Treatment and Recycling of Spent Nuclear Fuel

Total Page:16

File Type:pdf, Size:1020Kb

Treatment and Recycling of Spent Nuclear Fuel Couvmono6GB.qxd 29/05/09 20:33 Page 1 Commissariat à l’énergie atomique Commissariat à l’énergie atomique e-den A Nuclear Energy Division Monograph e-den Even as civil nuclear energy is experiencing a real resurgence in interest, there is a need also to know A Nuclear Energy Division precisely what is involved in the issue, whether it be nuclear energy itself, or the associated science, and Monograph technology. And yet, overviews, evidencing a good scientific level, as regards this type of energy, are scarce… To make good this virtual absence, and highlight its own work in due manner, the French Atomic Energy Commission (CEA: Commissariat à l’énergie atomique) is setting out, in the form of short mono- graphs, a comprehensive overview of its own ongoing research, in the area of civil nuclear energy. Such research being diverse, and multidisciplinary, this series of CEA monographs explores, and surveys topics as varied, if complementary, as the reactors of the future, nuclear fuel, materials under irradiation, Treatment and recycling or nuclear waste… Aimed both at scientists hailing from other areas of expertise, wishing to appraise themselves of the of spent nuclear fuel issues at hand, and a wider public, interested in learning about the present, and future technological envi- Actinide partitioning – Application to waste management ronment, these CEA monographs set out the recent findings from research, together with their context, and the challenges they involve. Treatment and recycling of spent nuclear fuel Actinide partitioning – ubsequent to its in-reactor dwell time, spent fuel still Application to waste S contains large amounts of materials that are recoverable, management fuel of spent nuclear reatment and recycling for value-added energy purposes (uranium, plutonium), T together with fission products, and minor actinides, these making up the residues from nuclear reactions. The treatment and recycling of spent nuclear fuel, as implemented in France, entail that such materials be chemically partitioned. The development of the process involved, and its deployment on an industrial scale stand as a high achievement of French science, and technology. Treatment and recycling allow both a satisfactory manage- ment of nuclear waste to be implemented, and substantial savings, in terms of fissile material. Bolstered of late as it has been, due to spectacularly skyrocketing uranium prices, this strategy is bound to become indispensable, with the advent of the next generation of fast reactors. This Monograph surveys the chemical process used for spent fuel treatment, and its variants, both current, and € future. It outlines currently ongoing investigations, setting 18 ISBN 978-2-281-11377-8 out the challenges involved, and recent results obtained by ISSN pending CEA. 9:HSMCSB=VVX\\]: Mono6CEA_GB.qxd 29/05/09 20:24 Page 2 DEN Monographs A Nuclear Energy Division Monograph Commissariat à l’énergie atomique, 91191 Gif-sur-Yvette Cedex (France) Phone: + 33 (0)1 64 50 10 00 Scientific Committee Michel Beauvy, Georges Berthoud, Mireille Defranceschi, Gérard Ducros, Yannick Guérin, Christian Latgé, Yves Limoge, Charles Madic, Philippe Moisy, Gérard Santarini, Jean-Marie Seiler, Pierre Sollogoub, Étienne Vernaz, Research Directors. Topic editor: Michaël Lecomte Contributors to articles in this Monograph: Eric Abonneau, Pascal Baron, Claude Berthon, Laurence Berthon, Alain Béziat, Isabelle Bisel, Lucie Bonin, Emilie Bossé, Bernard Boullis, Jean-Charles Broudic, Marie-Christine Charbonnel, Nathalie Chauvin, Christophe Den Auwer, Binh Dinh, Jean Duhamet, Jean-Michel Escleine, Stéphane Grandjean, Philippe Guilbaud, Denis Guillaneux, Dominique Guillaumont, Clément Hill, Jérôme Lacquement, Michel Masson, Manuel Miguirditchian, Philippe Moisy, Michel Pelletier, Alain Ravenet, Christine Rostaing, Vincent Royet, Alexandre Ruas, Éric Simoni, Christian Sorel, Aimé Vaudano, Laurent Venault, Dominique Warin, Alain Zaetta. Executive Publisher: Philippe Pradel. Editorial Committee: Bernard Bonin (Editor in chief), Bernard Bouquin, Martine Dozol, Michaël Lecomte, Alain Forestier Manager: Fanny Bazile Editor: Jean-François Parisot. Layout: Pierre Finot. English translation: Jean-François Roberts Correspondence: all correspondence to be addressed to the Editor, or to CEA/DEN, Direction scientifique, CEA Saclay 91191 Gif-sur-Yvette Cedex (France). Phone: + 33 (0)1 69 08 16 75 © CEA Saclay and Groupe Moniteur (Éditions du Moniteur), Paris, 2008 ISBN 978-2-281-11377-8 ISSN pending All information contained in the present document may be freely reproduced, in whole or in part, subject to agreement by the editors and mention of the source. Cover: Nicolas Poussin, The Abduction of the Sabines (L’Enlèvement des Sabines) (1637–1638). Musée du Louvre, Paris (all rights reserved). Mono6CEA_GB.qxd 29/05/09 20:24 Page 3 Commissariat à l’énergie atomique e-den A Nuclear Energy Division Monograph Treatment and recycling of spent nuclear fuel Actinide partitioning – Application to waste management Mono6CEA_GB.qxd 29/05/09 20:24 Page 4 This Monograph is dedicated to the memory of Charles Madic (8 August 1942–1 March 2008), a research scientist of world renown, who stood behind some major advances in the field of actinide par- titioning. Charles MADIC devoted his life, as a made a decisive contribution to the renaissance of research scientist, to the service of radio- pyrochemistry studies in France, the use of synchro- chemistry, and the physicochemistry of tron radiation to probe actinide compounds, and the actinides, in particular those present in coming together of theoretical physical chemists, and spent nuclear fuel. After brilliantly com- experimental radiochemists, to bring about a consis- pleting his studies at the Science Faculty, tent approach to enhanced partitioning, reaching Paris University (subsequently Paris-VI beyond uranium and plutonium separation, to achieve University), crowned by a PhD (1967), that of neptunium, americium, and curium. Charles Madic started on his career at CEA (1969), ultimately being awarded a On the European scene, Charles Madic made his State Doctor’s degree in Physical mark as a natural leader of research programs for the Sciences (1975), for his work on “The development of new enhanced partitioning processes. influence of the addition of carboxylic He thus acted as coordinator, successively, of the acids on the extraction of actinides by trilaurylamine nitrate.” From NEWPART (1996–1999), PARTNEW (2001–2003), and the start of his research work at the CEA research center at EUROPART (2004–2007) programs, disseminating his knowl- Fontenay-aux-Roses, near Paris, he became interested in the edge, and strategic vision, bringing together the work of some issues raised by the chemical separation of actinide elements, and thirty research organization across Europe, and making possible fission products, both with regard to fundamental research, and the carrying forward of a collective enterprise, outstanding in its applications for the purposes of radionuclide preparation, and breadth, and the quality of its results. This is how the remarkable purification. This time in his life, particularly full and intense as it properties were discovered, and put to use, of polynitrogen lig- was, gave Charles Madic a grounding in the more complex ands of the bis-triazinyl pyridine family, for the selective separa- aspects of fuel cycle chemistry, which was to enable him, through- tion of trivalent actinides. out his career, to pursue a very broad range of activities. In the field of spent fuel treatment, his work made possible, on the one As the author of more than 170 publications, and 11 patents, his hand, development of the oxidizing dissolution process for pluto- work on the chemistry of actinides earned him the award of the nium oxide, and, on the other hand, the condensing into a single Ivan Peychès Prize, by the French Académie des Sciences, in step of the partitioning of uranium, and plutonium. This work 2005. yielded the processes currently used at the La Hague (France) plant. In the field of radioactive waste management, his work led As a research director at CEA, and a professor at the French to the separation processes for americium, and curium which National Institute for Nuclear Sciences and Technology (INSTN), presently stand as the reference processes, being considered for Charles Madic left his imprint on an entire generation of research the purposes of the future transmutation of these radioelements. scientists, imparting to them his enthusiasm, and his passion for scientific research, through his oversight of numerous PhD disser- His range of expertise, and visionary turn of mind led him, under tations, and his teaching activities. the aegis of the French Act of 1991 on radioactive waste manage- ment research, to set up a community of physical chemists, within Charles Madic will remain, in the memory of his colleagues, as an the PRACTIS research group (1995), which brought together altogether remarkable person, in terms of his personal, human about a hundred research scientists, investigating the properties qualities, and as an exceptional research scientist, as witnessed of actinides, and other radioelements in solutions, and at inter- by his scientific influence. faces. Through the impulse he gave to this group, Charles Madic Robert GUILLAUMONT, of the Académie des Sciences, Philippe PRADEL, CEA, Nuclear Energy Division Mono6CEA_GB.qxd 29/05/09 20:24 Page 5 Foreword After getting off to a headlong start in the 1950s, when,
Recommended publications
  • Overview on RRSF Reprocessing, from Spent Fuel Transportation to Vitrified Residues Storage
    TH RERTR 2015 – 36 INTERNATIONAL MEETING ON REDUCED ENRICHMENT FOR RESEARCH AND TEST REACTORS OCTOBER 11‐14, 2015 THE PLAZA HOTEL SEOUL, SOUTH KOREA Overview on RRSF reprocessing, from spent fuel transportation to vitrified residues storage J.F. VALERY, X. DOMINGO, P. LANDAU AREVA NC, 1 place Jean Millier, 92084 Paris La Défense Cedex – France M. LAUNEY, P. DESCHAMPS, C. PECHARD AREVA NC La Hague, 50440 Beaumont-Hague – France V. LALOY, M. KALIFA AREVA TN, 1 Rue des Hérons, 78180 Montigny-le-Bretonneux – France ABSTRACT AREVA has long experience in transportation and industrial-scale reprocessing of RR UAl spent fuel. Over 23 tons of RR UAl type fuels have been reprocessed at AREVA’s facilities in France, both in Marcoule and La Hague plants. Furthermore, More than 100 RR fuels transportations per year are carried out by AREVA (for fresh and spent fuels). Benefiting from its past experience, AREVA proposes to detail in pictures all the stages of a (Research Reactor Spent Fuel) RRSF reprocessing from its evacuation from reactor site to its corresponding post- reprocessing vitrified waste production and management. In order to comply with its customers growing needs in terms of RRSF management, AREVA is also developing new RRSF reprocessing capacities in the La Hague UP2-800 facility based on the same process principles. This new TCP facility is planned to reprocess several types of RRSF including both UAl and U3Si2 RRSF. 1. Introduction Reprocessing is one of the today-available options for managing back-end of Research Reactor fuel cycle. As described in figure 1 below, this solution offers to RR: - Non-proliferation: reducing 235U enrichment of RRSF from 20-93% to below 2%, - Final waste management optimization: standardizing final waste package and reducing volume and radio-toxicity, removing IAEA safeguards on final waste, - Sustainability of RRSF back-end management: long-lasting solution, re-use of valuable material for civilian purposes i.e.
    [Show full text]
  • 1,3,5-Triazine As Core for the Preparation of Dendrons
    The Free Internet Journal Paper for Organic Chemistry Archive for Arkivoc 2020, part iii, 0-0 Organic Chemistry to be inserted by editorial office 1,3,5-Triazine as core for the preparation of dendrons Rotimi Sheyi,a Anamika Sharma,a,b Ashish Kumar,a,b Ayman El-Faham,c,d Beatriz G. de la Torre,b,* and Fernando Albericioa,c,e,f* aPeptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa bKwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa cDepartment of Chemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia dDepartment of Chemistry, Faculty of Science, Alexandria University, PO Box 426, Alexandria 21321, Egypt eInstitute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain fCIBER-BBN (Networking Centre on Bioengineering, Biomaterials and Nanomedicine) and Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain *Corresponding authors. email: [email protected]; [email protected] Received mm-dd-yyyy Accepted mm-dd-yyyy Published on line mm-dd-yyyy Dates to be inserted by editorial office Abstract A unique property of 2,4,6-trichloro-1,3,5-triazine (TCT) is its ability to undergoes a nucleophilic aromatic substitution reaction (SNAr) under temperature-controlled conditions. Using a convenient and biologically friendly protocol, mono-substituted s-triazines were treated with excess nucleophiles to obtain tri-substituted triazines in 1 + 2 mode (one nucleophile as the first substitution followed by another nucleophile for the other two positions).
    [Show full text]
  • S-Triazine: a Privileged Structure for Drug Discovery and Bioconjugation
    molecules Review s-Triazine: A Privileged Structure for Drug Discovery and Bioconjugation Anamika Sharma 1,2 , Rotimi Sheyi 1, Beatriz G. de la Torre 1,2 , Ayman El-Faham 3,4,* and Fernando Albericio 1,3,5,6,* 1 Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa; [email protected] (A.S.); [email protected] (R.S.); [email protected] (B.G.d.l.T.) 2 KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa 3 Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia 4 Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, Alexandria 12321, Egypt 5 Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain 6 CIBER-BBN (Networking Centre on Bioengineering, Biomaterials and Nanomedicine) and Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain * Correspondence: [email protected] (A.E.-F.); [email protected] (F.A.) Abstract: This review provides an overview of the broad applicability of s-triazine. Our many years working with this intriguing moiety allow us to discuss its wide activity spectrum (inhibition against MAO-A and -B, anticancer/antiproliferative and antimicrobial activity, antibacterial activity against MDR clinical isolates, antileishmanial agent, and use as drug nano delivery system). Most Citation: Sharma, A.; Sheyi, R.; of the compounds addressed in our studies and those performed by other groups contain only de la Torre, B.G.; El-Faham, A.; N-substitution.
    [Show full text]
  • Synthetic Routes Towards Thiazolo[1,3,5]Triazines (Review)1
    HETEROCYCLES, Vol. , No. , , pp. -. © The Japan Institute of Heterocyclic Chemistry Received, , Accepted, , Published online, . COM-06- (Please do not delete.) SYNTHETIC ROUTES TOWARDS THIAZOLO[1,3,5]TRIAZINES (REVIEW)1 Anton V. Dolzhenko School of Pharmacy, Curtin University of Technology, GPO Box U1987, Perth, Western Australia 6845, Australia, E-mails: [email protected]; [email protected] Abstract – The present review summarizes information on the synthetic approaches to thiazolo[3,2-a][1,3,5]triazines and polyfused systems bearing this heterocyclic core since the first report on this structure in 1887. The methods allowing access to the heterocyclic systems comprising isomeric thiazolo[3,4-a][1,3,5]triazine scaffold are also included in the review. Data concerning potential applications of the thiazolo[1,3,5]triazines, particularly as biologically active agents are discussed. Dedicated to Professor Viktor E. Kolla with my best wishes on the occasion of his 85th birthday CONTENTS 1. INTRODUCTION 2. SYNTHESIS OF THIAZOLO[3,2-a][1,3,5]TRIAZINES AND THEIR POLYFUSED ANALOGUES 2.1. Synthesis of thiazolo[3,2-a][1,3,5]triazines by annelation of the 1,3,5-triazine ring onto a thiazole scaffold. 2.1.1. Synthesis of thiazolo[3,2-a][1,3,5]triazines using Mannich condensation. 2.1.2. Synthesis of thiazolo[3,2-a][1,3,5]triazines using multicomponent reactions of thiazole derivatives with heterocumulenes. 2.1.3. Synthesis of thiazolo[3,2-a][1,3,5]triazines using other multicomponent reactions of 2-aminothiazoles and their derivatives. 2.1.4. Synthesis of thiazolo[3,2-a][1,3,5]triazines via reactions of 2-aminothiazoles with C-N-C triatomic synthons.
    [Show full text]
  • Uranium Oxide Aerosol Transport in Porous Graphite
    PNNL-21014 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Uranium Oxide Aerosol Transport in Porous Graphite J Blanchard C Brown DC Gerlach C Lovin RD Scheele CH Delegard ML Stewart A Zelenyuk BD Reid EC Buck PA Gauglitz BJ Riley LM Bagaasen CA Burns January 2012 PNNL-XXXXX PNNL-21014 Uranium Oxide Aerosol Transport in Porous Graphite J Blanchard C Brown DC Gerlach C Lovin RD Scheele CH Delegard ML Stewart A Zelenyuk BD Reid EC Buck PA Gauglitz BJ Riley LM Bagaasen CA Burns January 2012 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Pacific Northwest National Laboratory Richland, Washington 99352 PNNL-21014 Summary Conditions exist in carbon dioxide (CO2) gas-cooled, graphite moderated reactors that might allow for gaseous transport of uranium oxide (UO2) particles into the graphite moderator. The transport of UO2 in the reactor coolant system, and subsequent deposition of this material in the graphite, is of interest due to the potential to influence the application of the Graphite Isotope Ratio Method (GIRM). GIRM was developed to validate the declared operation of graphite moderated reactors. Uranium impurities in nuclear grade graphite are one of several possible indicator elements that can be used for a GIRM assessment. During fuel failures, uranium metal in the fuel is exposed to the CO2 coolant and oxidizes as either UO2 or U3O8. Measurements in adjacent fuel channels indicate that CO2 coolant readily flows through the porous graphite moderator blocks. Therefore, the potential exists for the coolant gas to transport UO2 particles, as an aerosol, into the porous graphite, thereby invalidating uranium as an indicator element.
    [Show full text]
  • Nuclear France Abroad History, Status and Prospects of French Nuclear Activities in Foreign Countries
    Mycle Schneider Consulting Independent Analysis on Energy and Nuclear Policy 45, allée des deux cèdres Tél: 01 69 83 23 79 91210 Draveil (Paris) Fax: 01 69 40 98 75 France e-mail: [email protected] Nuclear France Abroad History, Status and Prospects of French Nuclear Activities in Foreign Countries Mycle Schneider International Consultant on Energy and Nuclear Policy Paris, May 2009 This research was carried out with the support of The Centre for International Governance Innovation (CIGI) in Waterloo, Ontario, Canada (www.cigionline.org) V5 About the Author Mycle Schneider works as independent international energy nuclear policy consultant. Between 1983 and April 2003 Mycle Schneider was executive director of the energy information service WISE-Paris. Since 2000 he has been an advisor to the German Ministry for the Environment, Nature Conservation and Reactor Safety. Since 2004 he has also been in charge of the Environment and Energy Strategies Lecture of the International Master of Science for Project Management for Environmental and Energy Engineering at the French Ecole des Mines in Nantes, France. In 2007 he was appointed as a member of the International Panel on Fissile Materials (IPFM), based at Princeton University, USA (www.fissilematerials.org). In 2006-2007 Mycle Schneider was part of a consultants’ consortium that assessed nuclear decommissioning and waste management funding issues on behalf of the European Commission. In 2005 he was appointed as nuclear security specialist to advise the UK Committee on Radioactive Waste Management (CoRWM). Mycle Schneider has given evidence and held briefings at Parliaments in Australia, Belgium, France, Germany, Japan, South Korea, Switzerland, UK and at the European Parliament.
    [Show full text]
  • 3 - 20 Progress in Fabrication of UC Ceramic Nuclear Fuels
    · 56 · IMP & HIRFL Annual Report 2018 formation of such carbonyl complexes. Reference [1] Y. Wang, S. W. Cao, J. C. Zhang, et al., Physical Chemistry Chemical Physics, 21(2019)7147. [2] Y. Wang, Y. Wittwer, J. Zhang, et al., PSI Annual Report, (2019). 3 - 20 Progress in Fabrication of UC Ceramic Nuclear Fuels Tian Wei and Qin Zhi Uranium dioxide nuclear fuel has been widely used in pressurized water reactors (PWR), because of its high melting point, isotropic expansion, excellent radiation behaviors and mechanical properties[1]. However, it is easy to embrittlement and the thermal conductivity is quite low. Compared with traditional uranium oxides nuclear fuel, the uranium carbide has extremely high hardness and no phase transition occurs in wide temperature range[2]. The thermal conductivity, density and uranium fraction of UC is 21.7 W/(m·K) (1 237 K), 13.63 g/cm3 and 95.2% respectively, which are much higher than that of UO2. Uranium carbide ceramic fuel has been considered as a potential candidate nuclear fuel for the next-generation fast-neutron reactors, especially for the Accelerator-Driven Systems (ADS). Based on the accelerator driven recycling used nuclear fuel, uranium carbide can recrystallize with plutonium (Pu) and minor actinides (MAs). Therefore uranium carbide is chosen as the fuel format in ADS. Uniform sized ceramic UC microspheres with a diameter of (675 10) µm were successfully fabricated by an improved microwave-assisted rapid internal gelation process combined with carbothermic reduction (Fig. 1). First of all, the nanoparticle carbon was dispersed into the HMUR stock solution, and the C-UO3·2 H2O gelled microspheres were prepared using an improved microwave-assisted internal gelation process without cooling the initial stock solutions.
    [Show full text]
  • Industrialization of a Small Sludge Retrieval System
    WM'05 Conference, February 27-March 3, 2005, Tucson, AZ WM - 5220 THE REPROCESSING PLANT OF THE FUTURE : A SINGLE EXTRACTION CYCLE P. Bretault, P. Houdin SGN, 1 rue des Hérons, Montigny-le-Bretonneux, 78 182 Saint Quentin-en-Yvelines, France JL. Emin COGEMA, 2 rue Paul Dautier, BP 4, 78141 Velizy-Villacoublay, Cedex, France P. Baron CEA Marcoule, BP 171, 30207 Bagnols-sur-Ceze, France ABSTRACT In France, COGEMA has been reprocessing spent nuclear fuel on an industrial scale for over 40 years, and has consistently worked to optimize facility design and operations. In COGEMA-La Hague’s UP3 reprocessing plant, to achieve the necessary decontamination needed to produce purified uranium and plutonium, five extraction cycles were implemented and used at start-up: first cycle for separation of fission products, uranium and plutonium, two uranium purification cycles and two plutonium purification cycle. By modifying processes at the design stage and making adjustments during operations, we saw that further decontamination of uranium could be achieved with only one cycle. Radiological specification of plutonium was also obtained at the end of the first plutonium purification cycle. These good performance levels were taken into account for the design of the UP2-800 plant where uranium is purified using a single cycle, and for the recent R4 facility which features only one plutonium purification cycle. Relevant information on extraction cycles in first-generation French reprocessing plants (UP1 and UP2-400) as well as design characteristics for the extraction cycles of reprocessing facilities currently operating at the COGEMA-La Hague plant is given. Experience shows that we can obtain adequate performance levels using only three cycles.
    [Show full text]
  • Appendix a of Final Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Lev
    Appendix A Inventory and Characteristics of Spent Nuclear Fuel, High-Level Radioactive Waste, and Other Materials Inventory and Characteristics of Spent Nuclear Fuel, High-Level Radioactive Waste, and Other Materials TABLE OF CONTENTS Section Page A. Inventory and Characteristics of Spent Nuclear Fuel, High-Level Radioactive Waste, and Other Materials ................................................................................................................................. A-1 A.1 Introduction .............................................................................................................................. A-1 A.1.1 Inventory Data Summary .................................................................................................... A-2 A.1.1.1 Sources ......................................................................................................................... A-2 A.1.1.2 Present Storage and Generation Status ........................................................................ A-4 A.1.1.3 Final Waste Form ......................................................................................................... A-6 A.1.1.4 Waste Characteristics ................................................................................................... A-6 A.1.1.4.1 Mass and Volume ................................................................................................. A-6 A.1.1.4.2 Radionuclide Inventories ...................................................................................... A-8 A.1.1.4.3
    [Show full text]
  • Preparation of Uranium Carbonitride by Reaction of UC with Ammonia
    Journal of NUCLEARSCIENCE and TECHNOLOGY,5[8], p. 414~418 (August 1968). Preparation of Uranium Carbonitride by Reaction of UC with Ammonia Yumi AKIMOTO* and Koji TANAKA* Received January 24, 1968 Revised April 11, 1968 With the view to establishing a method of directly converting uranium carbide into uranium carbonitride and hydrocarbons, an attempt has been made to induce reaction between UC and am- monia under various temperatures from 25d to 600dc and pressures from 1 to 1,500 kg/cm2. The reaction aimed at was realized to the extent of practical significance under pressures exceeding 500 kg/cm2 at 450dc and exceeding 250 kg/cm2 at 500dc. The hydrocarbons produced thereby were found to be mainly methane, indicating that the formula of the predominant reaction was UC+NH3 -> UN2-x+CH4+H2. Upon heating the powdery fine black product to 1,800dc in vacuo, unexpectedly marked sinter- ing was found to occur, resulting in dense uranium monocarbonitride without any compaction pre- treatment. carbon is also reported. I. INTRODUCTION Another commonly known nitriding reac- Uranium mononitride (UN), and uranium tion is that between uranium carbides and carbonitride (UC1-xNx) have attracted much nitrogen, to result in a pulverized mixture of attention as possible fuel materials with quali- higher uranium nitrides and carbon(6)(7): ties surpassing uranium carbide (UC) with 2UC+3/2N2=U2N3+2C. (2) respect to chemical stability and simplicity of stoichiometric control. From the standpoint This reaction also fails to serve the purpose of fuel cost however, UN and UC1-xNx still of producing UN or UC1-xNx because carbon, yield to UC because the process at present once produced, cannot easily be separated available for the preparation of pure UN and from the nitride.
    [Show full text]
  • Tertiary Alkylamines As Nucleophiles in Substitution Reactions At
    Molecules 2011, 16, 10013-10028; doi:10.3390/molecules161210013 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Communication Tertiary Alkylamines as Nucleophiles in Substitution Reactions at Heteroaromatic Halide During the Synthesis of the Highly Potent Pirinixic Acid Derivative 2-(4-Chloro-6-(2,3- dimethylphenylamino)pyrimidin-2-ylthio)octanoic Acid (YS-121) Matthias Gabler and Manfred Schubert-Zsilavecz * Goethe-University Frankfurt, Institute of Pharmaceutical Chemistry, Max-von-Laue-Str. 9, D-60438 Frankfurt/M., Germany * Author to whom correspondence should be addressed: E-Mail: [email protected]; Tel.: +49-69-798-29339; Fax: +49-69-798-29332. Received: 18 November 2011 / Accepted: 30 November 2011 / Published: 5 December 2011 Abstract: YS-121 [2-(4-chloro-6-(2,3-dimethylphenylamino)pyrimidin-2-ylthio)octanoic acid] is the result of target-oriented structural derivatization of pirinixic acid. It is a potent dual PPARα/γ-agonist, as well as a potent dual 5-LO/mPGES-1-inhibitor. Additionally, recent studies showed an anti-inflammatory efficacy in vivo. Because of its interference with many targets, YS-121 is a promising drug candidate for the treatment of inflammatory diseases. Ongoing preclinical studies will thus necessitate huge amounts of YS-121. To cope with those requirements, we have optimized the synthesis of YS-121. Surprisingly, we isolated and characterized byproducts during the resulting from nucleophilic aromatic substitution reactions by different tertiary alkylamines at a heteroaromatic halide. These amines should actually serve as assisting bases, because of their low nucleophilicity. This astonishing fact was not described in former publications concerning that type of reaction and, therefore, might be useful for further reaction improvement in general.
    [Show full text]
  • AVAILABLE REPROCESSING and RECYCLING SERVICES for RESEARCH REACTOR SPENT NUCLEAR FUEL the Following States Are Members of the International Atomic Energy Agency
    IAEA Nuclear Energy Series IAEA Nuclear No. NW-T-1.11 No. IAEA Nuclear Energy Series Available Reprocessing and Recycling Services for Research Reactor Spent Nuclear Fuel Services for Research Reactor Spent Nuclear Reprocessing and Recycling Available No. NW-T-1.11 Basic Available Reprocessing Principles and Recycling Services for Research Reactor Objectives Spent Nuclear Fuel Guides Technical Reports @ IAEA NUCLEAR ENERGY SERIES PUBLICATIONS STRUCTURE OF THE IAEA NUCLEAR ENERGY SERIES Under the terms of Articles III.A and VIII.C of its Statute, the IAEA is authorized to foster the exchange of scientific and technical information on the peaceful uses of atomic energy. The publications in the IAEA Nuclear Energy Series provide information in the areas of nuclear power, nuclear fuel cycle, radioactive waste management and decommissioning, and on general issues that are relevant to all of the above mentioned areas. The structure of the IAEA Nuclear Energy Series comprises three levels: 1 — Basic Principles and Objectives; 2 — Guides; and 3 — Technical Reports. The Nuclear Energy Basic Principles publication describes the rationale and vision for the peaceful uses of nuclear energy. Nuclear Energy Series Objectives publications explain the expectations to be met in various areas at different stages of implementation. Nuclear Energy Series Guides provide high level guidance on how to achieve the objectives related to the various topics and areas involving the peaceful uses of nuclear energy. Nuclear Energy Series Technical Reports provide additional, more detailed information on activities related to the various areas dealt with in the IAEA Nuclear Energy Series. The IAEA Nuclear Energy Series publications are coded as follows: NG — general; NP — nuclear power; NF — nuclear fuel; NW — radioactive waste management and decommissioning.
    [Show full text]