Ewa Wolnicz-Pawłowska, Bogusław R. Zagórski Opracowanie Kazimierz Furmańczyk Recenzent Maciej Zych Komitet Redakcyjny Andrzej Czerny, Joanna Januszek, Sabina Kacieszczenko, Dariusz Kalisiewicz, Jerzy Ostrowski, Waldemar Rudnicki, Maciej Zych Redaktor prowadzący Maciej
    [Show full text]
  • 2. Geophysics and the Structure of the Lesser Antilles Forearc1
    2. GEOPHYSICS AND THE STRUCTURE OF THE LESSER ANTILLES FOREARC1 G. K. Westbrook, Department of Geological Sciences, University of Durham and A. Mascle and B. Biju-Duval, Institut Français du Pétrole2 ABSTRACT The Barbados Ridge complex lies east of the Lesser Antilles volcanic arc along the eastern margin of the Caribbean Plate. The complex dates in part from the Eocene, and elements of the arc system have been dated as Late Cretaceous and Late Jurassic, although most of the volcanic rocks date from the Tertiary, particularly the latter part. It is probable that the arc system was moved a considerable distance eastward with respect to North and South America during the Tertiary. The accretionary complex can be divided into zones running parallel to the arc, starting with a zone of initial accre- tion at the front of the complex where sediment is stripped from the ocean floor and the rate of deformation is greatest. This zone passes into one of stabilization where the deformation rate is generally lower, although there are localized zones of more active tectonics where the generally mildly deformed overlying blanket of sediment is significant dis- turbed. Supracomplex sedimentary basins that are locally very thick are developed in the southern part of the complex. The Barbados Ridge Uplift containing the island of Barbados lies at the western edge of the complex; between it and the volcanic arc lies a large forearc basin comprising the Tobago Trough and Lesser Antilles Trough. There are major longitudinal variations in the complex that are broadly related to the northward decrease in sedi- ment thickness away from terrigenous sources in South America and that are locally controlled by ridges in the oceanic igneous crust passing beneath the complex.
    [Show full text]
  • SCUFN-XVIII/3 English Only
    Distribution Limited IOC-IHO/GEBCO SCUFN-XVIII/3 English Only INTERGOVERNMENTAL INTERNATIONAL OCEANOGRAPHIC HYDROGRAPHIC COMMISSION (of UNESCO) ORGANIZATION International Hydrographic Bureau Monaco, 3-6 October 2005 FINAL REPORT IOC-IHO/GEBCO SCUFN-XVIII/3 Page 2 Page intentionally left blank IOC-IHO/GEBCO SCUFN-XVIII/3 Page 3 Notes: A list of acronyms, used in this report, is in Annex 5. An alphabetical index of all undersea feature names appearing in this report is in Annex 6. 1. INTRODUCTION – APPROVAL OF AGENDA Docs: SCUFN18-1A List of Documents (also Annex 1) SCUFN18-1B rev.1 List of Participants (also Annex 2) SCUFN18-1C rev.3 Agenda (also Annex 3) The eighteenth meeting of the GEBCO Sub-Committee on Undersea Feature Names (SCUFN) met at the International Hydrographic Bureau (IHB) in Monaco under the Chairmanship of Dr. Hans Werner Schenke, Alfred Wegener Institute (AWI), Germany. Dr. Schenke opened the meeting by thanking the IHB for hosting the meeting and expressing his appreciation for their hospitality. Admiral Maratov, president of the IHB, offered opening remarks and welcomed the participants to Monaco. Mr. Michel Huet (IHB), secretary of SCUFN, reviewed the logistics of the meeting and presented the documentation to be addressed by the meeting. A list of documents is included in Annex 1. Attendees included SCUFN members Dr. Hans-Werner Schenke (AWI, Germany), Dr. Galina V. Agapova (Geological Institute of the Russian Academy of Sciences), LCdr. Harvinder AVTAR (NHO, India), Mr. Norman Z. Cherkis (Five Oceans Consultants, USA), Lic. José Luis Frias Salazar (INEGI, Mexico), Mr. Michel Huet (IHB, Monaco), Dr. Yasuhiko Ohara (Hydrographic and Oceanographic Department of Japan), Captain Vadim Sobolev (HDNO, Russian Federation), Ms.
    [Show full text]
  • Ifm-Geomar Report
    FS POSEIDON Fahrtbericht / Cruise Report P379/2 Mid-Atlantic-Researcher Ridge Volcanism (MARRVi) Mindelo - Fort-de-France 15.02.-08.03.2009 IFM-GEOMAR REPORT Berichte aus dem Leibniz-Institut für Meereswissenschaften an der Christian-Albrechts-Universität zu Kiel Nr. 29 June 2009 FS POSEIDON Fahrtbericht / Cruise Report P379/2 Mid-Atlantic-Researcher Ridge Volcanism (MARRVi) Mindelo - Fort-de-France 15.02.-08.03.2009 Berichte aus dem Leibniz-Institut für Meereswissenschaften an der Christian-Albrechts-Universität zu Kiel Nr. 29, June 2009 ISSN Nr.: 1614-6298 Das Leibniz-Institut für Meereswissenschaften The Leibniz-Institute of Marine Sciences is a ist ein Institut der Wissenschaftsgemeinschaft member of the Leibniz Association Gottfried Wilhelm Leibniz (WGL) (Wissenschaftsgemeinschaft Gottfried Wilhelm Leibniz). Herausgeber / Editor: Svend Duggen IFM-GEOMAR Report ISSN Nr.: 1614-6298 Leibniz-Institut für Meereswissenschaften / Leibniz Institute of Marine Sciences IFM-GEOMAR Dienstgebäude Westufer / West Shore Building Düsternbrooker Weg 20 D-24105 Kiel Germany Leibniz-Institut für Meereswissenschaften / Leibniz Institute of Marine Sciences IFM-GEOMAR Dienstgebäude Ostufer / East Shore Building Wischhofstr. 1-3 D-24148 Kiel Germany Tel.: ++49 431 600-0 Fax: ++49 431 600-2805 www.ifm-geomar.de Cruise Report POS379/2 (MARRVi) – MAR-Researcher Ridge 15. Feb. – 8. Mrz. 2009 Table of Contents Chapter 1: Scientific Party and Crew 2 Chapter 2: Introduction and Scientific Background 3 Chapter 3: Methods 8 3.1. The ELAC multi-beam system 3.2. The chain sack dredge 3.3. Magnetotellurics Chapter 4: Regional Geology and Preliminary Results 12 4.1. Isolated Seamounts 4.2. Mid-Atlantic Ridge 4.3. Researcher Ridge Chapter 5: Cruise Narrative 17 Chapter 6: Station Summary 23 Chapter 7: Sample Description 25 7.1.
    [Show full text]
  • Fracture Zones and Their Gravity Signal 33
    Het gebruik van een totale separatiepool in plaats van een halfpool voor de rotatie van de huidige spreidingsrug naar een oude positie is principieel onjuist. De hierdoor veroor- zaakte fout van ongeveer 15 kIn in de positie van de frakturezones in een rekonstruktie door Patriat et ai. (1985) kan van grote invloed zijn op hun konklusie dat frakturezones zich niet stationair gedragen. Patriat Ph., Segoufin J., Goslin J., Beuzart P. - Earth Planet. Sci. Leu .• 75, 204-214, 1985 Dit proefschrift, hoofdstuk 4 Het vulkano-tektonische komplex van Royal Trough en Researcher Ridge & Trough is ontstaan ten gevolge van rek welke samenhangt met de differentie1e beweging tussen Noord- en Zuidamerika. Het feit dat dit komplex zich uitstrekt ten noorden en zuiden van de Fifteen Twenty Fracture Zone vormt een aanwijzing dat frakturezones niet zwakker zijn dan de overige oceaanlithosfeer. Het beschikbaar komen van Seasat-satellietwaarnemingen van de hoogte van het zeeop- pervlak vormt een mijlpaal in het geofysisch onderzoek van de oceaan. Door toepassing van het zwaartekrachtsfilter op de Seasat-satellietwaarnemingen van de gemiddelde hoogte van het zeeoppervlak worden de gegevens in het golflengte bereik van 30-400 kIn bij uitstek geschikt voor het bestuderen van het frakturezonepatroon. De gewoonte om de zgn. stagepolen te bepalen tussen magnetische isochronen komt veelal voort uit een gebrek aan topografische informatie. Ten onrechte zou gekonkludeerd kunnen worden dat er een werkelijke relatie tussen veranderingen in de relatieve beweging van platen en ompolingen in het aardmagneetveld bestaat. Het woord stroomlijn (flowline) dat algemeen wordt gebruikt als men het over de sporen van het aangroeien van de oceaanlithosfeer heeft, is niet gelukkig gekozen aangezien het vervormingen in de oudere oceaanlithosfeer suggereerto Voorzover er al sprake is van stromen, treedt dit op tengevolge van thermische kontraktie in de jonge oceaanlithosfeer en weI Ioodrecht op de "stroomlijnen".
    [Show full text]
  • New Constraints on the Late Cretaceous/Tertiary Plate Tectonic Evolution of the Caribbean
    Chapter 2 New Constraints on the Late Cretaceous/Tertiary Plate Tectonic Evolution of the Caribbean R. DIETMAR MULLER, JEAN-YVES ROYER, STEVEN C. CANDE, WALTER R. ROEST and S. MASCHENKOV We review the plate tectonic evolution of the Caribbean area based on a revised model for the opening of the central North Atlantic and the South Atlantic, as well as based on an updated model of the motion of the Americas relative to the Atlantic-Indian hotspot reference frame. We focus on post-83 Ma reconstructions, for which we have combined a set of new magnetic anomaly data in the central North Atlantic between the Kane and Atlantis fracture zones with existing magnetic anomaly data in the central North and South Atlantic oceans and fracture zone identifications from a dense gravity grid from satellite altimetry to compute North America-South America plate motions and their uncertainties. Our results suggest that slow sinistral transtension/strike-slip between the two Americas at rates roughly between 3 and 5 mm/year lasted until chron 25 (55.9 Ma). Subsequently, our model results in northeast-southwest-oriented convergence until chron 18 (38.4 Ma) at rates ranging between 3.7 4- 1.3 and 6.5 + 1.5 mm/year from 65~ to 85~ respectively. This first convergent phase correlates with a Paleocene-Lower Eocene calc-alkaline magmatic stage in the West Indies, which is thought to be related to northward subduction of Caribbean crust during this time. Relatively slow convergence until chron 8 at rates from 1.2 + 0.9 to 3.6 + 2.1 mm/year from 65~ to 85~ respectively, is followed by a drastic increase in convergence velocity.
    [Show full text]
  • Abstracts and Session Plans for IODP 370 Post-Cruise Meeting 31 May To
    Abstracts and Session Plans for IODP 370 Post-Cruise Meeting st rd 31 May to 3 June 2018 Meeting supported by: 1 | Page Friday 1st June 0900-1700 Scientific Sessions Part I: Impact of temperature on the abundance and activity of microbial life at Site C0023 0900 – 1030: Session I: 1. Final temperature model for Site C0023 (15 minutes) Takehiro Hirose & Masa Kinoshita: The shipboard temperature model and preliminary results of the temperature observatory 2. Abundance of Microorganisms at Site C0023 (5 x 15 minutes) • Yuki Morono: Cell counts & high-pressure-high-temperature incubations, QA/QC • Bernhard Viehweger: Endospore distribution inferred from the biomarker dipicolinic acid (DPA) • Casey Hubert: Update on attempts to detect thermophilic spores • Donald Pan: Virus enumeration • Tatsuhiko Hoshino: On the endeavor to extract in situ microbial community structure 1030 – 1100: Break 1100 – 1200: Session II 3. Microbial Activity at Site C0023 (45 + 15 minutes) • Radio Tracer Team (45 minutes, one combined talk) Tina Treude, Jens Kallmeyer, Felix Beulig, Rishi Adhikari, Clemens Glombitza, Florian Schubert: Radiotracer incubations to determine microbial methanogenesis, methane oxidation, sulfate reduction, and hydrogenase activity • Rachel Harris (15 minutes) Stable isotopic evidence of high-pressure, high- temperature anaerobic methane oxidation 4. Concluding discussion of session I and II (15 minutes) 1200 – 1300: Lunch 1300 – 1730: Session III, including Video Chat with David and 30 minutes coffee break 5. Biogeochemistry at Site C0023
    [Show full text]
  • Ifm-Geomar Report
    FS SONNE Fahrtbericht / Cruise Report SO-210 ChiFlux - Identification and investigation of fluid flux, mass wasting and sediments in the forearc of the central Chilean subduction zone – Valparaiso - Valparaiso 23.09. – 01.11.2010 IFM-GEOMAR REPORT Berichte aus dem Leibniz-Institut für Meereswissenschaften an der Christian-Albrechts-Universität zu Kiel Nr. 44 Mai 2011 FS SONNE Fahrtbericht / Cruise Report SO-210 ChiFlux - Identification and investigation of fluid flux, mass wasting and sediments in the forearc of the central Chilean subduction zone – Valparaiso - Valparaiso 23.09. – 01.11.2010 Berichte aus dem Leibniz-Institut für Meereswissenschaften an der Christian-Albrechts-Universität zu Kiel Nr. 44 Mai 2011 ISSN Nr.: 1614-6298 Das Leibniz-Institut für Meereswissenschaften The Leibniz-Institute of Marine Sciences is a ist ein Institut der Wissenschaftsgemeinschaft member of the Leibniz Association Gottfried Wilhelm Leibniz (WGL) (Wissenschaftsgemeinschaft Gottfried Wilhelm Leibniz). Herausgeber / Editor: Peter Linke IFM-GEOMAR Report ISSN Nr.: 1614-6298 Leibniz-Institut für Meereswissenschaften / Leibniz Institute of Marine Sciences IFM-GEOMAR Dienstgebäude Westufer / West Shore Building Düsternbrooker Weg 20 D-24105 Kiel Germany Leibniz-Institut für Meereswissenschaften / Leibniz Institute of Marine Sciences IFM-GEOMAR Dienstgebäude Ostufer / East Shore Building Wischhofstr. 1-3 D-24148 Kiel Germany Tel.: ++49 431 600-0 Fax: ++49 431 600-2805 www.ifm-geomar.de 2 SONNE 210 / CHIFLUX Cruise Report Table of Content: 1 Summary / Zusammenfassung
    [Show full text]
  • A Portrait of Terrestrial Volatile Evolution from Mantle Noble Gases
    A Portrait of Terrestrial Volatile Evolution From Mantle Noble Gases The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:37944946 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA A Portrait of Terrestrial Volatile Evolution from Mantle Noble Gases a dissertation presented by Jonathan M. Tucker to The Department of Earth and Planetary Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Earth and Planetary Sciences Harvard University Cambridge, Massachusetts October 2016 ©2016 – Jonathan M. Tucker all rights reserved. Dissertation advisors: Jonathan M. Tucker Professor Sujoy Mukhopadhyay Professor Charles H. Langmuir A Portrait of Terrestrial Volatile Evolution from Mantle Noble Gases Abstract Volatile elements and compounds provide important insights into large-scale planetary and tectonic processes. The chapters in this thesis exploit the wealth of information provided by noble gas measurements to address a variety of questions regarding the origins and distribu- tions of volatiles in the Earth. Chapter 1 presents new He-Ne-Ar-Xe data from basalts from the equatorial Mid-Atlantic Ridge, demonstrating a large degree of heavy noble gas heterogeneity in mid-ocean ridge basalts (MORBs). The He and Ne data can be explained primarily by a mixture of a de- pleted mantle component and a HIMU-like component, with the constraint that the HIMU component is a combination of recycled and primitive material.
    [Show full text]
  • T51D-0181: Origin and Age of the Researcher Ridge Seamount Chain (Central Atlantic)
    AGU Fall Meeting 2018 https://agu.confex.com/agu/fm18/meetingapp.cgi/Paper/372645 T51D-0181: Origin and Age of the Researcher Ridge Seamount Chain (Central Atlantic) Friday, 14 December 2018 08:00 - 12:20 Walter E Washington Convention Center - Hall A-C (Poster Hall) Researcher Ridge (RR) is a 400km long, WNW-ESE oriented chain of volcanic seamounts, located on ~20 to 40 Ma old oceanic crust on the western flank of the Mid-Atlantic Ridge (MAR) at ~15°N. RR remained nearly unstudied, and thus its age and origin are currently unclear. At roughly the same latitude, the MAR axis is bathymetrically elevated 40 39 and produces geochemically enriched lavas (the well-known 14°N MAR anomaly). This study presents Ar/ Ar age data, major and trace elements, and Sr-Nd-Pb-Hf isotopic compositions of volcanic rocks dredged from several seamounts of the RR and along the MAR between 13-14°N. The results reveal that RR lavas have geochemically enriched ocean island basalt (OIB) compositions ([La/Sm] =1.7-5.0, [Ce/Yb] =1.58-11.3) with isotopic signatures 143 144 206 204 N 176 177 N ( Nd/ Nd = 0.51294-0.51316, Pb/ Pb = 19.14-19.93, Hf/ Hf = 0.28307-0.28312) trending to or overlapping the ubiquitous FOZO (Focal Zone, e.g., Hart et al., 1992, Science 256) mantle composition. Major and trace element characteristics denote that RR lavas formed by small degrees of melting from a deep source in the garnet stability field and experienced high pressure fractionation beneath a lithospheric lid.
    [Show full text]
  • Exploration of Deep-Seafloor Communities Along the Researcher Ridge Seamounts
    Exploration of deep-seafloor communities along the Researcher Ridge seamounts Contact Information Steven Auscavitch Erik Cordes [email protected] [email protected] Temple University Temple University +1-215-204-8817 +1-215-204-4067 Willing to Attend Workshop? Yes Target Name(s) Research Ridge including, but not limited to, the following named seamounts: Gramberg Seamount, Molodezhnaya Seamount, Keldysh Seamount, Brekhovskih Seamount, Vayda Seamount Geographic Area(s) of Interest within the North Atlantic Ocean (Indicate all that apply) South West, South Central Relevant Subject Area(s) (Indicate all that apply) Biology Geology Oceanography Description of Topic or Region Recommended for Exploration Brief Overview of Feature Researcher Ridge is the only high-profile seamount chain in the southern North Atlantic west of the Mid-Atlantic Ridge (MAR) (Fig. 1). The ridge consists of five named seamounts targeted as priorities for exploration along with many other lower profile features and knolls. Named features of Researcher Ridge are >3000m above surrounding seafloor and whose summits range in depth from 500m to 1200m water depth. The length of the ridge is approximately 180nmi from the westernmost (Gramberg Seamount) to easternmost feature (Vayda Seamount). Vayda seamount, is located approximately 75km due South of the Fifteen-Twenty Fracture Zone. The potential for topographic diversity among these features is extremely high. These seamounts include cone-shaped peaks in addition to others that are composed of a more complex arrangement of ridge-crest topography along the entire breadth of Research Ridge. Brekhovskih Seamount, based on preliminary multibeam bathymetry, can be defined as a large guyot. The existence of these seamounts is somewhat of a mystery as few published records on their formation exist.
    [Show full text]