BY ORDER of the SECRETARY of the AIR FORCE AIR FORCE HANDBOOK 11-203 VOLUME 1 12 JANUARY 2012 Flying Operations WEATHER FOR

Total Page:16

File Type:pdf, Size:1020Kb

BY ORDER of the SECRETARY of the AIR FORCE AIR FORCE HANDBOOK 11-203 VOLUME 1 12 JANUARY 2012 Flying Operations WEATHER FOR BY ORDER OF THE AIR FORCE HANDBOOK 11-203 VOLUME 1 SECRETARY OF THE AIR FORCE 12 JANUARY 2012 Flying Operations WEATHER FOR AIRCREWS COMPLIANCE WITH THIS PUBLICATION IS MANDATORY ACCESSIBILITY: Publications and forms are available on the e-Publishing website at www.e-publishing.af.mil for downloading and ordering. RELEASABILITY: There are no releasability restrictions on this publication. OPR: AF/A3OWP Certified by: AF/A3O-W (Dr. Fred P. Lewis) Supersedes: AFH11-203V1, Pages: 234 1 March 1997 This handbook familiarizes the aircrew member with fundamentals of weather. It serves as a text for flight training programs, all USAF instrument refresher training, flight instruction programs, and various unit and individual flying training programs. It is issued to each instructor and student involved in undergraduate flight training programs as well as to each flying unit. This handbook, when used with related flight directives and publications, provides weather guidance for visual and instrument flight under most circumstances. It is not a substitute for sound judgment. Refer recommended changes and questions about this publication to the Office of Primary Responsibility (OPR) using Air Force (AF) form 847, Recommendation for Change of Publication; route AF Forms 847 from the field through the appropriate functional’s chain of command. RECORDS MANAGEMENT: Ensure that all records created as a result of processes prescribed in this publication are maintained in accordance with AFMAN 33-363, Management of Records, and disposed of in accordance with the Air Force Records Disposition Schedule (RDS) located at https://www.my.af.mil/afrims/afrims/afrims/rims.cfm SUMMARY OF CHANGES This document has been substantially revised and should be completely reviewed. This revision reorganizes information into more appropriate sections of the document. Several erroneous figures were removed and improved illustrations were inserted to update aircraft inventory. Some sections were also removed or edited, as they were deemed erroneous or irrelevant for aircrews, or not tractable, and updates information as it relates to weather operations. A new 2 AFH11-203VI 12 JANUARY 2012 space weather chapter has been introduced to cover impacts to aircraft operations. Finally, several terms were changed to those more commonly used by current weather personnel. Chapter 1—THE EARTH’S ATMOSPHERE 15 1.1. Introduction. ........................................................................................................... 15 1.2. Composition of the Atmosphere. ........................................................................... 15 Figure 1.1. Composition of the Atmosphere. ........................................................................... 16 1.3. The Troposphere. ................................................................................................... 16 Figure 1.2. Troposphere--Decrease in Temperature with Height. ............................................ 17 1.4. Aircrew Environment. ........................................................................................... 17 Chapter 2—MOISTURE 18 2.1. Introduction. ........................................................................................................... 18 Figure 2.1. Hydrologic Cycle. .................................................................................................. 18 2.2. Changes of State. ................................................................................................... 18 Figure 2.2. Phase Transitions of Water. ................................................................................... 20 2.3. Relative Humidity. ................................................................................................. 20 Figure 2.3. Relative Humidity and Dew point. ........................................................................ 21 2.4. Dew Point, Dew and Frost. .................................................................................... 21 2.5. Condensation and Evaporation. ............................................................................. 22 Figure 2.4. Causes of Condensation. ........................................................................................ 22 2.6. Clouds and Fog. ..................................................................................................... 22 2.7. Precipitation. .......................................................................................................... 22 Figure 2.5. Precipitation Products. ........................................................................................... 23 Figure 2.6. Virga. ..................................................................................................................... 24 Chapter 3—TEMPERATURE 25 3.1. Introduction. ........................................................................................................... 25 3.2. Measuring Temperature. ........................................................................................ 25 Figure 3.1. Land has Greater Temperature Variance than Water. ............................................ 25 3.3. Temperature Scales. ............................................................................................... 25 Figure 3.2. Temperature Scales. ............................................................................................... 26 3.4. Diurnal Cycle. ........................................................................................................ 26 3.5. Land/Sea Difference. ............................................................................................. 27 Figure 3.3. Surface Temperature Distribution (Jan). ................................................................ 28 AFH11-203VI 12 JANUARY 2012 3 Figure 3.4. Surface Temperature Distribution (Jul). ................................................................ 29 3.6. Lapse Rate. ............................................................................................................. 29 Figure 3.5. Lapse Rate Temperature Reversals are Called Inversions. .................................... 30 3.7. Inversions. .............................................................................................................. 30 Chapter 4—ATMOSPHERIC PRESSURE AND ALTIMETRY 32 4.1. Introduction. ........................................................................................................... 32 4.2. Atmospheric Pressure. ........................................................................................... 32 Figure 4.1. Normal Atmospheric Pressure at Sea Level. ......................................................... 33 Figure 4.2. Aneroid Barometer Inner View. ............................................................................ 33 4.3. Pressure Distribution. ............................................................................................. 34 Figure 4.3. Larger Air Column = Higher Station pressure (assuming a standard atmosphere). 34 4.4. Pressure Correction. ............................................................................................... 34 4.5. Temperature Effects on Pressure. .......................................................................... 35 Figure 4.4. Pressure Rate Decrease with Height Varies with Temperature. ............................ 35 4.6. Pressure Maps. ....................................................................................................... 35 Figure 4.5. Surface Pressure Chart. .......................................................................................... 36 Figure 4.6. Upper Air Chart. .................................................................................................... 37 4.7. Standard Atmosphere. ............................................................................................ 37 Figure 4.7. Aneroid Altimeter. ................................................................................................. 38 Figure 4.8. Effects of Temperature on True and Indicated Altitude. ....................................... 39 4.8. Pressure Altitude. ................................................................................................... 39 4.9. Density Altitude. .................................................................................................... 39 Figure 4.9. Example. ................................................................................................................ 40 Figure 4.10. Density Altitude Chart. .......................................................................................... 41 Figure 4.11. Altitude Error Due to Nonstandard Temperatures Aloft (D-Value). ..................... 43 Chapter 5—WIND 44 5.1. Introduction. ........................................................................................................... 44 5.2. Causes of Wind. ..................................................................................................... 44 Figure 5.1. Three-Cell Model of the Earth’s Circulation. ........................................................ 45 5.3. Jet Streams. ............................................................................................................ 45 Figure 5.2. Formation of Jet Streams. ...................................................................................... 46 5.4. Circulation Patterns. ............................................................................................... 46 Figure 5.3. Pressure
Recommended publications
  • Touching the Clouds Activity Guide
    Touching the Clouds Activity Guide Purpose Provide a mental representation of each cloud type Create a tactile cloud identification chart Overview Individuals will construct and touch a tactile model of common types of clouds to learn how to describe the clouds based on their shape and texture. They will compare their descriptions with the standard classifications using the cloud types identified in the GLOBE Clouds Protocol. Time: 45 minutes to 1 ½ hours, depending on individual’s age Level: All Materials (per person) One large sheet of cardstock (18” x 12”) Tape One set of Braille labels for each cloud type and/or markers One small feather A layered piece of blanket or soft fabric (eight 1’ X 1” pieces) Cotton balls of varied sizes One tissue Organza or a similar material, cut into pieces, one layered 1” x 1” piece Pillow stuffing, one 1” x 1” piece A tsp of sand Three paper clips Liquid glue Scissors Baby Wipes Preparation Use tape to divide the large cardstock sheet in four sections: one for the cloud title at the top and three for the altitudes: using a portrait layout, place three pieces of tape horizontally, from side to side of the sheet. 1. 1” off the upper edge of the sheet 2. 8” off the upper edge of the sheet 1 Steps What to do and how to do it: Making A Tactile Cloud Identification Chart 1. Discuss that clouds come in three basic shapes: cirrus, stratus and cumulus. a. Feel of the 4” feather and describe it; discuss that these wispy clouds are high in the sky and are named cirrus.
    [Show full text]
  • Graphical Area Forecast User Guide a Guide for the Transition from Arfors to GAF
    Graphical Area Forecast User Guide A guide for the transition from ARFORs to GAF October 2017 | Version 1.2 Graphical Area Forecast User Guide Document Control Revision history VERSION DATE DESCRIPTION AUTHOR 1 15 September 2017 Final version Elizabeth Heba Update to provide clarification on AIRMETs 1.1 13 October 2017 Elizabeth Heba and SIGMETs Update to GAF samples and worked example 1.2 20 October 2017 Additional text in Area Briefing (NAIPS) Ashwin Naidu Section Update to abbreviation examples Approval for release DATE NAME Position Signature National Manager Aviation 20 October 2017 Gordon Jackson Meteorological Services Version number Date of issue th Version 1.2 20 October 2017 © Commonwealth of Australia 2017 This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced without prior written permission from the Bureau of Meteorology. Requests and inquiries concerning reproduction and rights should be addressed to the Production Manager, Communication Section, Bureau of Meteorology, GPO Box 1289, Melbourne 3001. Information regarding requests for reproduction of material from the Bureau website can be found at www.bom.gov.au/other/copyright.shtml ii Graphical Area Forecast User Guide Table of Contents 1 Purpose .......................................................................................................................................... 1 2 Introduction ...................................................................................................................................
    [Show full text]
  • Types of Clouds
    Types of Clouds What’s the Weather? Cirrus, Cirrocumulus and Cirrostratus (high 5000-16,000 m) . thin and often wispy . composed of ice crystals that originate from the freezing of supercooled water droplets. Generally occur in fair weather and point in the direction of air movement at their elevation. Cirrus . They are made of ice crystals and have long, thin, wispy streamers. Cirrus clouds are usually white and predict fair weather. cirrus cirrus cirrus cirrus cirrus cirrus Cirrocumulus . They are small rounded puffs that usually appear in long rows. Cirrocumulus are usually white, but sometimes appear gray. Cirrocumulus are usually seen in the winter time and mean that there will be fair, but cold weather. Cirrostratus . Sheetlike thin clouds that usually cover the entire sky. Cirrostratus clouds usually come 12-24 hours before a rain or snow storm. Altocumulus and Altostratus (middle 2,000 to 7, 000 m) . Middle clouds are made of ice crystals and water droplets. The base of a middle cloud above the surface can be anywhere from 2000-8000m in the tropics to 2000-4000m in the polar regions. An Altocumulus . They are grayish-white with one part of the cloud darker than the other. Usually form in groups. If you see altocumulus clouds on a warm sticky morning, then expect thunderstorms by late afternoon. Altostratus . An altostratus cloud usually covers the whole sky. The cloud looks gray or blue-gray. Usually forms ahead of storms that have a lot of rain or snow. Sometimes, rain will fall from an altostratus cloud. If the rain hits the ground, then the cloud is called a nimbostratus cloud.
    [Show full text]
  • ICA Vol. 1 (1956 Edition)
    ·wMo o '-" I q Sb 10 c. v. i. J c.. A INTERNATIONAL CLOUD ATLAS Volume I WORLD METEOROLOGICAL ORGANIZATION 1956 c....._/ O,-/ - 1~ L ) I TABLE OF CONTENTS Pages Preface to the 1939 edition . IX Preface to the present edition . xv PART I - CLOUDS CHAPTER I Introduction 1. Definition of a cloud . 3 2. Appearance of clouds . 3 (1) Luminance . 3 (2) Colour .... 4 3. Classification of clouds 5 (1) Genera . 5 (2) Species . 5 (3) Varieties . 5 ( 4) Supplementary features and accessory clouds 6 (5) Mother-clouds . 6 4. Table of classification of clouds . 7 5. Table of abbreviations and symbols of clouds . 8 CHAPTER II Definitions I. Some useful concepts . 9 (1) Height, altitude, vertical extent 9 (2) Etages .... .... 9 2. Observational conditions to which definitions of clouds apply. 10 3. Definitions of clouds 10 (1) Genera . 10 (2) Species . 11 (3) Varieties 14 (4) Supplementary features and accessory clouds 16 CHAPTER III Descriptions of clouds 1. Cirrus . .. 19 2. Cirrocumulus . 21 3. Cirrostratus 23 4. Altocumulus . 25 5. Altostratus . 28 6. Nimbostratus . 30 " IV TABLE OF CONTENTS Pages 7. Stratoculllulus 32 8. Stratus 35 9. Culllulus . 37 10. Culllulonimbus 40 CHAPTER IV Orographic influences 1. Occurrence, structure and shapes of orographic clouds . 43 2. Changes in the shape and structure of clouds due to orographic influences 44 CHAPTER V Clouds as seen from aircraft 1. Special problellls involved . 45 (1) Differences between the observation of clouds frolll aircraft and frolll the earth's surface . 45 (2) Field of vision . 45 (3) Appearance of clouds. 45 (4) Icing .
    [Show full text]
  • Degradation of Radar Reflectivity by Cloud Attenuation at Microwave Frequency
    640 JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY VOLUME 24 Degradation of Radar Reflectivity by Cloud Attenuation at Microwave Frequency OLIVIER PUJOL AND JEAN-FRANÇOIS GEORGIS Laboratoire d’Aérologie, Observatoire Midi-Pyrénées, Université Paul Sabatier, Toulouse, France LAURENT FÉRAL Laboratoire AD2M, Université Paul Sabatier, Toulouse, France HENRI SAUVAGEOT Laboratoire d’Aérologie, Observatoire Midi-Pyrénées, Université Paul Sabatier, Toulouse, France (Manuscript received 2 November 2005, in final form 7 June 2006) ABSTRACT The main object of this paper is to emphasize that clouds—the nonprecipitating component of condensed atmospheric water—can produce a strong attenuation at operational microwave frequencies, although they present a low reflectivity preventing their radar detection. By way of a simple and realistic model, simu- lations of radar observations through warm precipitating targets are thus presented in order to quantify cloud attenuation. Simulations concern an airborne radar oriented downward and observing precipitation at four frequencies: 3, 10, 35, and 94 GHz. Two cases are first considered: a convective cell (vigorous cumulus congestus plus rain) and a stratiform one (nimbostratus plus drizzle) superimposed on the previous one. Other simulations are then performed on different types of cumulus (congestus, mediocris, and hu- milis) with various thicknesses characterized, in a microphysical sense, by their maximum liquid water content. Simulations confirm the low cumulus reflectivity ranging from Ϫ45 dBZ for the weakest cumulus (i.e., the humilis one) to Ϫ5dBZ for the strongest one (i.e., the vigorous cumulus congestus). It reaches Ϫ35 dBZ for the nimbostratus cloud. On the other hand, cumulus attenuation [precisely path-integrated cloud at- tenuation (PICA)] is not negligible and, depending on the frequency, can be very strong: the higher the frequency, the stronger the PICA.
    [Show full text]
  • Glossary of Clouds Weather Terms
    SkyStef's weather page home | e-mail Glossary of terms for clouds Definition of a cloud: a hydrometeor consisting of minute particles of liquid water or ice, or of both, suspended in the free air and usually not touching the ground. It may also include larger particles of liquid water or ice as well as non-aqueous or solid particles such as those present in fumes, smoke or dust. Principles of cloud classification: clouds are continuously in a process of evolution and appear, therefore, in a infinite variety of forms. It is possible, however, to define a limited number of characteristic forms, frequently observed all over the world, into which clouds can be broadly grouped. A classification of the characteristic forms of clouds, in terms of "genera", "species", and "varieties" has been established. Definitions and descriptions of each of the characteristic forms corresponding to this classification are given in the list below. Intermediate or transitional forms, although observed fairly frequently, are not described; they are of little intrest, as they are less stable and as their appearance is not very different from that indicated in the definitions of the characteristic forms. Finally, there exists a group of clouds, rarely or occassionally observed, not included in this classification. Some of these so called "special clouds" consists for the greater part or in their entirety of non- aqueous liquid or solid particles. The above mentioned definition of a cloud is therefore not applicable to all special clouds. Special clouds are: nacreous clouds, noctilucent clouds, condensation trails, clouds from waterfalls, clouds from fires, clouds from volcanic eruptions, clouds resulting from industry and clouds resulting from explosions.
    [Show full text]
  • Citizen Inquiry: Engaging Citizens in Online Communities of Scientific Inquiries
    Open Research Online The Open University’s repository of research publications and other research outputs Citizen Inquiry: Engaging Citizens in Online Communities of Scientific Inquiries Thesis How to cite: Aristeidou, Maria (2016). Citizen Inquiry: Engaging Citizens in Online Communities of Scientific Inquiries. PhD thesis Institute of Educational Technology. For guidance on citations see FAQs. c [not recorded] https://creativecommons.org/licenses/by-nc-nd/4.0/ Version: Version of Record Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page. oro.open.ac.uk Citizen Inquiry: Engaging Citizens in Online Communities of Scientific Inquiries Maria Aristeidou BA Education Science and Primary Education MSc Technology Education and Digital Systems (e-Learning) Submitted for the degree of Doctor of Philosophy Institute of Educational Technology The Open University March 2016 1 Abstract Citizen Inquiry has been proposed as an informal science learning approach to enable widespread involvement in science and empower citizens with reasoning and problem-solving skills used by scientists. It combines aspects from citizen science and inquiry-based learning, producing science learning experiences within distributed communities of interest. A central challenge for Citizen Inquiry is to involve citizens in planning and implementing their own investigations, supported and guided by online systems and tools within an inquiry environment, while collaborating with science experts and non-experts. This thesis explores how to create an active and sustainable online community for citizens to engage in scientific investigations.
    [Show full text]
  • The Ten Different Types of Clouds
    THE COMPLETE GUIDE TO THE TEN DIFFERENT TYPES OF CLOUDS AND HOW TO IDENTIFY THEM Dedicated to those who are passionately curious, keep their heads in the clouds, and keep their eyes on the skies. And to Luke Howard, the father of cloud classification. 4 Infographic 5 Introduction 12 Cirrus 18 Cirrocumulus 25 Cirrostratus 31 Altocumulus 38 Altostratus 45 Nimbostratus TABLE OF CONTENTS TABLE 51 Cumulonimbus 57 Cumulus 64 Stratus 71 Stratocumulus 79 Our Mission 80 Extras Cloud Types: An Infographic 4 An Introduction to the 10 Different An Introduction to the 10 Different Types of Clouds Types of Clouds ⛅ Clouds are the equivalent of an ever-evolving painting in the sky. They have the ability to make for magnificent sunrises and spectacular sunsets. We’re surrounded by clouds almost every day of our lives. Let’s take the time and learn a little bit more about them! The following information is presented to you as a comprehensive guide to the ten different types of clouds and how to idenify them. Let’s just say it’s an instruction manual to the sky. Here you’ll learn about the ten different cloud types: their characteristics, how they differentiate from the other cloud types, and much more. So three cheers to you for starting on your cloud identification journey. Happy cloudspotting, friends! The Three High Level Clouds Cirrus (Ci) Cirrocumulus (Cc) Cirrostratus (Cs) High, wispy streaks High-altitude cloudlets Pale, veil-like layer High-altitude, thin, and wispy cloud High-altitude, thin, and wispy cloud streaks made of ice crystals streaks
    [Show full text]
  • Climatology Climatic Zone
    Climatology Climatic Zone 1320. At about what geographical latitude as average is assumed for the zone of prevailing westerlies? A) 10° N. B) 50° N. C) 80° N. D) 30° N. 1321. What is the type, intensity and seasonal variation of precipitation in the equatorial region? A) Rain showers, hail showers and thunderstorms occur the whole year, but frequency is highest during two periods: April-May and October- November. B) Precipitation is generally in the form of showers but continuous rain occurs also. The greatest intensity is in July. C) Warm fronts are common with continuous rain. The frequency is the same throughout the year D) Showers of rain or hail occur throughout the year; the frequency is highest in January. 1324. The reason for the fact, that the Icelandic low is normally deeper in winter than in summer is that: A) the strong winds of the north Atlantic in winter are favourable for the development of lows. B) the low pressure activity of the sea east of Canada is higher in winter. C) the temperature contrasts between arctic and equatorial areas are much greater in winter. D) converging air currents are of greater intensity in winter. 1328. The lowest relative humidity will be found: A) at the south pole. B) between latitudes 30 deg and 40 deg N in July. C) in equatorial regions. D) around 30 deg S in January. Tropical Climatology: 1329. Flying from Dakar to Rio de Janeiro in winter where would you cross the ITCZ? A) 7 to 120N. B) 0 to 70N. C) 7 to 120S.
    [Show full text]
  • The Kiwi Kids Cloud Identification Guide
    Droplets The Kiwi Kids Cloud Identification Guide Written by Paula McKean Droplets The Kiwi Kids Cloud Identification Guide ISBN 1-877264-27-X Paula McKean MEd Hons (Science Ed), BEd, DipTchg 2009 © Crown Copyright 2009 Contents 1. Cloud Classification 2. How Clouds are formed 3. The Water Cycle 4. Cumulus Altitudes 5. Stratus Altitudes 6. Precipitating Cloud Altitudes 7. Cirrus Cloud Altitudes 8. Cumulus 10. Altocumulus 12. Cirrocumulus 14. Stratus 16. Stratocumulus 18. Altostratus 20. Cirrostratus 22. Nimbostratus 24. Cumulus Congestus 26. Cumulonimbus 28. Cirrus 30. Contrails 32. References 33. Acknowledgements Cloud Classification Since Luke Howard developed the first cloud classification system in 1802, clouds have been classified according to the altitude of the cloud base and the shape of the cloud. There are three main categories: Low level- Clouds that form below 2000 m: Cumulus, Stratocumulus, Stratus (including Fog, Haze and Mist), Nimbostratus and Cumulonimbus. Mid level - Clouds that form between 2000 m and 7000 m: Altocumulus and Altostratus. High level - Clouds that form above 5000 m: Cirrus, Cirrocumulus, Cirrostratus and Contrails. In this guide cloud types have been organised by their characteristics so it is easier to distinguish between clouds that appear to be similar and to help determine the cloud type when the altitude can’t be determined. Clouds have been grouped into four categories: • Cumulus (heaped, puffy appearing clouds). • Stratus (flat clouds that extend over large sections of sky). • Precipitating (clouds that can produce rain, hail or snow). • Cirrus (wispy high altitude clouds). By using a combination of the altitude system and characteristic based system used in this guide, cloud identification will be easier and more accurate.
    [Show full text]
  • Clouds Second
    Clouds Second ______________________________________________________________________ Jordan Nahabetian Photo taken on March 15, 2018 Altostratus in the morning Boulder, CO ATLS 4519 Context This was the second cloud assignment for Flow Visualization where my classmates and I are given the freedom to capture and cloud formation. In my first cloud image, I captured the sky at sunset and witnessed the colors and types of clouds typically seen in the evening in Boulder, CO. For this image, I planned to instead capture the sunrise, especially because the sunrise is captured far less than its sunset counterpart. This exact photo was not planned. I was looking out my east-facing window one morning and was blown away by the beauty of it. I used my phone and got the image right away. Time and Space This image was taken facing directly East in Boulder, CO at 7:30 am on March 15, 2018. This was captured near ground level which is approximately 5,430 ft in elevation. The camera was perpendicular to the ground. The room I was in was on the second floor of the building, which is why image captured a good amount of sky behind the trees. Conditions and Clouds The type of cloud most prominent in this image is a higher-level altostratus. These clouds are characterized by their flat and mostly-uniform appearance. Altostratus clouds are found in the mid layer of the atmosphere which is between 6,000 and 23,000 feet above ground and don’t normally form precipitation. A notable effect of the altostratus clouds as compared to the lower-level stratus cloud is that the sunlight shining through these clouds look more diffuse and not as direct as it does in stratus.
    [Show full text]
  • Clouds First Report
    CLOUDS FIRST REPORT By: Ryan Neff Figure 1: Edited Cloud First Image MARCH 20, 2018 UNIVERSITY OF COLORADO - BOULDER MCEN 4151: Flow Visualization For the “Clouds First” assignment, students were tasked with capturing mother nature and the beauty of everyday clouds. Students were also tasked to analyze the physics behind the clouds they were capturing and examine the weather patterns both before and after the image was taken. For my Cloud First image, I decided to capture the clouds I saw at sunrise while at work down in Aurora, Colorado on March 4th, 2018. By taking the image at sunrise, the sky yielded beautiful colors and painted onto the many cirrus clouds in the sky. As previously mentioned, the photo seen in Figure 1 above was taken during sunrise on the morning of March 4th, 2018. I took the image while I was working at Buckley Air Force Base located in Aurora, Colorado. Aurora is positioned roughly 20 miles southwest of Denver, Colorado and lies right around a mile above sea level. Further, I captured this image at exactly 6:15 AM and was facing east-southeast where the rising sun was not yet visible, but the illumination of the sky is evident. I took this picture holding my camera about eye-level, approximately 5.5 feet off the ground, and at an estimated 30° tilt towards the sky. I was working for about two hours at this point and stepped outside when I noticed the sky starting to brighten for daybreak. Luckily, there were plenty of clouds east of my location which were able to canvas the light diffraction from the rising sun.
    [Show full text]