An Approach for Designing HPC Systems with Better Balance and Performance April 2016 by Steve Conway; Earl C

Total Page:16

File Type:pdf, Size:1020Kb

An Approach for Designing HPC Systems with Better Balance and Performance April 2016 by Steve Conway; Earl C IDC TECHNOLOGY SPOTLIGHT An Approach for Designing HPC Systems with Better Balance and Performance April 2016 By Steve Conway; Earl C. Joseph, Ph.D.; and Bob Sorensen Sponsored by Intel Corporation The market for high-performance computing (HPC) systems has been one of the fastest-growing IT markets. The global HPC systems market more than doubled from 2001 to 2014 — growing from $4.8 billion to $10.2 billion — and IDC predicts that it will reach $15.2 billion in 2019. (Add software, storage, and services and the 2019 forecast expands to $31.3 billion.) An almost insatiable appetite for higher application performance has fueled spending growth among existing users while attracting thousands of new adopters, including small and medium-sized businesses (SMBs) and large commercial firms with big data analytics needs that enterprise technology alone can't handle well. Demand for HPC is robust and growing, but to meet this demand fully, the HPC community needs to address a daunting set of requirements — application compatibility, larger system sizes (soon to include exascale), mixes of compute-intensive and data-intensive workloads, newer environments (cloud computing), improved energy efficiency and reliability/resiliency, better command and control of all this functionality via the software stack, deeper memory hierarchies, and alleviation of the data movement (I/O) bottleneck via better interconnect fabrics. In recent years, reference architectures — flexible master blueprints — have arisen to help developers create HPC systems that are integrated, performant, and responsive to these complex requirements. This IDC Technology Spotlight discusses this trend and uses the Intel Scalable System Framework (SSF) to illustrate progress to date and where things are headed. Sustained, Balanced Performance: The Holy Grail for HPC Users It's no accident that HPC stands for high-performance computing. Since the start of the supercomputer era in the 1960s, a fast-growing contingent of scientists, design engineers, and advanced data analysts have turned to HPC systems to run their problems at the highest available speed and resolution. Especially during the past 15 years, the peak performances of HPC systems — their hypothetical speed limits — have skyrocketed. On the November 1999 list of the world's most powerful supercomputers (www.top500.org), the number 1 system boasted 9,632 cores and peak performance of 3.2 teraflops (TF). Fast-forward 16 years to the November 2015 list and the number 1 supercomputer featured 3.1 million cores and peak performance of 54.9 petaflops (PF). That's a 324-fold increase in the core count and a 17,156-fold leap in peak performance (see Table 1). Sustained performance — actual speed on end-user applications — has also made impressive advances but with varied success. "Embarrassingly parallel" codes still manage to exploit substantial fractions (>20%) of even the largest supercomputers, but many applications do not fit that description. US41171216 TABLE 1 Growth in System Size: Top Supercomputer on Top500 List November 1999 November 2015 Gain Factor (X) Peak performance (TF) 3.2 54,900 17,156 Core count 9,632 3,120,000 324 Peak performance/core (GF) 0.33 17.6 53 Source: IDC, 2015 IDC's 2015 worldwide HPC end-user study found that 51.8% of all codes were running on one node or less, and 10.9% of codes ran on just a single core. Only 9.1% of applications were being run on more than 1,000 cores, and just 2.5% were scaling to 10,000 or more cores. Some of the responsibility for limited sustained performance rests with the application codes themselves. Extreme examples include codes that were written decades ago to run on single-processor, central memory vector supercomputers. Many of these codes have been modified but were never fundamentally rewritten to exploit today's highly parallel HPC systems efficiently. Boosting sustained performance for these HPC codes and many others depends on more than just exposing enough parallelism to exploit more processor cores on CPUs or accelerators/coprocessors. These codes also need strong I/O capabilities to keep the processors supplied with data, along with a constellation of other requirements (see the following section). Addressing System Imbalance and Growing Complexity To move performance on end-user applications forward will require the HPC community to address two key challenges: the imbalanced architectures of today's HPC systems and the complex and growing set of requirements users have for these systems. Not just for exascale users. Although much of the discussion in the HPC community lately has focused on advancing capabilities to prepare for exascale computing in the 2020–2024 era and beyond, improvements in system balance and in managing system complexity stand to benefit the entire HPC community, with systems from a few nodes up to the largest supercomputers. Processors Are Not the Performance Problem The Top500 figures noted in the preceding section demonstrate that processors are not the problem. System peak performance is usually just the peak performance of one processor times the number of processors in the system — and the figures show that the peak performance of processors has advanced strongly in the past 15 years. Today, the processors — whether CPUs or accelerators/coprocessors — are nearly always the fastest elements in any HPC system, by far. The system's sustained performance on a range of user applications typically depends much more on the ability of the rest of the system, especially the memory subsystem and interconnect, to keep pace with the processors. 2 ©2016 IDC The global HPC user community is well aware of this system-level imbalance problem (the "memory wall" and "I/O wall") and has urged vendors to alleviate this worsening bottleneck by improving the capabilities of the nonprocessor parts of the system. That's important, because system-level imbalance not only constrains the performance of user applications but also throttles organizational productivity and the value (return on investment [ROI]) obtained from increasingly substantial investments in HPC resources. The rapid growth in high-performance data analysis — big data needing strong memory and I/O capabilities for data-intensive simulation and analytics — is exacerbating the imbalance issue. Advancing Interconnect Performance An important strategy for improving system balance is to enable interconnect fabrics to move data with higher bandwidth and lower latency, especially to keep the processors reasonably busy. With that goal in mind, interconnect-related R&D has heated up in recent years — and not only at large interconnect vendors such as Mellanox and Intel. Extoll (Germany) and Numascale (Norway) already market their interconnect products, and Atos (Bull) is developing an interconnect fabric for its HPC systems. In addition, IDC expects Cray to offer a special variant of the Intel Omni-Path interconnect, derived from the technical collaboration between these two companies. Breaking Down the Memory Wall Recognizing the significant impact an advanced memory architecture would have on HPC applications, Intel has been working for some time on technology innovation to reduce the lag time between processors and data. While Intel has not released a wide range of details specific to its new memory technologies, two significant milestones have been disclosed that offer a tremendous performance improvement for HPC applications. In July 2015, Intel and Micron unveiled 3D XPoint technology, a nonvolatile memory that will benefit both compute-intensive applications and data-intensive applications requiring fast access to large sets of data. This is the first new memory category since the introduction of NAND flash in 1989. Manufacturer-supplied proof points suggest the new 3D XPoint technology offers nonvolatile memory speeds up to 1,000 times faster than those of NAND, currently the most popular nonvolatile memory in the marketplace. In August 2015, Intel announced its Intel Optane Technology to combine the 3D XPoint nonvolatile memory media with the company's advanced system memory controller, interface hardware, and software IP as the foundation for a range of future products, including a new line of Intel DIMMs designed for next-generation platforms. Addressing Complexity via the Software Stack Although imbalance (extreme compute centrism) is arguably the biggest performance problem facing HPC systems today, it is not the only major problem. Another important issue for buyers and users, as noted previously, is managing the complex, growing set of requirements for operating these systems. These mounting requirements have made it more challenging to present users with an HPC resource that is comprehensive, coherent, and highly performant on their applications. The system management requirements fall into the following main categories: Heterogeneous workloads (floating point–based simulation, integer-based analytics) The movement from synchronous applications to asynchronous workflows Rapid growth in average system sizes and component counts Heterogeneous processing elements (CPUs, coprocessors/accelerators) ©2016 IDC 3 Heterogeneous environments (on-premise datacenters, public/hybrid clouds) Reliability/resiliency at scale Power efficiency and power awareness ("power steering") Cybersecurity The HPC community is also dealing with the emerging trend toward deeper, more heterogeneous memory hierarchies (e.g., solid state drives [SSDs], on-package memory, NVRAM, and burst buffers).
Recommended publications
  • Petaflops for the People
    PETAFLOPS SPOTLIGHT: NERSC housands of researchers have used facilities of the Advanced T Scientific Computing Research (ASCR) program and its EXTREME-WEATHER Department of Energy (DOE) computing predecessors over the past four decades. Their studies of hurricanes, earthquakes, NUMBER-CRUNCHING green-energy technologies and many other basic and applied Certain problems lend themselves to solution by science problems have, in turn, benefited millions of people. computers. Take hurricanes, for instance: They’re They owe it mainly to the capacity provided by the National too big, too dangerous and perhaps too expensive Energy Research Scientific Computing Center (NERSC), the Oak to understand fully without a supercomputer. Ridge Leadership Computing Facility (OLCF) and the Argonne Leadership Computing Facility (ALCF). Using decades of global climate data in a grid comprised of 25-kilometer squares, researchers in These ASCR installations have helped train the advanced Berkeley Lab’s Computational Research Division scientific workforce of the future. Postdoctoral scientists, captured the formation of hurricanes and typhoons graduate students and early-career researchers have worked and the extreme waves that they generate. Those there, learning to configure the world’s most sophisticated same models, when run at resolutions of about supercomputers for their own various and wide-ranging projects. 100 kilometers, missed the tropical cyclones and Cutting-edge supercomputing, once the purview of a small resulting waves, up to 30 meters high. group of experts, has trickled down to the benefit of thousands of investigators in the broader scientific community. Their findings, published inGeophysical Research Letters, demonstrated the importance of running Today, NERSC, at Lawrence Berkeley National Laboratory; climate models at higher resolution.
    [Show full text]
  • GPU Developments 2018
    GPU Developments 2018 2018 GPU Developments 2018 © Copyright Jon Peddie Research 2019. All rights reserved. Reproduction in whole or in part is prohibited without written permission from Jon Peddie Research. This report is the property of Jon Peddie Research (JPR) and made available to a restricted number of clients only upon these terms and conditions. Agreement not to copy or disclose. This report and all future reports or other materials provided by JPR pursuant to this subscription (collectively, “Reports”) are protected by: (i) federal copyright, pursuant to the Copyright Act of 1976; and (ii) the nondisclosure provisions set forth immediately following. License, exclusive use, and agreement not to disclose. Reports are the trade secret property exclusively of JPR and are made available to a restricted number of clients, for their exclusive use and only upon the following terms and conditions. JPR grants site-wide license to read and utilize the information in the Reports, exclusively to the initial subscriber to the Reports, its subsidiaries, divisions, and employees (collectively, “Subscriber”). The Reports shall, at all times, be treated by Subscriber as proprietary and confidential documents, for internal use only. Subscriber agrees that it will not reproduce for or share any of the material in the Reports (“Material”) with any entity or individual other than Subscriber (“Shared Third Party”) (collectively, “Share” or “Sharing”), without the advance written permission of JPR. Subscriber shall be liable for any breach of this agreement and shall be subject to cancellation of its subscription to Reports. Without limiting this liability, Subscriber shall be liable for any damages suffered by JPR as a result of any Sharing of any Material, without advance written permission of JPR.
    [Show full text]
  • CTL RFP Proposal
    State of Maine Department of Education in coordination with the National Association of State Procurement Officials PROPOSAL COVER PAGE RFP # 201210412 MULTI-STATE LEARNING TECHNOLOGY INITIATIVE Bidder’s Organization Name: CTL Chief Executive - Name/Title: Erik Stromquist / COO Tel: 800.642.3087 x 212 Fax: 503.641.5586 E-mail: [email protected] Headquarters Street Address: 3460 NW Industrial St. Headquarters City/State/Zip: Portland, OR 97210 (provide information requested below if different from above) Lead Point of Contact for Proposal - Name/Title: Michael Mahanay / GM, Sales & Marketing Tel: 800.642.3087 x 205 Fax: 503.641.5586 E-mail: [email protected] Street Address: 3460 NW Industrial St. City/State/Zip: Portland, OR 97219 Proposed Cost: $294/yr. The proposed cost listed above is for reference purposes only, not evaluation purposes. In the event that the cost noted above does not match the Bidder’s detailed cost proposal documents, then the information on the cost proposal documents will take precedence. This proposal and the pricing structure contained herein will remain firm for a period of 180 days from the date and time of the bid opening. No personnel on the multi-state Sourcing Team or any other involved state agency participated, either directly or indirectly, in any activities relating to the preparation of the Bidder’s proposal. No attempt has been made or will be made by the Bidder to induce any other person or firm to submit or not to submit a proposal. The undersigned is authorized to enter into contractual obligations on behalf of the above-named organization.
    [Show full text]
  • Mass-Producing Your Certified Cluster Solutions
    Mass-Producing Your Certified Cluster Solutions White Paper The Intel® Cluster Ready program is designed to help you make the most of your engineering Intel® Cluster Ready resources. The program enables you to sell several different types of clusters from each solution High-Performance you design, by varying the hardware while maintaining the same software stack. You can gain a Computing broader range of cluster products to sell without engineering each one “from scratch.” As long as the software stack remains the same and works on each one of the hardware configurations, you can be confident that your clusters will interoperate with registered Intel Cluster Ready applications. Your customers can purchase your clusters with that same confidence, knowing they’ll be able to get their applications up and running quickly on your systems. Intel® Cluster Ready: Mass-Producing Your Certified Cluster Solutions Table of Contents Overview of Production-Related Activities � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 3 Creating and certifying recipes � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 3 Maintaining recipes � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 3 Mass-producing recipes � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
    [Show full text]
  • NVM Express and the PCI Express* SSD Revolution SSDS003
    NVM Express and the PCI Express* SSD Revolution Danny Cobb, CTO Flash Memory Business Unit, EMC Amber Huffman, Sr. Principal Engineer, Intel SSDS003 Agenda • NVM Express (NVMe) Overview • New NVMe Features in Enterprise & Client • Driver Ecosystem for NVMe • NVMe Interoperability and Plugfest Plans • EMC’s Perspective: NVMe Use Cases and Proof Points The PDF for this Session presentation is available from our Technical Session Catalog at the end of the day at: intel.com/go/idfsessions URL is on top of Session Agenda Pages in Pocket Guide 2 Agenda • NVM Express (NVMe) Overview • New NVMe Features in Enterprise & Client • Driver Ecosystem for NVMe • NVMe Interoperability and Plugfest Plans • EMC’s Perspective: NVMe Use Cases and Proof Points 3 NVM Express (NVMe) Overview • NVM Express is a scalable host controller interface designed for Enterprise and client systems that use PCI Express* SSDs • NVMe was developed by industry consortium of 80+ members and is directed by a 13-company Promoter Group • NVMe 1.0 was published March 1, 2011 • Product introductions later this year, first in Enterprise 4 Technical Basics • The focus of the effort is efficiency, scalability and performance – All parameters for 4KB command in single 64B DMA fetch – Supports deep queues (64K commands per Q, up to 64K queues) – Supports MSI-X and interrupt steering – Streamlined command set optimized for NVM (6 I/O commands) – Enterprise: Support for end-to-end data protection (i.e., DIF/DIX) – NVM technology agnostic 5 NVMe = NVM Express NVMe Command Execution 7 1
    [Show full text]
  • System Design for Telecommunication Gateways
    P1: OTE/OTE/SPH P2: OTE FM BLBK307-Bachmutsky August 30, 2010 15:13 Printer Name: Yet to Come SYSTEM DESIGN FOR TELECOMMUNICATION GATEWAYS Alexander Bachmutsky Nokia Siemens Networks, USA A John Wiley and Sons, Ltd., Publication P1: OTE/OTE/SPH P2: OTE FM BLBK307-Bachmutsky August 30, 2010 15:13 Printer Name: Yet to Come P1: OTE/OTE/SPH P2: OTE FM BLBK307-Bachmutsky August 30, 2010 15:13 Printer Name: Yet to Come SYSTEM DESIGN FOR TELECOMMUNICATION GATEWAYS P1: OTE/OTE/SPH P2: OTE FM BLBK307-Bachmutsky August 30, 2010 15:13 Printer Name: Yet to Come P1: OTE/OTE/SPH P2: OTE FM BLBK307-Bachmutsky August 30, 2010 15:13 Printer Name: Yet to Come SYSTEM DESIGN FOR TELECOMMUNICATION GATEWAYS Alexander Bachmutsky Nokia Siemens Networks, USA A John Wiley and Sons, Ltd., Publication P1: OTE/OTE/SPH P2: OTE FM BLBK307-Bachmutsky August 30, 2010 15:13 Printer Name: Yet to Come This edition first published 2011 C 2011 John Wiley & Sons, Ltd Registered office John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com. The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.
    [Show full text]
  • Accelerate Your AI Journey with Intel
    Intel® AI Workshop 2021 Accelerate Your AI Journey with Intel Laurent Duhem – HPC/AI Solutions Architect ([email protected]) Shailen Sobhee - AI Software Technical Consultant ([email protected]) Notices and Disclaimers ▪ Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system configuration. ▪ No product or component can be absolutely secure. ▪ Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance. For more complete information about performance and benchmark results, visit http://www.intel.com/benchmarks . ▪ Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit http://www.intel.com/benchmarks . ▪ Intel® Advanced Vector Extensions (Intel® AVX) provides higher throughput to certain processor operations. Due to varying processor power characteristics, utilizing AVX instructions may cause a) some parts to operate at less than the rated frequency and b) some parts with Intel® Turbo Boost Technology 2.0 to not achieve any or maximum turbo frequencies. Performance varies depending on hardware, software, and system configuration and you can learn more at http://www.intel.com/go/turbo.
    [Show full text]
  • Extracting and Mapping Industry 4.0 Technologies Using Wikipedia
    Computers in Industry 100 (2018) 244–257 Contents lists available at ScienceDirect Computers in Industry journal homepage: www.elsevier.com/locate/compind Extracting and mapping industry 4.0 technologies using wikipedia T ⁎ Filippo Chiarelloa, , Leonello Trivellib, Andrea Bonaccorsia, Gualtiero Fantonic a Department of Energy, Systems, Territory and Construction Engineering, University of Pisa, Largo Lucio Lazzarino, 2, 56126 Pisa, Italy b Department of Economics and Management, University of Pisa, Via Cosimo Ridolfi, 10, 56124 Pisa, Italy c Department of Mechanical, Nuclear and Production Engineering, University of Pisa, Largo Lucio Lazzarino, 2, 56126 Pisa, Italy ARTICLE INFO ABSTRACT Keywords: The explosion of the interest in the industry 4.0 generated a hype on both academia and business: the former is Industry 4.0 attracted for the opportunities given by the emergence of such a new field, the latter is pulled by incentives and Digital industry national investment plans. The Industry 4.0 technological field is not new but it is highly heterogeneous (actually Industrial IoT it is the aggregation point of more than 30 different fields of the technology). For this reason, many stakeholders Big data feel uncomfortable since they do not master the whole set of technologies, they manifested a lack of knowledge Digital currency and problems of communication with other domains. Programming languages Computing Actually such problem is twofold, on one side a common vocabulary that helps domain experts to have a Embedded systems mutual understanding is missing Riel et al. [1], on the other side, an overall standardization effort would be IoT beneficial to integrate existing terminologies in a reference architecture for the Industry 4.0 paradigm Smit et al.
    [Show full text]
  • Ushering in a New Era: Argonne National Laboratory & Aurora
    Ushering in a New Era Argonne National Laboratory’s Aurora System April 2015 ANL Selects Intel for World’s Biggest Supercomputer 2-system CORAL award extends IA leadership in extreme scale HPC Aurora Argonne National Laboratory >180PF Trinity NNSA† April ‘15 Cori >40PF NERSC‡ >30PF July ’14 + Theta Argonne National Laboratory April ’14 >8.5PF >$200M ‡ Cray* XC* Series at National Energy Research Scientific Computing Center (NERSC). † Cray XC Series at National Nuclear Security Administration (NNSA). 2 The Most Advanced Supercomputer Ever Built An Intel-led collaboration with ANL and Cray to accelerate discovery & innovation >180 PFLOPS (option to increase up to 450 PF) 18X higher performance† >50,000 nodes Prime Contractor 13MW >6X more energy efficient† 2018 delivery Subcontractor Source: Argonne National Laboratory and Intel. †Comparison of theoretical peak double precision FLOPS and power consumption to ANL’s largest current system, MIRA (10PFs and 4.8MW) 3 Aurora | Science From Day One! Extreme performance for a broad range of compute and data-centric workloads Transportation Biological Science Renewable Energy Training Argonne Training Program on Extreme- Scale Computing Aerodynamics Biofuels / Disease Control Wind Turbine Design / Placement Materials Science Computer Science Public Access Focus Areas Focus US Industry and International Co-array Fortran Batteries / Solar Panels New Programming Models 4 Aurora | Built on a Powerful Foundation Breakthrough technologies that deliver massive benefits Compute Interconnect File System 3rd Generation 2nd Generation Intel® Xeon Phi™ Intel® Omni-Path Intel® Lustre* Architecture Software >17X performance† >20X faster† >3X faster† FLOPS per node >500 TB/s bi-section bandwidth >1 TB/s file system throughput >12X memory bandwidth† >2.5 PB/s aggregate node link >5X capacity† bandwidth >30PB/s aggregate >150TB file system capacity in-package memory bandwidth Integrated Intel® Omni-Path Architecture Processor code name: Knights Hill Source: Argonne National Laboratory and Intel.
    [Show full text]
  • Architectural Trade-Offs in a Latency Tolerant Gallium Arsenide Microprocessor
    Architectural Trade-offs in a Latency Tolerant Gallium Arsenide Microprocessor by Michael D. Upton A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Electrical Engineering) in The University of Michigan 1996 Doctoral Committee: Associate Professor Richard B. Brown, CoChairperson Professor Trevor N. Mudge, CoChairperson Associate Professor Myron Campbell Professor Edward S. Davidson Professor Yale N. Patt © Michael D. Upton 1996 All Rights Reserved DEDICATION To Kelly, Without whose support this work may not have been started, would not have been enjoyed, and could not have been completed. Thank you for your continual support and encouragement. ii ACKNOWLEDGEMENTS Many people, both at Michigan and elsewhere, were instrumental in the completion of this work. I would like to thank my co-chairs, Richard Brown and Trevor Mudge, first for attracting me to Michigan, and then for allowing our group the freedom to explore many different ideas in architecture and circuit design. Their guidance and motivation combined to make this a truly memorable experience. I am also grateful to each of my other dissertation committee members: Ed Davidson, Yale Patt, and Myron Campbell. The support and encouragement of the other faculty on the project, Karem Sakallah and Ron Lomax, is also gratefully acknowledged. My friends and former colleagues Mark Rossman, Steve Sugiyama, Ray Farbarik, Tom Rossman and Kendall Russell were always willing to lend their assistance. Richard Oettel continually reminded me of the valuable support of friends and family, and the importance of having fun in your work. Our corporate sponsors: Cascade Design Automation, Chronologic, Cadence, and Metasoft, provided software and support that made this work possible.
    [Show full text]
  • TOP500 Supercomputer Sites
    7/24/2018 News | TOP500 Supercomputer Sites HOME | SEARCH | REGISTER RSS | MY ACCOUNT | EMBED RSS | SUPER RSS | Contact Us | News | TOP500 Supercomputer Sites http://top500.org/blog/category/feature-article/feeds/rss Are you the publisher? Claim or contact Browsing the Latest Browse All Articles (217 Live us about this channel Snapshot Articles) Browser Embed this Channel Description: content in your HTML TOP500 News Search Report adult content: 04/27/18--03:14: UK Commits a 0 0 Billion Pounds to AI Development click to rate The British government and the private sector are investing close to £1 billion Account: (login) pounds to boost the country’s artificial intelligence sector. The investment, which was announced on Thursday, is part of a wide-ranging strategy to make the UK a global leader in AI and big data. More Channels Under the investment, known as the “AI Sector Deal,” government, industry, and academia will contribute £603 million in new funding, adding to the £342 million already allocated in existing budgets. That brings the grand total to Showcase £945 million, or about $1.3 billion at the current exchange rate. The UK RSS Channel Showcase 1586818 government is also looking to increase R&D spending across all disciplines by 2.4 percent, while also raising the R&D tax credit from 11 to 12 percent. This is RSS Channel Showcase 2022206 part of a broader commitment to raise government spending in this area from RSS Channel Showcase 8083573 around £9.5 billion in 2016 to £12.5 billion in 2021. RSS Channel Showcase 1992889 The UK government policy paper that describes the sector deal meanders quite a bit, describing a lot of programs and initiatives that intersect with the AI investments, but are otherwise free-standing.
    [Show full text]
  • Fast Setup and Integration of ABAQUS on HPC Linux Cluster and the Study of Its Scalability
    Fast Setup and Integration of ABAQUS on HPC Linux Cluster and the Study of Its Scalability Betty Huang, Jeff Williams, Richard Xu Baker Hughes Incorporated Abstract: High-performance computing (HPC), the massive powerhouse of IT, is now the fastest-growing sector in the industry, especially for the oil and gas industry, which has outpaced other US industries in integrating HPC into its critical business functions. HPC can offer greater capacity and flexibility to allow more advanced data analysis, which usually cannot be handled by individual workstations. In April 2008, Baker Oil Tools installed a Linux Cluster to boost its finite element analysis and computational fluid dynamics application performance. Platform Open Cluster Stack (OCS) has been implemented as cluster and system management software and load-sharing facility for high-performance computing (LSF-HPC) as job scheduler. OCS is a pre-integrated, modular and hybrid software stack that contains open-source software and proprietary products. It is a simple and easy way to rapidly assemble and manage small- to large-scale Linux-based HPC clusters. 1. Introduction of HPC A cluster is a group of linked computers working together closely so they form a single computer. Depending on the function, clusters can be divided into several types: high-availability (HA) cluster, load- balancing cluster, grid computing, and Beowulf cluster (computing). In this paper, we will focus on the Beowulf-type high-performance computing (HPC) cluster. Driven by more advanced simulation project needs and the capability of modern computers, the simulation world relies more and more on HPC. HPC cluster has become the dominating resource in this area.
    [Show full text]